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1. Zareni ¢erného télesa

1.1 Rayleigh 1900

Termin Rayleighliv — Jeanstiv zakon je vSeobecné uzivan, vede vsak k nespravnému
zavéru, Ze Lord Rayleigh a Sir James uvaZzovali jen dlouhovinnou ¢ést spektra. Zakladnim
Clankem k problematice je Rayleighova stru¢na poznamka, uverejnéna v Philosophical
Magazine (5. serie) 49 (1900), 539 — 540.

Remarks upon the Law of Complete Radiation

By complete radiation | mean the radiation from an ideally black body, which according
to Stewart* and Kirchhoff is a definite function of the absolute temperature 6 and the wave-
length A. Arguments of (in my opinion') considerable weight have been brought forward by
Boltzmann and W. Wien leading to the conclusion that the function is of the form

& p(01)da Q)
expressive of the energy in that part of the spectrum which lies between A and A+AA. A
further specialization by determining the form of the function ¢ was attempted later*. Wien
concludes that the actual law is
cAe % da 2)
in which c¢; and ¢, are constants, but viewed from the theoretical side the result appears to me
to be little more than a conjecture. It is, however, supported upon general thermodynamic
grounds by Planck®.
Upon the experimental side, Wien's law (2) has met with important confirmation.
Paschen finds that his observations are well represented, if he takes
c, =14455
0 being measured in centigrade degrees and A in thousandths of a millimetre (p)™.
Nevertheless, the law seems rather difficult of acceptance, especially the implication that as
the temperature is raised, the radiation of given wavelength approaches a limit. It is true that
for visible rays the limit is out of range. But if we take A=60 p, as (according to the
remarkable researches of Rubens) for the rays selected by reflexion at surfaces of Sylvin, we

! Dnesni hodnota ¢, =hc/k, =14388pum.K



see that for temperatures over 1000° (absolute) there would be but little further increase of
radiation.

The question is one to be settled by experiment; but in the meantime | venture to suggest
a modification of (2), which appears to me more probable & priori. Speculation upon this
subject is hampered by the difficulties which attend the Boltzmann — Maxwell doctrine of the
partition of energy. According to this doctrine every mode of vibration should be alike
favoured ; and although for some reason not yet explained the doctrine fails in general, it
seems possible that it may apply to the graver modes. Let us consider in illustration the case
of a stretched string vibrating transversely. According to the Boltzmann — Maxwell law the
energy should be equally divided among all the modes, whose frequencies are as 1, 2, 3, .....
Hence if k be the reciprocal of A, representing the frequency, the energy between the limits k
and k+dk is (when k is large enough) represented by dk simply.

When we pass from one dimension to three dimensions, and consider for example the
vibrations of a cubical mass of air, we have (“Theory of Sound’, 8267) as the equation for
K2,

kK*=p*+q°+r* ,

where p, g, r are integers representing the number of subdivisions in the three directions. If
we regard p, q, r as the coordinates of points forming a cubic array, k is the distance of any
point from the origin. Accordingly the number of points for which k lies between k and k+dk,
proportional to the volume of the corresponding spherical shell, may be represented by k?dk,
and this expresses the distribution of energy according to the Boltzmann — Maxwell law, so
far as regards the wave-length or frequency. If we apply this result to radiation, we shall have,
since the energy in each mode is proportional to 6,

ok*dk 3)
or, if we prefer it,

o1 da . 4)
It may be regarded as some confirmation of the suitability of (4) that it is of the prescribed
form (1).

The suggestion is that (4) rather than, as according to (2)

A7°dA (5)
may be the proper form when A8 is great*. If we introduce the exponential factor, the

complete expression will be

1 e dr . (6)



If, as is probably to be preferred, we make k the independent variable, (6) becomes
Cl ekZ e—czk/g dk . (7)
Whether (6) represents the facts of observation as well as (2) | am not in a position to say.

It is to be hoped that the question may soon receive an answer at the hands of the

distinguished experimenters who have been occupied with this subject.

* Stewart's work appears to be insufficiently recognized upon the Continent. [See Phil.Mag. i. p. 98, 1901; p.
494 below.]

t Phil. Mag. Vol. XLV. p. 522 (1898).

1 Wied. Ann. Vol. LVIII. p. 662 (1896).

§ Wied. Ann. Vol. i. p. 74 (1900).

*[1902. This is what | intended to emphasize. Very shortly afterwards the anticipation
above expressed was confirmed by the important researches of Rubens and Kurlbaum (Drude
Ann. iv. p. 649, 1901), who operated with exceptionally long waves. The formula of Planck,

given about the same time, seems best to meet the observations. According to this
modification of Wien's formula, e"** in (2) is replaced by1+(e®*”~1). When A8 is great,

this becomes AB/c; , and the complete expression reduces to (4).]

1.2 Planck 1901

Model, ktery presné popisuje spektralni hustotu v celém frekvenénim rozsahu
publikoval Max Planck jako “Uber das Gesetz der Energieverteilung im Normalspektrum” v
Annalen der Physik (4. serie) 4 (1901), 553 — 563. Uvadim anglicky preklad, originalni ¢lanek
je snadno dostupny.

On the Law of Distribution of Energy in the Normal Spectrum
Introduction.

The recent spectral measurements made by O. Lummer and E. Pringsheim?, and even
more notable those by H. Rubens and F. Kurlbaum?® which together confirmed an earlier
result obtained by H. Beckmann®, show that the law of energy distribution in the normal
spectrum, first derived by W. Wien from molecular-kinetic considerations and later by me

from the theory of electromagnetic radiation, is not valid generally.

2 O.Lummer, E.Pringsheim, Verhandl. Der. Deutscg. Physikal. Gesellsch. 2. p.163. 1900.

® H.Rubens, F.Kurlbaum, Sitzungsber. D. k. Akad. D. Wissensch. Zu Berlin vom 25. October 1900,
p.929.

* H. Beckmann, Inaug.-Dissertation, Tiibingen 1898. Vgl. Auch H.Rubens, Wied. Ann. 69. p.582. 1899.
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In any case the theory requires a correction, and | shall attempt in the following to
accomplish this on the basis of the theory of electromagnetic radiation which | developed. For
this purpose it will be necessary first to find in the set of conditions leading to Wien’s energy
distribution law that term which can be changed; thereafter it will be a matter of removing this
term from the set and making an appropriate substitution for it.

In my last article® | showed that the physical foundations of the electromagnetic
radiation theory, including the hypothesis of “natural radiation,” withstand the most severe
criticism; and since to my knowledge there are no errors in the calculations, the principle
persists that the law of energy distribution in the normal spectrum is completely determined
when one succeeds in calculating the entropy S of an irradiated, monochromatic, vibrating
resonator as a function of its vibrational energy U. Since one then obtains, from the
relationship dS/dU = 1/6, the dependence of the energy U on the temperature 6, and since the
energy is also related to the density of radiation at the corresponding frequency by a simple
relation®, one also obtains the dependence of this density of radiation on the temperature. The
normal energy distribution is then the one in which the radiation densities of all different
frequencies have the same temperature.

Consequently, the entire problem is reduced to determining S as a function of U, and it
is to this task that the most essential part of the following analysis is devoted. In my first
treatment of this subject | had expressed S, by definition, as a simple function of U without
further foundation, and | was satisfied to show that this from of entropy meets all the
requirements imposed on it by thermodynamics. At that time | believed that this was the only
possible expression and that consequently Wien’s law, which follows from it, necessarily had
general validity. In a later, closer analysis’, however, it appeared to me that there must be
other expressions which yield the same result, and that in any case one needs another
condition in order to be able to calculate S uniquely. | believed | had found such a condition in
the principle, which at the time seemed to me perfectly plausible, that in an infinitely small
irreversible change in a system, near thermal equilibrium, of N identical resonators in the
same stationary radiation field, the increase in the total entropy Sy = NS with which it is
associated depends only on its total energy Uy = NU and the changes in this quantity, but not
on the energy U of individual resonators. This theorem leads again to Wien’s energy
distribution law. But since the latter is not confirmed by experience one is forced to conclude

® M. Planck, Ann. D. Phys. 1. p.719. 1900.
® See Eq. (8) below.
" M. Planck, loc. cit., p. 730 ff.



that even this principle cannot be generally valid and thus must be eliminated from the
theory®.

Thus another condition must now be introduced which will allow the calculation of S,
and to accomplish this it is necessary to look more deeply into the meaning of the concept of
entropy. Consideration of the untenability of the hypothesis made formerly will help to orient
our thoughts in the direction indicated by the above discussion. In the following a method will
be described which yields a new, simpler expression for entropy and thus provides also a new
radiation equation which does not seem to conflict with any facts so far determined.

I. Calculations of the entropy of a resonator as a function of its energy.

8 1. Entropy depends on disorder and this disorder, according to the electromagnetic
theory of radiation for the monochromatic vibrations of a resonator when situated in a
permanent stationary radiation field, depends on the irregularity with which it constantly
changes its amplitude and phase, provided one considers time intervals large compared to the
time of one vibration but small compared to the duration of a measurement. If amplitude and
phase both remained absolutely constant, which means completely homogeneous vibrations,
no entropy could exist and the vibrational energy would have to be completely free to be
converted into work. The constant energy U of a single stationary vibrating resonator
accordingly is to be taken as time average, or what is the same thing, as a simultaneous
average of the energies of a large number N of identical resonators, situated in the same
stationary radiation field, and which are sufficiently separated so as not to influence each
other directly. It is in this sense that we shall refer to the average energy U of a single
resonator. Then to the total energy
Q) U,=NU
of such a system of N resonators there corresponds a certain total entropy
2 Sy=NS
of the same system, where S represents the average entropy of a single resonator and the
entropy Sy depends on the disorder with which the total energy Uy is distributed among the
individual resonators.

8 2. We now set the entropy Sy of the system proportional to the logarithm of its
probability W, within an arbitrary additive constant, so that the N resonators together have the
energy Uy

& Moreover one should compare the critiques previously made of this theorem by W. Wien (Report of the
Paris Congress 2, 1900, p. 40) and by O. Lummer (loc. cit., 1900, p.92).
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€)) Sy =kInW + const.

In my opinion this actually serves as a definition of the probability W, since in the basic
assumptions of electromagnetic theory there is no definite evidence for such a probability.
The suitability of this expression is evident from the outset, in view of its simplicity and close
connection with a theorem from kinetic gas theory®.

8 3. It is now a matter of finding the probability W so that the N resonators together
possess the vibrational energy Uyn. Moreover, it is necessary to interpret Uy not as a
continuous, infinitely divisible quantity, but as a discrete quantity composed of an integral
number of finite equal parts. Let us call each such part the energy element €; consequently we
must set
4) U,=Pe¢ ,
where P represents a large integer generally, while the value of € is yet uncertain.

Now it is evident that any distribution of the P energy elements among the N resonators
can result only in a finite, integral, definite number. Every such form of distribution we call,
after an expression used by L. Boltzmann for a similar idea, a “complex” (v originalu
“Complexion”). If one denotes the resonators by the numbers 1, 2, 3, . . .N, and writes these
side by side, and if one sets under each resonator the number of energy elements assigned to it
by some arbitrary distribution, then one obtains for every complex a pattern of the following

form:
1 2 3 4 5 6 7 8 9 10
7 38 11 0 9 2 20 4 4 5

Here we assume N =10, P = 100. The number 97 of all possible complexes is obviously

equal to the number of arrangements that one can obtain in this fashion for the lower row, for
a given N and P. For the sake of clarity we should note that two complexes must be
considered different if the corresponding number patters contain the same numbers but in a
different order.
From combination theory one obtains the number of all possible complexes as:
_ N.(N+1).(N+2)..(N+P-1) (N+P-1)!

R = -
1. 2. 3 .. P (N-1)1P!

Now according to Stirling’s theorem, we have in the first approximation:

NI=NV |

° L.Boltzmann, Sitzungsber. D. k. Akad. D. Wissensch. Zu Wien (11) 76. p.428, 1877.
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And consequently, the corresponding approximation is:

N+P
9 = (N+P)
N PP
8 4. The hypothesis which we want to establish as the basis for further calculation
proceeds as follows: in order for the N resonators to possess collectively the vibrational

energy Uy, the probability W must be proportional to the number 9% of all possible complexes

formed by distribution of the energy Uy among the N resonators; or in other words, any given
complex is just as probable as any other. Whether this actually occurs in nature one can, in the
last analysis, prove only by experience. But should experience finally decide in its favor it
will be possible to draw further conclusions from the validity of this hypothesis about the
particular nature of resonator vibrations; namely in the interpretation put forth by J.v. Kries™
regarding the character of the “original amplitudes, comparable in magnitude but independent
of each other.” As the matter now stands, further development along these lines would appear
to be premature.

8 5. According to the hypothesis introduced in connection with equation (3), the entropy
of the system of resonators under consideration is, after suitable determination of the additive

constant:
(5) Sy =kInR=k{(N+P)In(N+P)-NInN-PInP|

and by considering (4) and (1):

Sy =kN {(ngln(ljtgj _ng}
& & & &

Thus, according to equation (2) the entropy S of a resonator as a function of its energy U

IS given by

(6) S =k{(1+2jln(l+gj—glng}
& & & &

I1. Introduction of Wien’s displacement law.
8 6. Next to Kirchoff’s theorem of the proportionality of emissive and absorptive power,
the so-called displacement law, discovered by and named after W. Wien** which includes as a

special case the Stefan — Boltzmann law of dependence of total radiation on temperature,

19 Joh. V. Kries, Die Principien der Wahrscheinlichkeitsrechnung p.36. Freiburg 1886.
1 W. Wien, Sitzungsber. D. k. Akad. D. Wissensch. Zu Berlin vom 9. Febr. 1893. p.55.
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provides the most valuable contribution to the firmly established foundation of the theory of
heat radiation, In the form given by M. Thiesen'? it reads as follows:

E.di=6y(26).d2 |

where A is the wavelength, E d\ represents the volume density of the “black-body” radiation®
within the spectral region A to A + dA, 0 represents temperature and () represents a certain
function of the argument x only.

8 7. We now want to examine what Wien’s displacement law states about the
dependence of the entropy S of our resonator on its energy U and its characteristic period,
particularly in the general case where the resonator is situated in an arbitrary diathermic
medium. For this purpose we next generalize Thiesen’s form of the law for the radiation in an
arbitrary diathermic medium with the velocity of light c. Since we do not have to consider the
total radiation, but only the monochromatic radiation, it becomes necessary in order to
compare different diathermic media to introduce the frequency v instead of the wavelength A.

Thus, let us denote by u dv the volume density of the radiation energy belonging to the

spectral region v to v + dv; then we write: u dv instead of E dX; c/v instead of A, and cdv/v?

ool
14 14

Now according to the well-known Kirchoff — Clausius law, the energy emitted per unit

instead of dA. From which we obtain

time at the frequency v and temperature 8 from a black surface in a diathermic medium is
inversely proportional to the square of the velocity of propagation ¢ hence the energy
density U is inversely proportional to ¢® and we have:

u_g_sf(ﬁj
vied \v)

where the constants associated with the function f are independent of c.
In place of this, if f represents a new function of a single argument, we can write:

0 -21(9)

c 14

12 M. Thiesen, Verhandl. D. Deutsch. Phys. Gesellsch. 2. p.66. 1900.
3 perhaps one should speak more appropriately of a ,,white“ radiation, to generalize what one already
understands by total white light.



and from this we see, among other things, that as is well known, the in the cube of the volume

A% at a given temperature and frequency the radiant energy u - A* is the same for all diathermic

media.

8 8. In order to go from the energy density u to the energy U of a stationary resonator

situated in the radiation field and vibrating with the same frequency v, we use the relation
expressed in equation (34) of my paper on irreversible radiation processes**:

(R is the intensity of a monochromatic linearly, polarized ray), which together with the well-

known equation:

87 R
C
yields the relation:
8xv°
(8) u= C—SU

From this and from equation (7) follows:

U=Vf(€j ,
v

where now ¢ does not appear at all. In place of this we may also write:

()

8 9. Finally, we introduce the entropy S of the resonator by setting

1 dS
9 ==
®) ¢ du

We then obtain:

and integrated:

(10) s=1(%] .

“ M. Planck, Ann. D. Phys. 1. p.99 1900.



that is, the entropy of a resonator vibrating in an arbitrary diathermic medium depends only
on the variable U/v, containing besides this only universal constants. This is the simplest form
of Wien’s displacement law known to me.

8 10. If we apply Wien’s displacement law in the latter form to equation (6) for the
entropy S, we then find that the energy element € must be proportional to the frequency v,
thus:

s=hv

S=k 1+i In 1+i —ilni
hv hv hy hv

here h and k are universal constants.

and consequently:

By substitution into equation (9) one obtains:

1 k ( hvj
—=—1In|1+—| ,
¢ hv U

hv

hv
ek —1

(11) U=

and from equation (8) there then follows the energy distribution law sought for:

8zhv® 1
(12) u= 3 hyv
© e g

or by introducing the substitutions given in § 7, in terms of wavelength A instead of the
frequency:
_8zch 1

a5 ch
ekﬁ,g _1

(13) E

I plan to derive elsewhere the expressions for the intensity and entropy of radiation
progressing in a diathermic medium, as well as the theorem for the increase of total entropy in
nonstationary radiation processes
I11. Numerical values

8 11. The values of both universal constants h and k may be calculated rather precisely
with the aid of available measurements. F. Kurlbaum®, designating the total energy radiating
into air from 1 sq cm of a black body at temperature t °C in 1 sec by S;, found that:

5 F. Kurlbaum, Wied. Ann. 65. p.759. 1898.
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Watt _ 7 3110549

S0 — S, =0,0731 -
cm cm" sec

From this one can obtain the energy density of the total radiation energy in air at the
absolute temperature 1:

5
4.7,31.10 —7.061.10°" 3ferg :
3.10".(373* - 273*) cm?® grad
On the other hand, according to equation (12) the energy density of the total radiant
energy for8=11s:

['e]

e 3 v o 3w
U=IudV=872h thdv =87[3h Ve K+e K +e K 4. |dv
¢ Jok g ©

and by termwise integration:

4 4
o= 8zh 6(9 (1+i+i+i+...j 487K 1 0823

c? h ¢ h

If we set this equal to 7,061.10™", then, since ¢ = 3.10*° cm/sec, we obtain:

4
(14) % =1,1682.10%

§ 12. O. Lummer and E. Pringsheim® determined the product An8, where A is the
wavelength of maximum E in air at temperature 6, to be 2940 p-grad. Thus, in absolute
measure:

A, 8 =0,294cm.grad
On the other hand, it follows from equation (13), when one sets the derivative of E with

respect to 0 equal to zero, thereby finding A = An,

ch
1o Ch Jekmo_q
5k A6

and from this transcendental equation:

po_th
4,9651.k

Consequently:

h _ 4,9651.0,294

S apgr 4866100

16.0.Lummer, E.Pringsheim, Verhandl. Der Deutschen Physikal. Gesellsch. 2 p.176. 1900.
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From this and from equation (14) the values for the universal constants become:

(15) h=6,55.10"""erg.sec |,
(16) k=1,346.10" Y
grad

These are the same number that I indicated in my earlier communication.
1.3 Hustota stavl

V uzaviené dutiné (Gerné téleso) existuje nekonecné mnoho médl  kmitl
elektromagnetického vinéni, charakterizovanych frekvenci a polarizaci. Kazdy mod se viak
chova jako nezavisly kvantovy linearni harmonicky oscilator.

Zareni je uzavieno v kvadru o hranach délky (ve tfech rozmérech) Li, L,, Lz (objem

V =L, L, L,). Obecny vinovy vektor miZzeme zapsat jako
K= 2% > cosa, & (1.1)

kde cose; jsou smérove kosiny vektoru Kk, Zicoszaizl. Dvourozmérny pripad je

znazornén na obrazku. Pokud predpokladdme periodické okrajové podminky, musi byt délky

hran L, celoCiselnymi nasobky primétl 4 = A/cose; vinové délky do prislusného sméru &,

/| M
A
Ll
I“I
A
L=nA4=n , MEZ (1.2)
cosa,
nebo zapsano pomoci slozek vinového vektoru
n.
k. = ——cose, :i—”zzzz—' . (1.3)

(Pokud bychom uvazovali podminky takové, Ze vina musi mit uzly na sténach, platilo by

misto (1.3) k,=zn;/L;,n,eN. Pfi integraci pfes Ghlové proménné bychom ale museli
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integrovat jen 1/ 2° Gast prostorového Ghlu. Vysledek by byl pochopitelné stejny.) Hrana
kvadru pripadajiciho na jeden stav v prostoru vinovych vektor( je tedy

Ak =270t o M _27
) L L

(1.4)

a objem kvadru v d - rozmérech je (pro uréitou hodnotu vinového vektoru mizeme mit g

nezavislych stavll, u elektromagnetického zafeni g=2 — dva polarizacni stavy)

_(27) (1.5)

na jeden stav g V

AYK

Pocet stavll v elementu d’k dostaneme pak podélenim tohoto elementu vyrazem (1.5), tj.

9V _ i

dn= d'k . (1.6)
(27)
Prejdeme k hypersférickym soufadnicim, kdy
d'k =k**dkd Q. . (1.7)

Budeme dale predpokladat izotropni zavislost energie na hybnosti (vinovém vektoru), tj.

E(IZ) = E (k). Potom milZzeme (1.6) integrovat pFes thlové proménné a dostaneme vyraz pro

hustotu stavu v zavislosti na energii

dn=p, (E)dE , s (E)= v d Sdl[k<E)]dl (1.8)
P (E) ps (E) Py 3E¢ﬂ

V tomto vztahu je S, ; povrch d—1 rozmérné koule jednotkoveho poloméru (odvozeni
v priloze)

27Z_d/2

S‘H_r(d/z)

(1.9)

Pro pripad zareni Cerného télesa se vysledek vyrazné zjednodusi. Pfedevsim S,=4r a g=2.
Déle E=fiw=nhck ,takze

VvV E?

an=—
7" (nc)

dE . (1.10)

3
V zépisu pomoci frekvence v nebo vinové delky A pak mame

2
dn=8zVdv , dn:8ﬂV9% . (1.11)
c A
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Je zajimavé si vSimnout pfipadu volnych ¢&astic hmotnosti m v nekoneCné vysoké
potencialové jamé. Plati E=p’/(2m)=r"k’/(2m). Oznatime pro d=1 délku Gsetky L,

velikost plochy pro d=2 A apro d=3 objem V. Jednoduchym vypoCtem dostavame

d pq(E)
LIS !
2z7h JE

5 27zmAz\
(27 n)

3/2

(27zh)

1.4 Vlastni kmity pole (mdbdy)

Zatim bez dlkazu jsme uvedli, Ze kazdy mod pole v uzaviené dutingé (Gerné téleso) se
chova jako nezavisly linearni harmonicky oscilator. Nyni to uk&Zeme. Zareni je uzavieno

v kvadru o hranach délky A, B, C (objem V =ABC). Kalibraci zvolime coulombovskou, tj.
skalarni potencial je roven nule a nule je rovna divergence vektorového potencialu:

$#=0,V-A=0. Potenciél (realna funkce) rozloZime do Fourierovych sloZek

A:z&(t)exp(iﬁ-r) , k-A=0 , A=A | (1.12)
K
pritom
2zn
kX:27an k= zn, | kX:27znZ | (1.13)
A Y B C
kde n,,n,,n, jsou cela Cisla. Fourierovy slozky vyhovuji rovnici (to plyne z vinove rovnice)
d2 A -
dt'}m)w.:o : (1.14)

Jsou-li rozméry A, B, C zvoleného objemu dostatecné velké, jsou sousedni hodnoty k, .k, ,k

X1y 1 ¥z
velmi blizké a mizeme uvazovat o poctu moznych stavll v intervalu hodnot vinového vektoru

an, =2 Ak, . An =2 Ak, L An = Ak, | (1.15)
2r 2r 2r

celkoveé pak
Ak, Ak, AK,

An=An,An An, =V 3
(27)

(1.16)

Pro pole dostaneme s potencidlem (1.12)
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ot ¢ dt (1.17)

Celkova energie pole je

:%J(8°E2+ingdv_\éz{ dd? dd? (kxA()(IZxA;)j . (1.18)

Ho Ho

Jednoduchou upravou (vyuziti kalibracni podminky) prepiSeme vyraz (1.18) na
Vg d R d 5{ o, ~
QE = 0 . + 2 -\ f = C k . 119
2 Zk“{ at ar TANA] A K (1.19)

Rozklad potencialu (1.12) obsahuje jak stojaté, tak postupné viny. Vhodnéjsi pro interpretaci

je rozklad potenciélu, ktery obsahuje jen postupné viny

A= Z[a exp( (k F— a)kt)) +a; exp(—i(IZ-F - a)kt)ﬂ . (1.20)
Porovnanim (1.20) a (1.12) dostavame
A =d.exp(-iat)+a  exp(iot) . (1.21)

Dosazeni (1.21) do (1.19) umoZriuje ted napsat energii pole jako

E=>¢ , €. =2Vgw'd & (1.22)
K
Obdobné dostaneme pro impuls
N Py k &
=—[(ExB)dV =) ——X (1.23)
Ho '[( ) ; k ¢
Nakonec zavedeme kanonické proménné
Q; =&V (a.exp(-iot) + & exp(iot)) |
dQ (1.24)

P =0 oV (Gexp(-io t) - gexp(in ) ==

V téchto proménnych mame energii vyjadienu jako energii souboru nezavislych
harmonickych oscilator(i

[

e:}ﬁ“eﬁ , €E=E(I5E2+a)fQ§) . (1.25)
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1.5 Planckovo kvantovani energie

Pokud bychom uvaZzovali Klasicky, kaZzdému modu pole — ktery je ekvivalentni

linearnimu harmonickemu oscilatoru o dvou stupnich volnosti — prislusi energie U=k, T .

Z hustoty stavll (1.11) pak dostaneme rozloZeni energie pro jednotkovy objem ve tvaru

u,dv=Kk T?/—n = u =8—7[kBTV2 . (1.26)

VTR
Toto je standardni vyjadreni tzv. Rayleighova — Jeansova zakona. Je jasné, Ze celkova energie
ve spektru vysoka nekonecnd. Planckovo feSeni problému je v tom, Ze pocita stfedni hodnotu
energie pro danou frekvenci a teplotu tak, jako by odpovidala moZznym hodnotdm energie,
které jsou celistvymi nasobky jistého z&kladniho kvanta energie a pravdépodobnost jejich
vyskytu se Fidi Boltzmannovym rozdélenim. S oznacenim z&kladniho kvanta energie hv jsou

tedy mozné hodnoty energie E,=nhwva stfedni hodnotu energie, kterou Planck nahradil

hodnotu k; T z ekviparticniho teorému, dostaneme jako

z —Eq/keT
n=0 ”

U= . (1.27)

X

Normovaci faktor (statistickd suma Z) spoCteme vtomto pfipadé snadno, nebot je to

geometricka fada

Z= Zexp J Zexp k J 1 (1.28)
T hv
1—exp|———
=
Vyraz v Citateli (1.27) spoCteme jako
o7 hvexp(— hl}j
2 oEnefE"/kB =k, = : 2
"~ a( 1) hv
1-exp| -
T T
takZe v kone¢ném tvaru mame
U—__ v (1.29)
hv
exp|——|—1
=

Pro spektralni hustotu vztazenou na jednotkovy objem U pak ze vztahu
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dn

U dv=U—

\Y
dostavame
2
u, = 37" hv . (1.30)
hy
exp -1
kB T]

Ponechanim nejnizsich €lend v rozvoji dostavame v limitnich pfipadech pro hv<k,T

Rayleighiv — Jeansilv zékon a pro hv>>k, T Wienlv zékon

2
hv<k,T u, =87V 1
c
872 h (1.31)
hv>k, T U, = ”SV hvexp|— d
C kg T
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