Elektronová mikroskopie a mikroanalýza-3

interakce vzorku s elektronovým svazkem

interakce vzorku s elektronovým svazkem

při dopadu svazku urychlených elektronů na vzorek dochází k celé řadě interakcí při kterých se 1) mění směr "primárních" elektronů, ale energie zůstává téměř shodná – elastické srážky

- "primární" elektrony ztrácí svou energii při interakci s elektrony v el. obalech atomů vzorku a mírně mění směr – neelastické srážky
 - elastické srážky
 - zpětně odražené elektrony BSE
 - prošlé elektrony TE
 - neelastické srážky el. ztrácí energii při interakci s s.
 - sekundární elektrony SE
 - fotony v oblasti viditelného světla katodová luminiscence CL
 - Augerovy elektrony
 - charakteristické RTG záření
 - spojité RTG záření-bremsstrahlung
 - teplo
- detekce těchto signálů nám slouží k detailní charakteristice studovaného vzorku

excitační objem

- prostor, v kterém probíhá interakce urychlených elektronů, popřípadě RTG záření s hmotou vzorku
- zvětšuje se s rostoucí energií elektronového svazku
- zmenšuje se s rostoucím atomovým číslem vzorku
- jeho tvar závisí na šířce elektronového svazku

excitační objem

vztah mezi energií a vlnovou délnou

E=h.v

h= Planckova konstanta 6.6261.10⁻³⁴ [J·s] v= frekvence [Hz] c=rychlost světla [m/s] λ = vlnová délka [m]

 $\lambda = c/\nu, \nu = c/\lambda$

po dosazení

E=h.c/ λ , E=2,63.10⁻³⁴ x 2,998.10₈/ λ

po upravení dostaneme Duane-Huntovu rovnici

E=1239.84/λ

zpětně odražené elektrony - BSE

- vznikají při elastických srážkách s atomy vzorku
- **BSE** –Back Scattered Electrons
- **BEI Backscattered Electron Image**
- $E_e \approx E_0, \Delta E < 1 \text{ eV}$

η

.1

obecně jsou za BSE považovány všechny el. nad 50eV

produkce BSE určuje η_b (back scattering coefficient), který je silně závislý na průměrném atomovém čísle Z vzorku $Z = W_1 Z_1 + W_2 Z_2 + W_3 Z_3 \dots + W_n Z_n$ η = -0.0254 + 0.016 Z -0.000186 Z²+ 8.3 x 10⁻⁷Z³

BSE podávají informace o fázovém kontrastu studovaného vzorku

BSE fotografie

scintilační BSE detektor

"ROBINSON" detector

polovodičový BSE detektor

solid state detector

sekundární elektrony

- SE Secondary Electrons
- SEI Secondary Electrons Image
- SE jsou emitovány z el. obalu atomů v důsledku interakce s primárními elektrony
- energie do 50 eV nejčastěji 2-10 eV
- vzhledem k jejich malé energii, vzorek mohou opustit pouze SE produkované v oblasti do 500 Å pod povrchem.
- produkce SE závisí především na morfologii vzorku a méně již na atomovém čísle vzorku
- počet SE na jeden urychlený elektron (10-30 keV) je obvykle δ = 0.1-0.2

SE fotografie

mullit s kapkou utuhlé taveniny

detekce SE

Everhart and Thornley detektor

tři generace sekundárních elektronů

vliv urychlovacího napětí na SE obraz

vliv urychlovacího napětí na SE obraz

(a) 30 kV

x 2,500

(a) 5 kV

x 2,500

katodová luminiscence

- produkce fotonů ve viditelné části spektra
 - odráží změny chemismu aktivátorů CL (Mn, REE,...) v ppm
 - informace o vnitřní textuře vzorku
- scintilační detektor pouze černobílé zobrazení
- CL spektrometr měření spektrální charakteristiky

variace dusíku v diamantu

RTG záření

THE ELECTROMAGNETIC SPECTRUM Frequency Wavelength Energy Wavenumber Type of Radiation **Typical Process** $\overline{\mathbf{v}} = 1/\lambda(\text{cm}^{-1})$ v (Hz) $\lambda = c/\nu(m)$ (eV)1011 10-13(1 X-unit) 1021 y-Rays Nuclear Reaction (1 MeV) 106 Intra-Nuclear Transition 108 X-Rays 10-10(1Å) λ (nm) 1018 Inner Electron (1 keV)103 $10^{-9}(1 \text{ nm})$ (1 EHz) 400 Transition Vacuum Ultraviolet Valence Electron 105 Ultraviolet 500 Ionization 1015 104 10⁻⁶(1µm) Valence Electron (1 PHz) Transition 600 Infrared 10² Molecular Far Infrared 1012 Vibrations 700 (1 meV)10-3 $10^{-3}(1 \text{ mm})$ (1 THz) Molecular 10⁻²(1 cm) Microwaves Rotations Electron Spin 10⁹ (1µeV)10-6 Transition (ESR) (1 GHz) 10-3 10^{6} Nuclear Spin (1 neV)10-9 Radiowaves 10³(1 km) Transition (NMR) (1 MHz) 10-6 10^{3} 10⁶(1 Mm) (1peV)10-12-(1 kHz)10-9 1 eV = 1.602177 × 10⁻¹⁹ J; h = 6.626075 × 10⁻³⁴ J·s (Planck Constant); c = 2.997925 × 10⁸ m·s⁻¹ (light velocity) 1Å = 10⁻¹⁰m = 10⁻⁸cm~2.997925×10¹⁸ s⁻¹ (light frequency)~1.239852×10⁴ eV (energy of light quantum)

http://rpw.chem.ox.ac.uk/coll/spectrum.html

excitační objem

- velikost a tvar "excitačního objemu" závisí na energii elektronového svazku a na Z vzorku.
 - malá E a nízké Z "malá hruška"
 - velká E a nízké Z "velká hruška"
 - malá E a vysoké Z "malé jablko"
 - velká E a vysoké Z "velké jablko"
- hloubku penetrace lze vypočíst na základě empiricky zjištěného vztahu $x(\mu m) = \frac{0.1E_0^{1.5}}{\rho}$ E_0 =energie primárního elektronu [eV] ρ =hustota vzorku [g/cm³]
- nebo podle teoretické rovnice

$$r(\mu m) = \frac{2.76 \times 10^{-2} A E_0^{1.67}}{\rho Z^{0.89}}$$

A=průměrná atomová hmotnost [g/mol] E₀=energie primárního elektronu [eV] ρ=hustota vzorku [g/cm3] Z=průměrné atomové číslo

spojité RTG záření

- pokud dojde ke zpomalení primárního elektronu vlivem elmg. sil jádra atomu vzorku dojde k uvolnění brzdné energie ve formě fotonu.
 Protože míra zpomalení může být různá, je energie fotonu také různá – spojité záření
 - brzdné záření bremsstrahlung
 - dosahuje energie 0- eV~ U_{acc}

spojité záření

http://hyperphysics.phyastr.gsu.edu/hbase/quantum/xrayc.html#c2

spojité záření

- průběh spojitého záření nemá lineární charakter
- spojité záření tvoří tzv. pozadí, které je v případě měření charakteristického záření potřeba odečíst
- množství spojitého záření lze odhadnou na základě rovnice

 $p=1,1.10^{-6} \times Z \times E_0$

Z=průměrné atomové číslo

E₀=energie primárního elektronu

• 0.X procent celkové energie

charakteristické RTG záření

- cca 0.X procento urychlených elektronů narazí na elektron v elektronovém obalu atomu vzorku a vyrazí jej – SE
- vakance je zaplněna elektronem z vnějšího obalu, při přechodu je vyzářeno RTG záření určité vlnové délky (energie), charakteristické pro daný prvek.
- více typů přechodů

http://www.matter.org.uk/tem/electron_atom_interaction/x-ray_and_auger.htm

emise charakteristického RTG záření

Generation of characteristic radiation

a) Ejection of orbital electrons

b) Emission of characteristic photons

http://ehs.unc.edu/training/self_study/xray/9.shtml

charakteristické RTG záření

spektrum charakteristického záření Cu

charakteristické RTG záření

 Henry G.J. Moseley objevil v roce 1914 vztah mezi atomovým číslem a vlnovou délkou (energií) RTG-

záření

posun píků/energie v závislosti na složení matrice

Sousedící prvky ovlivňují elektronovou konfiguraci vnějších slupek Mg.

Tím je také mírně ovlivněna energie charakteristického záření a pozice píku ne spektru

Projevuje se zejména u prvků s nízkým Z a u kontrastních matric.

Z tohoto důvodu je třeba jako standardy pro mikroanalýzu vybírat fáze co nejpodobnější analyzovanému minerálu.

Augerovy elektrony

- probíhá vedle standardní produkce charakteristického RTG
 - dojde k vyražení elektronu z vnitřní slupky
 - zaplnění této "díry" přeskokem elektronu z vnějších slupek
 - rozdíl E je není vyzářen ve formě fotonu RTG-záření, ale je předán ve formě kinetické energie jinému elektronu (ve slupce)
 - pokud je kinetická E vyší než excitační, dojde k vyražení tzv. Augerova elektronu
- energie Augerova el. je nízká a rovná se rozdílu kinetické energie a excitační energie elektronu a je X00-X000 eV
- s rostoucím atomovým číslem produkce Ae klesá.
- slouží k detailní charakteristice povrchu Augerova spektroskopie

http://www.lpdlabservices.co.uk/analytical_techniq ues/surface_analysis/aes.php

energetické rozložení spektra elektronů

http://www4.nau.edu/microanalysis/Microprobe-SEM/Signals.html#Second

elektronová mikroanalýza

- elektronová mikroanalýza (EMPA) je relativně nedestruktivní metoda pro určení chemického složení pevných látek z malého objemu.
- metoda využívá elektronů emitovaných z katody urychlených na 10-30 keV, které při dopadu na vzorek vyvolají produkci RTG záření z excitačního objemu cca 1-5 µm³
- detekcí charakteristického RTG záření můžeme určit prvkové, tj. chemické složení studovaného materiálu

elektronová mikroanalýza

- podle způsobu detekce můžeme rozlišit dva typy mikroanalýzy
 - energiově disperzní systém (EDS, EDX)
 - využívá částicovou povahu záření
 - polovodičový detektor
 - vlnově disperzní systém (WDS, WDX)
 - využívá vlnovou povahu záření
 - založen na RTG difrakci
- urychlovací napětí 15 kV pro silikáty a 25 kV pro sulfidy a kovy

take-off úhel

- výstupní úhel
 38° 52,8°
- Cameca 40°

energiově disperzní systém (EDS)

- polovodičový detektor Si:Li
 - plocha 10mm²-40mm²
 - napětí 500-600V
- RTG záření generuje páry elektron-díra, které zvyšují vodivost detektoru
- RTG o větší E generuje více def. páru => větší proudový impulz
- klasické typy: detekce od Na po U
- moderní typy: od (Be) B po U
- nutné chladit LN₂ nebo peltierovými člán'

PRISM 2000

energiově disperzní systém (EDS)

- výhody
 - načítá se celé spektrum současně
 - rychlá analýza 30, 60 s
 - levnější než WDS
- nevýhody
 - špatné rozlišení 130 -150 eV na kanál
 - množství koincidencí Pb-Bi-S, Mo-S, As-Mg, Na-Zn, Ba-Ti
 - vysoká mez detekce 0,1-1,0 hm.%

energiově disperzní systém (EDS)

- pozice píku závisí na jeho energii
- velikost (plocha) píku určuje množství prvku
- koncentrace prvku se vypočítá na základě poměru plochy píku neznámé fáze a plochy píku standardu.

vlnově disperzní systém (WDS)

- pracuje s vlnovou charakteristikou záření
- využívá difrakce RTG záření na krystalu monochromátoru
- zdroj záření, nonochromátor a detektor musí ležet na Rowlandově kružníci
- pokud je splněna Braggova podmínka, záření je difraktováno směrem k detektoru, pokud ne, záření je pohlceno
- krystaly jsou zahnuté (sbroušené) a orientované tak, aby difrakční roviny ležely co největší plochou na RK

 $n\lambda=2d~sin\theta$

where, n = an integer (1, 2, 3...), λ = wavelength, d = d-spacing of the crystal, and θ = incident angle (measured from crystal surface)

principy měření

vliv teploty na WDS analýzu

- se změnou teploty se mění i d hodnoty monochromátorů
 - mění se úhel při kterém dochází k difrakci

WDS - krystaly

- Lithium fluoride 200 (LIF), 2d = 4.028 Å
- Potassium acid pthalate 1011 (KAP), 2d = 26.6 Å
- Ammonium dihydrogen phosphate 011 (ADP), 2d = 10.648 Å
- Rubidium acid pthalate (RAP), 2d = 26.1 Å
- Pentaerythritol 002 (PET), 2d = 8.742 Å
- Thallium acid pthalate 1011 (TAP), 2d = 25.75 Å, and
- Lead sterate or Lead octodecamoate (ODPB), 2d = 100 Å

Crystal	Range		
	Κα	Lα	Μα
ТАР	F to P	Mn to Nb	La to Hg
РЕТ	Si to Mn	Sr to Tb	Ta to U
LIF	Sc to Rb	Te to Np	

WDS - detektor

- proporcionální plynový detektor
- "gass flow"
- plyn argon methan 9:1
- difraktované RTG záření ionizuje plyn v detektoru a dojde k výboji
 - methan je zhášeč výboje

WDS – principy měření

- měří se počet pulzů v maximu píku a na pozadí před a za píkem
 - realný počet pulzů v maximu píku v závislosti na proudu el. svazku
 - cts.s⁻¹.nA⁻¹
- srovná se s počtem cts.s⁻¹.nA⁻¹ standardu daného prvku
 - spočte se koncentrace

vlnově disperzní systém (WDS)

- výhody
 - dobré spektrální rozlišení 6 eV na kanál
 - nízké detekční limity 0.0X
 - menší množství koincidencí
 - až 5 spektrometrů
- nevýhody
 - časově náročnější analýzy minimálně 3-4 min
 - větší nároky na kvalitu vzorku
 - finančně náročnější zařízení
 - měříme pouze zvolené prvky

EDS, WDS - ZAF korekce

$$C_{unk}^{A} = C_{std}^{A} \left(\frac{I_{unk}^{A}}{I_{std}^{A}} \right)$$

where C_{unk}^A = concentration of A in the unknown, C_{std}^A = concentration of A in the standard, I_{unk}^A = the background-corrected intensity of A X-rays in the unknown, and I_{std}^A = background-corrected intensity of A X-rays in the standard.

- Z korekce na BSE
 - BSE opouštějí vzorek aniž by došlo k produkci RTG záření
 - množství BSE závisí na atomovém čísle Z
 - korekce na ztrátu E (produkce RTG) kvůli BSE
- A charakteristické záření je částečně pohlcováno hmotou vzorku v závislosti na chemickém složení zkoumané oblasti a energii daného RTG záření
- F charakteristické a spojité RTG záření vyvolává emisi sekundárního RTG záření o nižší energii