Metody zpracování difrakčních dat, G7661 Praktická část

Jakub Plášil

1. Instalační pokyny

Xfit – pozor, při rozbalení dojde k rozbalení VŠECH položek někam. Je z toho pak bordel. Doporučuji nejprve vytvořit složku a v ní extrahovat.

Celref, Poudrix – nemělo by dělat žádný problém

JANA2006 – execute Janainst.msi and follow instructions Instalace vytvoří shortcut k Jana2006 na Ploše a v nabídce Start

Konfigurace programu

Spustit Jana2006, jdi do "Tools \rightarrow preferences, nastavte velikost okna (60% plochy) a velikost písma (mezi 15 and 18 pixcely).

Jděte do "Tools → Programs" vyberte myší textové pole "Graphic viewer" a definujte (použijte tlačítko "Browse") pathname pro Vesta.exe

2. Peak fitting with Xfit

1. Run Xfit

Toto je zakladní okno

2. Otevření datového souboru, definice vlnové délky, manipulace s daty

",File" \rightarrow "Load data" \rightarrow (vyber v dialogu "zobrazit soubory typu" Files (.cpi) "Pyrite.cpi" → "OK"

🔁 X-ray Line Profile Analysis, XFIT	_ 8 ×
File Edit Fit Koalariet View Window Help	
pyrite.cpi	
InsOcIPeaks File Details Capture Manpulate y	
x(26.000, 100.007) y(332, 5648) x= 95.2000 y= 5380.38	63
💽 Start 👹 🤣 🤕 📃 😕 👔 metody prakticka 🔰 🖉 Xrit 👘 🕅 Metody zpracování dířra 👹 Mor. Jakub Pláší - Výuka 🖾 X-ray Line Profile Ana 🛛 CS 💽 🌆 🚺 🐓 🖓 👘	22:18

Click "File details"

🏡 X-ray Line Profile Analysis, XFIT - [Edit File Details]			_ 8 ×
🔉 File Edit Fit Koalariet View Window Help			_ 8 ×
File Eak Fit Koalariet Vew Window Heb File Assign LAMS to Files Assign LAMS to Files Assign LAMS to Cursor +General Display Options Options +Fit Constants and Stats. +Bit Specimen +Miscellaneous Convolutions - Change Selections To Peaks Change Selections To			×[8]-
		x(26.000, 100.007) y(332, 5648)	x= 50.6688 y= 3498.3182
灯 Start 🥘 🖉 🦉 📃 🦻 👔 metody_prakticka 📝 xfit	💌 Metody zpracování difra 🧯	🔰 Mgr. Jakub Plášil - Výuka 🛛 🔝 X-ray Line Profile Ana	CS 🔕 🗟 🌒 🎒 🦻 📆 🖏 🗞 22:21

Click "Assign LAM to Files"

Pak click on "pyrite.cpi" (in the left bottom window) \rightarrow pak click to "Assigned Lam Files" window \rightarrow a následně na "Assign", které se objeví v "Options" \rightarrow následně se otevře dialog "Select LAM file to assign to selected files"

Jakýkoliv jiný způsob nevede ke kýženému výsledku

Go to the Xfit parent directory \rightarrow select "CuKA_2.lam, "OK" \rightarrow then minimize the window

Go to "Edit" in the main window \rightarrow select "Edit x-y scales"

Manipulace s daty:

Pomocí tabulky Window: pyrite.cpi (x1=..., x2=...), pomocí funkce "Arrow" v "Options" okénku

To funguje tak, že levý click označí oblast z leva, pravý click zprava. Try it!

3. Fitování

Select "Ins/Del peaks" Objeví se okénko "Peak edit options" Select "PVII" and 2theta

To je profilová funkce PearsonVII, která zohledňuje nízkoúhlovou asymetrii. Pohledem na difrakční maxima zjistíme, že se zde nemusíme příliš obávat. Proto můžeme zvolit i fci PV (Pseudovoigt), která je fyzikálně lépe čitelná a okamžitě nám poskytuje informaci o FWHM fitovaného profilu. Zůstaňme u fce PVII

Click on the diffraction peak by left mouse button and see...

Refinement converged in 13 steps, with R_P = 4.150 and final difference -0.003. Press "OK" and "Keep refined values"

You can try to make one more round via "Fit" \rightarrow "Fit Marquart" \rightarrow "Start" *A je evidentní, že fit zůstal stejný* \rightarrow *dobrý výsledek!*

Nyní, pokud chceme na další peak, je nutné pohybovat se po datech pomocí tabulky "x-y" Tedy zadáme například x2=35 enter

Jdeme na další profil...opakujeme předešlé procedury, až máme nafitován <u>c</u>elý záznam

4. Extrakce dat (little bit tricky)

Jdi do "File details" → click on "Peaks" → select "Split PearsonVII" → "Values" → "Create TXT report" Tady se nacházíme v choulostivé fázi, tedy BACHA! (jak říká Petr Čtvrtníček: "Jedním jebem to všecko smázneš") Označ si data, Ctrl+c → Ctrl+v do Notepadu, ulož

Následně zavři okno, bez uložení změn (jinak se to sekne, nebo to spadne). Můžete zkusit uložit jako project. Někdy se to sekne, někdy to spadne, někdy to nejde naloadovat. Je to již trochu dřevní program, a není zvyklý na Windows 7 natož Vista

4. Co s daty z Xfitu?

Tady se dostáváme k zajímavému úkolu. Je potřeba si vytvořit přepočetní vzorec v Excelu (nejlépe). Pohledem na data získaná, zjišťujeme, že máme:

Soubor Úpravy Formát Zobrazení Nápověda		
File Peak Area Th2 pyrite.cpi PVII 119.5991 28.5262 PVII 506.7509 33.0488 PVII 124.5953 37.0854 PVII 167.6314 47.4350 PVII 167.6314 47.4350 PVII 167.6314 76.032 PVII 100.7752 64.2854 PVII 100.7752 64.2854 PVII 100.7752 64.2854 PVII 37.2048 76.6032 PVII 37.2048 78.9824 PVII 45.9803 81.3175 PVII 23.6858 83.6406 PVII 49.6376 88.302 PVII 155.9976 95.2614	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
🏷 Start 🕘 🖉 🤯 📰 📀 📝 metody_prakticka	👔 xfit 🛛 🗑 Metody zpracování díf 🕼 X-ray Line Pro	sfile Anal 🔞 CCP14 Homepage - Tu 🔲 pyrit - Poznámkový CS 🔍 🕄 🕄 🌜 23:15

Přičemž nás zajímá zejména nyní sloupec Th2, což je pozice difrakce ve °2theta.

Některé programy fungují na základě inputu naměřených pozic ve °2theta, některé v d_{hkl} (Angstromy)

Cvičně si to udělejme také, neboť program Unit-cell pracuje na bázi obou možných inputů

Tedy vytvořte vzorec, tak abychom z uhlové informace získali mezirovinnou vzdálenost v Angstromech

A to na základě znalosti Braggovy rovnice. Vlnová délka zde odpovídá záření CuKa1, tedy 1.54056 Angstrom.

Hodnoty *d*_{hkl} odpovídají mezirovinným vzdálenostem, jejichž indexy budeme vyšetřovat dále

5. Program Poudrix

Šikovný prográmek na výpočet teoretických difračních práškových dat ze známé krystalové struktury

"File" \rightarrow "Open" \rightarrow ".Cif" \rightarrow nahraj "Pyrite.cif"

	📕 POUDRIX (15/11/03)					_ <u>-</u>
	File Results Erase Help About Quit					Nápověda – zadejte dotaz 💌 🗙
	Data (pyrite.cif)		X rays Neutrons	Calcul. Result	S	•
		Source: X ray tube				5. 🔀 🗸
	Cell parameters System Atom	n coordinates of the asyme	ric unit Anomalous d	ispersion		· · · 🛆 · · · 17 · · · 18 ·
	a 5.4160 x 90 Cubic A Atom Lab.	X Y Z	B Pop ▲ U.0000 U.000			
	0 3 📈 X ray source	× 0.00000 0.00000				
	P=1- n + n cos(2theta)	~~	S 0.000 0.000			
	ne					
	Sp					
	Ex C Synchrotron source			II		
	<u>}</u>					
	20:					
		🗸 ОК				
	V 0 CuKa2					
	W 0.005 CukBet •		📕 📑 🖹 Read Anomal	ous Factors		
	⊙ Th. ⊙ 2Th ◯ Q Title: Fe	eS2		I		
						-
	File Y Scale Print Save image Erase Differen	ence Help				
					c	15 « 🕢 🗊 🖏 🌘 23:46
						*
						•
ĺ	🞝 Start 🕘 🖉 🤯 📰 🥺 👔 pyrit	📝 xfiit	👔 poudrix	🗑 Metody zpracování difra 🚺 🗩	oudrix	CS 🔍 🕥 📆 🛃 🍾 23:49
1	Click on Xrays (č	ervene)				

Musí být v tomto případě zatrženo XRays tube (p=0.5); polarizační faktor

"OK"

Select Wavelength v okně "Wavelength" jako CuKa1. V dialogu "Experiment" zadej hodnotu 2thete2 jako 101, hodnoty U V a W nech default Click on Calcul.

Můžeme si zobrazit i náš experimentální záznam ve spodním okně. Následovně:

"File" \rightarrow "Open" \rightarrow "Cpi format (.cpi) \rightarrow "Pyrite.cpi"

Vidíme shodu experimentu s teorií, co se týče pozic i intenzit Můžeme upravit FWHM teoretického záznamu, neboť je zde jistá diference

Pokud budete používat tento program, je dobré číst hodnoty v live-view. Program sice nabízí export výsledků, nicméně bývá chybný

6. Indexování difrakčního záznamu

Úhlovým hodnotám difrakcí získaných z profilového fitování přiřazujeme dané indexy *hkl*, které reprezentují dané osnovy rovin mezi nimiž se ony dané mezirovinné vzdálenosti nacházejí.

Nuže

2Th	h	k	I
28.5262	1	1	1
33.0488	0	0	2
37.0854	1	0	2
40.7788	1	1	2
47.435	2	0	2
56.2819	3	1	1
59.0373	2	2	2
61.6825	3	0	2
64.2884	2	1	3
76.6032	3	1	3
78.9824	0	2	4
81.3175	1	2	4
83.6406	3	2	3
88.3092	2	2	4
95.2614	1	1	5
	3	3	3

7. Program UnitCell

http://www.ccp14.ac.uk/ccp/web-mirrors/crush/astaff/holland/UnitCell.html

Často užívaný program v mineralogické obci. Metoda nelineárních nejmenšíxh čtverců. Souhrný článek od autorů doporučuji při používání programu přečíst:

Holland, TJB & Redfer, SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. *Mineralogical Magazine* 61: 65-77.

Máte následující soubory:

👔 UnitCellWin								_ 8 ×
🌀 🕞 📕 🕶 Počítač 🕶	Místní disk (C:) 👻 unit-cell 👻	UnitCellWin 👻				- ₩	Hledat	
Soubor Upravit Zobrazit	Nástroje Nápověda							
🕘 Uspořádat 👻 📗 Zobra	zení 🔻 间 Otevřit 💌	🕙 Zapsat na disk CD						•
Oblibené položiky Dokumenty Obrázky Hudba Dašší » Složiky Windows Jour A	Název A V Rexamples Pyrit rots UnitCell_Info UnitCell_Info Valpas	Datum změny V T 16.11.2010 18:13 5 20.12.2010 08:13 5 16.11.2010 18:13 5 16.11.2010 18:13 5 16.11.2010 18:13 5 16.11.2010 18:13 5 16.11.2010 18:13 5 16.11.2010 18:13 5	yp v ložka souborů oubor DAT plikace oubor DOC extový dokument oubor DAT	Velikost v 1 18 1 18 462 18 462 18 30 18 8 18 1 18				
Windows Mail Windows Mail Windows NT Windows Nt Windows Phot Windows Sidet WinKart Xcalibur Sift Xnife Xnife								
SwSetup Temp Unit-cell Unit-cell Unit-CellWin Swamples Users								
Xcalbur XcalburData ZALBRN ZALBRN Zaldha_plocha_st Zuzka PH_RECOVERY (D: Jednotka DVD RW Mé stránky WWW V								
🐉 Start 🙆 🥔 🤯 📰 🕯	🖻 📝 pyrit	🚺 📝 UnitCe	llWin	Metody zpracování difra	Microsoft Excel - pyrit	UnitCell: Program to refi	CS 🔍 🕥 📆 着	0:34

Kde "Pyrit" byl vytvořen jako kopie ze složky "Examples". Podívejte se, jak tyto soubory vypadají.

Pyrit – Poznámkový blok	
Soubor Úpravy Formát Zobrazení Nápověda	
Pyrit, Kamil	*
0 - 2 2 18.93	
1 -1 2 22.72	
-1 3 0 23.51	
1 2 23.69	
-1 3 2 25.34	
-2 -2 2 26.18	
-1 1 4 26.49 -2 2 0 27 34	
0 4 0 27.77	
-2 0 4 27.91	
2 2 0 28.59	
1 -3 2 29.36	
0 -2 2 30.26	
-2 -2 4 30.90	
1,3 2, 31.63	
-1 3 4 31.91	
2 -2 2 35.07	
1 - 1 4 35.49	
-1 -5 2 37.35	
-3 3 2 38.72	
U 2 5 38.98 1 -5 2 40.27	
-2 2 6 41.79	
2 - 4 2 42.14	
0 6 2 45.67	
4 2 4 46.97	
1	-1
1	

Máme tedy "hlavičku", potom sloupce "hkl", "pozice" (zde úhel). Zadání není pozičně citlivé, což je jistá výhoda (narozdíl např. od starého programu Burnham). Hlídat si, kde se člověk uklikl není vždy příjemné.

Vyplníme textový soubor naším pyritem

Pyrit - Poznámkový blok	_ _ X
Soudor Upravy Form& Zobrazení Nápověda Pvrtit. Kamil 1 1 28.526 0 2 1 1 28.526 1 28.526 1 2.8.526 1 2.8.526 1 2.8.526 2 2.9.7.485 3 1.5.6.282 2 2.9.037 3 0.2.61.683 2 3.8.641 2.4 48.309 1.5.9.261 3.3.3 95.261 3.3.3 95.261	
Uložíme	

Spustíme UnitCell

UnitCell		
✓ refine ZeroShift	🔄 Unit Cell	Brief diagnostics
Input data:	Crystal System:	Minimise on:
O d spacings	Cubic	O d spacing
 two thetas lambda: 1.540593 Energies Beam 2theta 10.000 	C Tetragonal C Hexagonal C Orthorhombic C Monoclinic C Triclinic	 ○ 2 theta ○ energy ○ Q (=1/d⁺2)
© Tim Holland and Simon R	edfern Run	Exit

Nastavíme dle obrázku, tzn. "Input data" máme ve formě 2tet, "lambda" délka je jaká je (můžeme změnit na 1.54056 (je to celkem zanedbatelné)). Pyrit je a snad i bude za normálních podmínek kubický, "minimalizujeme" na 2t, což má výhodu minimálním zaváděním nepřesností a korelací (viz. článek). "Brief diagnostics" nám dává statistiku, "refine zero-shift" můžeme nechat nerefinovaný

Press "Run" Otevřeme "Pyrit" a v mžiku oka nám vyskočí výsledek:

📲 C:\u	init-ce	:II\Ui	nitCellWin	\Pyrit.out						
File S	earch									
Output	: from	a pr	ogram Un	hitCell - 1	method of	TJB Holland a	SAT Redf	ern 1995		
sample	e tit:	le:	Pyrit, H	(amil						
refine minimi	ed in ising	cub the	ic syste sum of	em, using w squares of	avelength residuals	1.540593 Ĺ in 2 theta				
Neight	ed as	5 51 110	ing a v	alue of sim	ma(2theta)	= 0 005 dem				
Cell p	aram	eter	errors	scale in d	irect prop	ortion to thi	s weighti:	ng value		
param	aeter		value	sigma	95% conf					
			41722	0 00009	0 00019					
cell	a 1 770 1	15	. 41/33 8 9851	0.00008	0.00018					
		10	0.5001	0.0010	0.0100					
residu	als:	st	andard,	average, a	nd maximum	deviations:-				
sd (21	C) = (0.00	94 aad	(2T) =0.00	75 maxdev	(2T) =0.0210	i i i i i i i i i i i i i i i i i i i			
sigmaf	fit =	1.	9396							
studer	nts t	=	2.13							
Recipr	rocal	cel	l parame	eters:						
p-										
			a*							
params	5	0.1	845927							
sigma		0.0	000028							
Observ	zed az	nd f	itted re	esults: {d	ependent-v	ariable resid	huals ≻2sd	are bullet	ced}	
no	h	k	1	d(obs)	d(calc)	res(d)	2T.obs	2T.calc	res(2T)	
1	1	1	1	3.12654	3.12770	-0.00116	28.526	28.515	0.011	
2	0	0	2	2.70826	2.70867	-0.00041	33.049	33.044	0.005	
з	1	0	2	2.42226	2.42270	-0.00045	37.085	37.078	0.007	
4	1	1	2	2.21095	2.21162	-0.00066	40.779	40.766	0.013	
5	2	0	2	1.91508	1.91532	-0.00024	47.435	47.429	0.006	
6	з	1	1	1.63322	1.63339	-0.00017	56.282	56.276	0.006	
7	2	2	2	1.56340	1.56385	-0.00044	59.037	59.019	0.018	*
8	3	0	2	1.50253	1.50250	0.00004	61.683	61.685	-0.002	
9	2	1	3	1.44779	1.44784	-0.00005	64.288	64.285	0.003	
10	3	1	3	1.24282	1.24282	-0.00001	76.603	76.603	0.000	
11	0	Z	4	1.21124	1.21135	-0.00011	78.982	78.973	0.009	
12	1	z	4	1.18224	1.18216	0.00008	81.318	81.325	-0.007	
14	3	2	3	1.15522	1.12498	-0.00024	83.641	83.66Z	-0.021	~
14	4	2	4	1.10580	1.10581	-0.00001	88.309	88.308	-0.001	
16	3	3	3	1.04261	1 04257	0.00005	95 261	95 267	-0.006	
~ ~			~	1.04201	2.04207	0.00000	20.201	55.207	0.000	

Kde máme popořadě:

- 1. Hlavičku
- 2. Shrnutí zadání refinementu
- Nový mřížkový/ové parametr/y po proběhnutí refinementu, tedy zpřesněný zde parametr jest 5.41733(8), následuje 95% hladina spolehlivosti, která udává chybu na pozici 5.4173(2), což odpovídá i kolonce "sigmafit = 1.9396" kterou by měly být hodnoty sigma násobeny, zejména pokud je větší než 1. Více v návodu+článku. Následuje hodnota reciprokého kubického parametru
- Oddělení udávájící pro jednotlivé hkl naměřené hodnoty mezirovinných vzdáleností (dobs), vypočtené (dcalc), jejich rozdíl (res(d)) a to samé pro úhlovou informaci

Ш¥ С	🚾 C:\unit-cell\UnitCellWin\Pyrit.out										
File	Search										
no	h	k	1	d(obs)	d(calc)	res(d)	2T.obs	2T.calc	res(2T)		
1	1	1	1	3.12654	3.12770	-0.00116	28.526	28.515	0.011		
2	0	0	2	2.70826	2.70867	-0.00041	33.049	33.044	0.005		
з	1	0	2	2.42226	2.42270	-0.00045	37.085	37.078	0.007		
4	1	1	2	2.21095	2.21162	-0.00066	40.779	40.766	0.013		
5	2	0	2	1.91508	1.91532	-0.00024	47.435	47.429	0.006		
6	з	1	1	1.63322	1.63339	-0.00017	56.282	56.276	0.006		
- 7	2	2	2	1.56340	1.56385	-0.00044	59.037	59.019	0.018 *		
8	з	0	2	1.50253	1.50250	0.00004	61.683	61.685	-0.002		
9	2	1	з	1.44779	1.44784	-0.00005	64.288	64.285	0.003		
10	з	1	з	1.24282	1.24282	-0.00001	76.603	76.603	0.000		
11	0	2	4	1.21124	1.21135	-0.00011	78.982	78.973	0.009		
12	1	2	4	1.18224	1.18216	0.00008	81.318	81.325	-0.007		
13	з	2	з	1.15522	1.15498	0.00024	83.641	83.662	-0.021 *		
14	2	2	4	1.10580	1.10581	-0.00001	88.309	88.308	0.001		
15	1	1	5	1.04261	1.04257	0.00005	95.261	95.267	-0.006		
16	з	з	з	1.04261	1.04257	0.00005	95.261	95.267	-0.006		

Regression diagnostics (for deletion of each observation i):

(a) potentially deleterious or influential observations affecting the fit:

no	h	k	1	hat	dfFits	Rstudt	sigma[i]	d(sig)%
7	2	2	2	0.039	0.439	2.167	1.7373	-10.4
13	з	2	з	0.098	-0.897	-2.716	1.6248	-16.2
15	1	1	5	0.148	-0.251	-0.603	1.9821	2.2
16	з	з	з	0.148	-0.251	-0.603	1.9821	2.2
limit	:			0.125	0.500	2.000		

(b) observations most strongly affecting the parameter values DfBetas: cell parameter changes (as % of their standard deviations):

no	h	k	1	da	dV	
4	1	1	2	34	34	
7	2	2	2	76	76	
11	0	2	4	55	55	
12	1	2	4	-46	-46	
13	з	2	з	-146	-146	
15	1	1	5	-50	-50	
16	з	з	з	-50	-50	
-						-

A dále následuje regresní diagnostika.

8. Program Celref

Program pro refinement mřížkových parametrů metodou nejmenších čtverců. Výhoda je visualizace powder patternu, tedy okamžitá kontrola, co se děje. Nevýhoda je zdlouhavý input dat.

"File" \rightarrow "Open" \rightarrow "Profile file \rightarrow ".Cpi" \rightarrow "Pyrite.cpi"

File Erase About Exit He	łp			
Current values $\lambda = 1.54060$ $2\Theta I = 26.00$ $2\Theta Z = 100.01$	Measured reflections Initial cell parameters Selection of the reflections Cell refinem	ent]	First step: Enter the Bragg angles of the measured reflections: By topboard: Enter the wavelength in the "Current Valuer" dialog box, cick on the button "Keyboard" then enter the measured values in the gird box. From a file, cick on the button "File" to load a Diffso-At,	
Raw dagram File: pyrite cpi Sangle: Anode: Law 261 1.5406 2500 100.01			XFIT or VINITIT file. By measuring directly on a diagram. Click on the button "Diagram". You also can use an indexed lat of h, k, L 2Theta. "This lat can be loaded from an existing file. Lit extension? For this searct the "Load an Obd 2Theta indexed lat" [31] tem of the File memu. *If also can be created in the from the keyboard and then sevend into a "Life Lus the "Create anew 2 heta indexed list ("List")" are of the File menu.	
. 🗊 Diagram				_0×
α α α α α α α α α α α α α α	4àoo 5àoo 6àoo	70.00	00000000 protec principal 	
⁰ θ € 2θ	Dick and drag ar	ectangle to "Zoom". "Z	Z- * button to "Unzoom" Terration 0 🗸 OK	

- | D | × |

🖽 CELREF V3 (17/10/03)							
File Erase About Exit Help							
Current values	Measured reflections	Initial cell parameters	Selection of the reflections C	I refinement		1	
🗰 Measure the reflection	angles on the diagra	m				- U ×	
File Options Peak Search	Peak Kill Help Quit						
Theta range $2\Theta1 = 26.00$ 260.01 $2\Theta2 = 100.01$ C Prof. File: pyrite.cpi Anode: cpi Anode: Cu 1.1 1.54056 1.54435 1.54056 2.600 1.54056 2.600 1.54056 2.600	Observed reflect 2Theta Dhki	ions (2theta)	Peak Sea Threshold : Min Width (°) 0.10 Max Width (°) 1 ∳ Search ✔ Close	rch parameters	If there is no pattern To make a zoom, pr rectangle. To unzoo To measure the pos 1/*By hand": Click o 2/*Automatic peak S tem of the menu an You can mix the bot To delete a measure line and click with th corresponding line of	h, open a profile file. ess the left button and drag the molick on the 2- button. stilons of the peaks on the diagram: In the peak with the left button. Search ¹¹ . Click on the "Peak Search" d adjust the parameters. th methods. de reflection, bring the cursor on the ne right button; or bouble click on the of the list.	
30.0 2T= 80.92 d= 1.187		500 Z- X Q A					

Click on button "Diagram" \rightarrow objeví se nové okno \rightarrow Click on "Peak search"

Nastavte hodnoty z obrázku

Furrant values			fore is no for	~ .1		
leasure the reflection	angles on the o	diagram				
Options Peak Search	Peak Kill Help	Quit			1	
Theta range	Observed : 2Theta	reflections (2theta) Dhkl Int. N	Peak Search Threshold : 2	parameters	If there is no pattern, To make a zoom, pres rectangle. To unzoom	open a profile file. Is the left button and drag the click on the Z- button.
.01 = 26.00	28.541	3.125 17.723 1	Min Width (°) 0.09		To measure the positi	ons of the peaks on the diagram:
.62 = 100.01	37.111	2.421 20.237 3	Max Width (*) 0.50		1/"By hand": Click on f	the peak with the left button.
C	40.807	2.210 16.732 4		1	2/"Automatic peak Set	arch": Click on the "Peak Search"
	47.471	1.914 20.007 5	Color Code	Source contamination	You can mix the both	nethods.
Prof. File: pynte.cpi	50.464	1.807 9.366 6	K Alpha	λ %		
Anode: Cu	56.319	1.632 21.052 7	K Alpha1	L1 1.3922 1	To delete a measured line and click with the	reflection, bring the cursor on the
1 22 Ratio	59.065	1.563 10.783 8	K Alpha2	12 1025 0.5	corresponding line of	the list.
4056 1.54439 0.50	61.697	1.502 15.552 9	L1 (K beta)	and the last		
	64.298	1.448 15.740 10	L2 (WL Alpha)			
	76.595	1.243 12.819 11		Min of coloring to the 40		
1000 1 20.00 1 100.01	1 76 868	1 739 91027 17	V Search	No of selected peaks, 19	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	3 4	5 6		"	12 114 116 17	18 19
James as the	h	~~~~~	and marken have from	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	1 1					

Poté click na "Options" \rightarrow "DrawSecond Derivate"

V programu se pohybujeme sipkami na spodni liste. Z- je oddaleni. POZOR, x rusi vse. Casto se clovek uklikne.

CELREF V3 (17/10/03) File Erase About Exit Help Current value Gimmant value File Measure the reflection ar File Options Peak Search Po	p Manual and a stars and a ngles on the diagram eak Kill Help Quit	· late or an late	.1		X
Thela range 201 = 26.00 202 = 100.01 C* Prof. File: pynte.opi Anode: Cu X1 X2 Ratio 1154056 1.54439 201 260 154056 2.500 154050 2.500 154050 2.500 154050 2.500	Observed reflections (2theta) Ziheta Dhil Int. N 28.541 3.125 17.723 1 33.071 2.707 40.852 2 37.111 2.421 20.237 3 40.807 2.210 16.732 4 47.471 1.914 20.007 5 50.464 1.807 9.366 6 53.919 1.652 2.1052 7 59.065 1.563 10.783 8 61.687 1.502 15.652 9 64.288 1.448 15.740 10 76.3955 1.243 1.2819 11 76.371 1.211 9.411 12 76.371 1.214 1.2191 11 76.371 1.214 9.65 6	Peak Search para Threshold : 2 Min Width (*) 0:0 Max Width (*) 1 Color Code K Alpha K Alpha1 K Alpha2 L 2 (ML Alpha) Search Close N Color Code K Alpha1 K Alpha2 L 2 (ML Alpha) N K Alpha2 L 2 (ML Alpha) K Alpha2 K	imeters 1 i i	there is no pattern, open a pro- o make a zoom, press the left ectangle. To unzoom click on o measure the positions of th /'By hand": Click on the peak //'Automatic peak Search". Cl em of the menu and adjust the rout can mix the both methods or delete a measured reflection e and click with the right but corresponding line of the list.	rolle file. I button and drag the the Z-button. e peaks on the diagram: with the left button. lick on the "Peak Search" e parameters. n, bring the cursor on the ton; or bouble click on the ton; or bouble click on the
30.0 2T= 83.63 d= 1.155	40.0 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		70.0	R	sio.0 10 pyrite.cpi;

Takto se zobrazi 2nd derivate. Projedte v priblizeni cely zaznam a zjistete, jak jsou nahledany pozice (v minimu druhe derivace)

OK. Pak "File", "Save", "Measured peaks", "Bruker format" (.dif)

Napr. "Pyrite.dif", OK.

Close the dialog.

Poté "File", "Open", "Peak file", "Bruker format", "Pyrite.dif"

🗰 CELREF V3 (17/10/03)							
File Erase About Exit Help							
Current values	Measured reflect	ions Initial cell parameters Sele	ction of the reflections C	ell refinement			() () () () () () () () () ()
λ = 1.54060		1	-1		First step: Enter the Bra	gg angles of the measu	red
201 = 26.00	🖉 Keyboard	🖹 File 🔛 Diagra	n	Ο θ Ο 2 θ	reflections:		
2.62 = 100.01					-By keyboard: Enter the 'values'' dialog box, clic then enter the measure	wavelength in the "Cur k on the button "Keybo d values in the grid box	.rent Iard'' K
Measured peaks					From a file, click on the XFIT or WINFIT file.	e button "File" to load a	a Diffrac-At,
File: pyrite.dif					-By measuring directly o	n a diagram. Click on th	e button
Sample:					"Diagram" .	-	
Anode: Cu							
λ 201 202 1.5406 28.44 99.67					This list can be loaded For that select the "Loa	from an existing file (.lst d an Old 2Theta indexe	extension): ed list (*.lst)
Raw diagram					item of the File menu.		
File: pyrite.cpi					 It also can be created in reventing a filt file. It 	n line from the keyboard	d and then
Sample:					indexed list (".lst)" item o	f the File menu.	Thota .
Anode: Cu							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
🛱 Diagram							- 🗆 ×
Measured reflections: pyrite.dif					Observed profile: pyrite	e. opi	
	┉┞┉┉┞┉	·····	-pmpmmpmm	^	·····P·····P·····P		Manut
30.00	40.00	50.00	60.00	70.00	80.00	90.00	100.0
						_	
0 € 0 20	E	j 🚔 📢 🕂 🛨 Z- 🗶	🖹 Click and di	ag a rectangle to "Zoom". "Z-	" button to "Unzoom"	Zero offset : 0	🗸 ок

Vyberte možnost "Cubic" v okně "System", v okně "H-M standard symbols" vyberte prostorovou grupu "Pa3" a vyplňte mřížkový parametr a = 5.416 a stistkněte "Calc."

Zobrazí se napočítané pozice dle zadaných parametrů

Přejděte do dalšího dialogu "Selection of the reflections", select "Mouse selection Mode 2".

Klikněte na černou úsečku v difrakčním profilu a po té jí odpovídající teoretické linii ve spod (zelená). Po tomto úkonu zmodrají a označí se číslicí 1.

Pokračujte tímto způsobem i u dalších difrakcí

🗰 CELREF ¥3 (17/10/03)	
File Erase About Exit He	ap
Current values	Measured reflections Initial cell parameters Selection of the reflections Cell refinement
λ = 1.54060	Auto Sel Mouse Selection Add/Martin Save Merry Delete Bestry 0204-Lawren 0.100
201 = 26.00	C Model (* Model * Model * Model * C Model * Model * Model * Model * C Model
2.62 = 100.01	Selected reflections Measured reflections Calculated reflections
(Prov. 1	Nb. h k l 2T Obs 2T Calc Diff. A Nb Dhkl 2Theta A h k l Dhkl 2Theta
	1 1 1 1 28.532 28.523 0.010 1 3.1259 28.532 1 1 1 3.1269 28.532 2 0.0 2 32047 3 1 3 1 3 1 2 5 28.532 1 0 0 1 3 1 2 5 28 5 2 1 1 1 3 1 2 5 28 5 2 3 1 1 3 1 2 5 28 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2 8 5 2 3 1 1 3 1 2 5 2 8 5 2
Measured peaks	2 0 0 2 33.049 33.052 0.007 2 2.008 33.045 0 0 2 2.008 33.045 1 0 2 2.008 33.052 33.045 33.052 0.009 2 2.008 33.052 0 0.009 0 0.0000 0 0.009 0
File: pyrite.dif	
Sample:	5 2 0 2 47.446 47.441 0.005 5 1.9147 47.446 2 0 2 1.9148 47.441
Anode: Cu	6 1 2 2 50.451 50.514 -0.063 6 1.8074 50.451 1 2 2 1.8053 50.514
λ 201 202	7 1 3 56.283 56.291 -0.008 7 1.6332 56.283 1 1 3 1.6330 56.291
1.5406 28.44 99.67	8 2 2 2 59.024 59.035 -0.010 8 1.5637 59.024 2 2 2 1.5635 59.035
Raw diagram	9 3 0 2 61.679 61.702 -0.022 9 1.5026 61.679 3 0 2 1.5021 61.702
File: pyrite.cpi	10 2 1 3 06:53 06:50 07:50 10 1.4476 06:233 2 1 0 1.4476 07:50 50:50 07:50 10 1.4476 06:233 2 1 0 1.4476 07:50 50:50 07:50 10 1.4476 07:50 50:50 07:50 10 10 10 10 10 10 10 10 10 10 10 10 10
Sample:	12 0 2 4 78.971 78.997 -0.026 12 12114 78.971 3 2 2 1.3136 71.806
Anode: Cu	13 1 2 4 81.325 81.350 -0.025 13 1.1822 81.325 1 0 4 1.3136 71.806 selection muce 2 advated, disk rins 1 an observed in the correspondent calculated
λ 201 202	14 2 3 3 83.660 83.688 -0.028 14 1.1550 83.660 11 1 4 1.2766 74.230 reflection bar on the diagram
1.5406 26.00 100.01	15 2 2 4 88 205 88 336 0.031 0 15 11088 88 206 1 1 1 1 1 1 1 1 2 2 5 7 5 5 5 0
Diagram	
Measured reflections: pyrite.dif	To unselect a reflection, click on the bar with the right button Observed profile: pyrile cpi
1 2 <mark>1</mark> - 1	
- man from and from	- R
30.00	
Calculated reflections	<u> </u>
C. O. G. 20 2T= 536	
0 0 ZA LT - 23.0	

Jdětě do dialogu Cell refinement a stisknete tlačítko s Kalkulačkou. Program ukáže refinované hodnoty

🗰 CELREF V3 (17/10/03)	
File Erase About Exit He	
Current values	Measured reflections Initial cell parameters Selection of the reflections Cell refinement
λ = 1.54060	Before refinement
201 = 26.00	Nb. h k 1 27 Obs 27 Obs shift 27 Calc Diff.
2.62 = 100.01	I 1 1 28.532 28.532 28.523 0.0100 Initial Refined Signas To refine I 1 1 1 1 1 28.532 28.515 0.0176 I
C. OK	2 0 0 2 33.045 33.045 33.045 33.052 0.0070 a <u>5.4150</u> 5.4174 0.0010 🔽 2 0 0 2 33.045 33.043 0.0018
	3 1 0 2 37.097 37.097 37.097 0.0091 b 5.4150 5.4174 0.0000
Measured peaks	4 1 1 2 40/73 40/73 40/73 40/74 60/04 c 5.4160 5.4174 0.0000
File: pyrite.dif	3 2 0 2 1 50.451 50.514 0.0632 a 90.000 90.000 □ 6 1.22 50.451 50.500 0.0491
Sample:	7 1 1 3 56.283 56.283 56.291 -0.0060 6 90.000 0.000 7 1 1 3 56.283 56.275 0.0081
Anode: Cu	8 2 2 2 59.024 59.024 59.035 0.0105 y 90.000 90.000 8 2 2 2 59.024 59.018 0.0066
λ 201 202	9 3 0 2 61.679 61.679 61.702 0.0225 0 0000000 0.0000000 0.0000000 0.0000000 0.000000
1.5406 28.44 99.67	10 2 1 3 64.298 64.298 64.298 64.298 64.298 64.298 64.295 0.0033
Raw diagram	11 3 1 3 76.555 76.622 0.0007 A 1.8000 C 11 3 1 3 76.555 76.602 0.0071
File: pyrite.cpi	13 1 2 4 81.325 81.350 0.0246 √ol 158.87 158.99 0.0280 13 1 2 4 81.325 81.324 0.0013
Sample:	14 2 3 3 83.660 83.660 83.688 -0.0281
Anode: Cu	15 2 2 4 88.305 88.305 88.305 0.0309 💌
λ 201 202	Mean square deviation 0.02565 Mean square deviation 0.01557
1.5406 26.00 100.01	
🗰 Diagram	
Measured reflections: pyrite.dif	To unselect a reflection, click on the bar with the right button Observed profile: pyrite cpi
1 2	
	~h~~h~~h~~h~~h~~h~~h~~h~~h~~h~~h~~h~~h~
30.00	4ά.do 5ά.bo 6ά.oo 7ά.oo 8ά.oo 9ά.do 10
1 2	3 4 5 6 7 8 9 10 1 11 12 13 14 15 16
Calculated reflections	
C θ € 2θ 2T= 86.7	5 d= 1.122 🝈 🙀 📢 🕂 🔁 Click and drag a rectangle to "Zoom". "Z-" button to "Unzoom" Zero offset. 0 🗸 O

Vlevo, hodnoty před, uprostřed mřížkové parametry, vpravo hodnoty po refinementu s mean square deviationa úhlech.

Zkusmo zavedeme korekci na zero-shift/displacement (kolonka v odd. Mříž. Parametrů označená delta2theta). Zjišťujeme, že nemá vliv, ba naopak fit zhorší.

Export:

Click na značku programu Excel

Vybrat možnost long. Označit vše, ctrl+c, ctrl+v do Excelu (nutno nezávisle oteřít).

Pozor na importované hodnoty zpřesněného mřížkového objemu. Je zde chyba a dojde k importu bez sigma.

9. Program JANA2006

Petříček et al. (2006)

Komplexní nástroj krystalografické analýzy, umožnující řešení krystalových struktur pomocí "dceřiných"/vyvolatelných programů, jako jsou Superflip (Palatinus and Chapuis 2007) nebo SIR97 (Altomare et al. 1997), a refinement krystalových struktur na základě monokrystalových/práškových dat RTG/neutron/elektron zdojů.

První kroky – pohyb v základním okně

1. Le Bail refinement eulytinu, kub. Bi₄(SiO₄)₃

Né	Jana2006			_ 🗆 🗙 POV
1				
÷			Specify type of the file to be imported	
		Single crystal: 🤇	known diffractometer formats	
		0	reflection file corrected for LP and absorption	
		Powder data: 🤇	various C <u>W</u> formats	
		0	various TOF/ED formats	
		0	from FullProf	
		Structure:	from SHELX	
		0	from <u>CIF</u>	
.00		0	from <u>X</u> D	
		0	from Jana2000	
		0	from PD <u>B</u>	
_		Magnetic:	nuclear model made interactively	
_		0	nuclear model from SHELX	
		0	nuclear model from CI <u>F</u>	
		0	nuclear model from Jana200 <u>6</u>	
			Back Next Cancel	
	Structure: C:\Users\Kub	atko\Desktop\metod\	_prakticka\eulytin\eulytin_bb_0Sclona [001-00S]	

Select	"powder	data"
001001	pomaor	autu

	Powder data from:	
File name eulytite.dat		Browse
<u>M</u> AC format	○ <u>1</u> 1-BM	
GSAS format		
<u>Riet7 formats</u>	UXD format (Siemens/Bruker)	
 ILL D1A/D2B (Rietveld-Hewat format) 	Jana200 <u>0</u> format	
 ILL D1A/D2B standard format 	PANalytical <u>X</u> RDML	
○ ILL D1B/D20	Free format of I values	
 Saclay format 	 Free format of th, I ,[sig(I)] 	
Debye-Scherrer method	tails about the selected format	
Bragg-Brentanno method - Fixed Divergence	e Silt	
Bragg-Brentanno method - Variable Diverge	nce Slit	
Another/unknown method		
	Sark Navt (Cancel
	Dalk Niext	

₩ Jana2006		
B.		_
· · ·	Complete/correct experimental parameters	
Cell parameters:		
Target <u>d</u> imension:	3 Info about metrics parameters	
X-rays X-ray h	ine Polarization correction:	
Neutrons	Circular polarization	
 <u>Electrons</u> 	Perpendicular setting Info	
Kalpha1/Kalpha2 doub	et Parallel setting Info	
Wave length 1.5405	1 O Linearly polarized beam	
	Monochromator parameters:	
	Glancing angle 13.28815	
Tananahuna 200	Set glancing angle for graphite	
	Perjectness 0.5	
	Back Nevt Cancel	
Structure: C:\Users\Kubatko\Desktop\metody_prakti	:ka\eulytin\eulytin_bb_05clona (001-005)	

Vyplňte do kolonky "cell parameters" hodnotu kubického mřížkového parametru a = 10.2867

Jana2006		_ _ × 00
	Complete/correct experimental parameters	
Cell parameters:	10.2867 10.2867 10.2867 90 90 90	
Target dimension:	3 This about metrics parameters	
	be Polarization correction:	
 Neutrons 	Circul <u>ar</u> polarization	
 <u>Electrons</u> 	<u>P</u> erpendicular setting <u>Info</u>	
Kalpha1/Kalpha2 doub	et O Parallel setting Info	
Wave length #1 1.5405	Linearly polarized beam	
Wave length #2 1.5443	3	
<u>I</u> (#2)/I(#1) 0.497		
Temperature 293		
	Back Next Cancel	
Structure: C:\Users\Kubatko\Desktop\metody_prakti	ka\eulytin\eulytin_bb_05clona [001-005]	
"Next"		

Reading of pattern, counting out reflections

Pak "OK"

I would like to accept changes

OK

Pak se objevi nasledujici okno

Refinement o	f the powder profile by the le Bail algorithm	
GOF= Rp=	Rwp=	
Edit profile parameters Edit refinement <u>c</u> ommands	Run Refine <= Show loting Show powder profile Recorder profile Figish	
\Users\Kubatko\Desktop\metody_prakticka\eulytin\eulytir	n_bb_05clona [001-005]	

ريدد

	Refine c	ommands		
Basic	Select/Listing	Various	Modulation	
Number of cycles 10 10 Damping factor	 Use damping method Use Marguart techn 	d	Instability factor 0.01	
Use dynamical LS met	hod => if Rw <u>t</u> olerance larger than <u>A</u> fter 3	10% reduce the dates try to enlarge it back.	mping by a <u>f</u> actor 2	
Check for convergence	<pre>e => stop if max(change/s.u.)</pre> too large isotropic ADP parameter	0.05 in 1 => ADP_(iso) limit for disabli	consecutive cycles.	
Automatic refinement	keys sestrictions	Apply Berar's correction	Bail decomposition	
	Esc	Ok		

Zaškrtněte "Apply Berar's correction" "OK"

Click na "Show powder profile"

Pohybujete se pomocí myši (levé tlačítko + táhnout = zvětšit; pro reset zoomu použijte tlačítko "Shrink") Back to main window with "Quit"

Start with "Edit profile parameters" V záložce "Profile" zvolte možnost "Pseudo-Voigt" a zatrhněte chlívek u kolonky GW. V záložce "Corrections" zatrhněte "Shift" "OK" 2x Pak "Run refine"

Sledujeme pokles na Rwp=35.77% zhruba v deseti krocích. Otevřeme "Listing"

Otevřeme "Powder profile"

Edit profile paramters. Nechejme refinovat mřížkový pametr a. Ostatní nechme fixováno.

Run

Edit profile parameters V oddílu "Profile" aktivujte refinement LY, kde změntě z 0 na 1 OK, run

Edit profile parameters Asymmetry, aktivujte refinement typu Simpson

Decrease na Rwp=9% a GOF=3.75 Activate refinement of the peak cutoff na 10 FWHM Pokles na Rwp=8.86% a 3.87 GOF

"Finish" "Yes" "Next" "Next" Select centering I "Next" Select I -4 3 d "next" Select "Accept the space group in the standard settings" And "Finish" Next Nerefinovat znovu Next Okno structure solution

Nastavte následovně

Jana2006 - Refine					<u>_ ×</u>	pov			
		Structure	solution						
	O use Expo2004	Formula	Bi4 5i3 012						
	• use Super <u>flip</u>	Formula <u>u</u> nits	4	alculate density					
		Actual space grou	up: I-43d						
			Change the	space group					
	allow manual editing of the command file before start close the Superflip output when finished Biso:								
	Repeat Superflip until th	e convergence det	ected Maxo	ycles: 10000					
	Use local normalization								
	Use a specific random se	ed							
	For peak search use: 🔿	ED <u>M</u> A							
	•	Peaks from Jana20)06						
	°	Peaks from Jana20	006 but first run I	Fourier					
	use in le Bail decomposit								
		Esc	Ok						
ructure: C:\Users\Kubatko\Desktop\m	etody_prakticka\eulytin\eulytin	n_bb_05clona (001-	-005]						

Při jiném nastavení Z, hodnoty hustoty vycházejí nereálně. Takto je okolo 6.7 g.cm⁻³.

OK

Proběhne LeBailská dekompozice a objeví se okno

📕 eulytin_bb_05clona [001-005],inflip - Poznámkový blok	
Soubor Úpravy Formát Zobrazení Nápověda	
$\begin{array}{c} -x2+3/4 & x1+3/4 & -x3+1/4 \\ x1+1/4 & x3+1/4 & x2+1/4 \\ -x1+3/4 & x3+3/4 & -x2+1/4 \\ -x1+1/4 & -x3+3/4 & x2+3/4 \\ x1+3/4 & -x3+1/4 & -x2+3/4 \\ x3+1/4 & x2+1/4 & x1+1/4 \end{array}$	
x3+3/4 -x2+1/4 -x1+3/4 -x3+3/4 x2+3/4 -x1+1/4 -x3+1/4 -x2+3/4 x1+3/4 endsymmetry composition Bil6 sil2 048	
<pre># Keywords for charge flipping repeatmode nosuccess polish yes maxcycles 10000 delta AUTO weakratio 0.000 Biso 0.000 randomseed AUTO searchsymmetry average derivesymmetry yes # End of keywords for charge flipping</pre>	
<pre># EDMA-specific keywords inputfile "eulytin_bb_05clona [001-005].m81" outputbase "eulytin_bb_05clona [001-005]" m40forjana yes mvitem40 eulytin_bb_05clona [001-005]_tmp.m40 maxima all fullcell no scale fractional plimit 0.3000 sigma numberofatoms composition certerofcharge yes chlimit 0.2500 chlimitist 0.2800 relative # End of EDMA-specific keywords</pre>	

Kde přepište v řádku "repeatmode nosuccess" na "repeatmode 5" Okno zavřete a dejte uložit (optional) Řešení konvergovalo. Dejme "Accept the results"

Problem

2. Rietveld refinement eulytinu, kub. Bi₄(SiO₄)₃

File, Structure, New, Eulytite

Structure from CIF, next

Vyber Eulytine.cif, OK Next Vyber Powder data, Various CW Select Bragg-Brentano fixed divergence slit Next

	Complete/correct experi	imental parameters		
Cell parameters:	10.2867 10.2867 10.2867 90 90 9	D		
Target dimension:	3 Info about metr	ics parameters		
⊙ <u>X</u> -rays X-ray to	ube	Polarization correction:		
O Neutrons	۲	Circular polarization		
O Electrons	0	Perpendicular setting Info		
Kalpha1/Kalpha2 doub	let O	Parallel setting Info		
Wave length #1 1.5405	1 0	Linearly polarized beam		
Wave length #2 1.5443	3			
I(#2)/I(#1) 0.497				
Temperature 293				
	Back	Nevt	Cancel	
	Daux		Cancer	
ubatko\Desktop\metody_prakti	<pre>cka\eulytin\Rietveld_eulytine\eulytite</pre>			

Next Finish OK

Go to Refine, select 100 cycles, Apply Berar's correction and Make only profile matching

Do LeBail

Pak Refinement options, Switch-off Profile Matching a také Automatic refinement keys. OK. Dejte pouze Yes, nezapínejte refinement.

Edit atoms Select all Dvojklik na jeden z atomů V okne jdete na záložku Edit a dejte Fix all OK, OK, Yes Pak začněte Refine

Refinement by se měl chytit po několikanásobné změně škálového faktoru

A zjistíte, že zcela jinak než předchvílí, zejména intenzity na prvních dvou dirakčních maximech jsou podfitovány.

"Rozumně" vypadající fit si uložte pod nějakým chytrým jménem a pokračujte s ním.

Zkuste postupně povolit atomové koordináty. Ukážeme si jak je v tomto případě možné/důležité postupovat. To samé platí pro ADP, které zkusíme povolit a refinovat.

Zjistíme, že většina (alespoň u mne Si a O mají ADP non-positively definite).

Pokusíme se nyní odhalit příčinu. Pohledem na difrakční profil a kalkulovaný pochopitelně odhalíme značné diference v intenzitách.

Nuže uvažme, že látka, kterou jsme podrobili difrakčnímu experimentu obsahuje 4 atomy Bi (83 elektronů) na buňku při Z = 4, tedy 16 atomů v základní buňce, jejíž objem je 1000 Angstrom³. To je látka o značné absorpční schopnosti pro RTG záření, najmě měkkého jako je CuKalpha.

Informaci o absorpčním koeficientu mí pro danou látku a záření nalezneme pod ikonkou "Edit M50" v hlavním okně

	Jana2006 - Editm50						
							_
			Define/mod	lify basic structural param	eters:		-
	Cel	Symmetry	Composition	Multipole parameters	Ì	Magnetic parameters	
	Form	nula Bi4 Si3 O12					
ł	Form	nula units 4	Formul	a from M40			
1	_		Calcula	ate <u>d</u> ensity			
	Aton	n type: Bi			ւ	s: 1.82	
ł	Drav	ving color: R	Formula from M4	40 : Bi4 5i3 012	n	e/modify typical distances	
	_		Calculated densi	ity = 6.7412 g.cm**(-3) ficient mi(Cu Kalfa) = 127 710	mm** 1		
			Absorption coen				
	IT	Vol.⊂ 6.1.1.1-6.1.1.3		<u></u>		les	
1	۰	steps as in IT	() an	halytical form	⊖ JA <u>N</u> A	4	
	•	eguidistant step 0.05			<u>О мо</u> ц	LY	
-	_				Cobb	oens WEB page	
1							
ł				Esc Ok			
ļ							
1							
	Structure: C:\Users\Kubatko\Desk		ulytin\Rietveld_eu	lytine\eulytine_refin			T
1							±

Pohlídáme si počty vzorcových jednotek (okamžitě se projeví v hodnotě hustoty a Absorption coefficient).

OK, změny přijmout, OK.

Jana2006
Powder options
Cell Profile Asymmetry Sample Corrections Various
Preferred orientation
None pref1 1.1_ pref2 0
March-Dollase Direction 000
○ Sasa-Uda Average over equivalents ✓
Absorption correction
○ N <u>o</u> ne
Symmetrical reflection m [*] t 63.86
Roughness for Bragg-Brentano geometry
None
O <u>Pi</u> tschke, Hermann & Matter
O proup
Esc Ok
Structure: C:\Users\Kubatko\Desktop\metody_prakticka\eulytin\Rietveld_eulytine\reulytine_refin

Dále, "Parameters", "Powder", "Sample"

Zapněte volbu "Absorption correction" ve formě Mí x thickness (zadáno 0.5 mm), absorpční koeficient má rozměr mm⁻¹, tento parametr tedy funguje jako jakýsi škálový faktor.

Proveďte refinement kompletní (koordináty, ADP)

Reálnější hodnoty, žádné záporné ADP (ani O atom). OK

Slušný fit, i když intenzity prvních dvou difrakcí "podfitované" (dost častý efekt). Na to, jak jaká je to látka, celkem dobrý výsledek.

Image: Goto Ponto Ponto Open endor Gose Francettie : 00:05:15:23-12-10 0		000										
Tructus:: 00:09:15 23-12-10 Tructus:: 00:09:16 23-12-10 Tructus:: 00:09:16 23-12-10 Tructus:: 00:09:16 23-12-10 Tructus:: 00:00:00:00:00:00 Tructus:: 00:00:00:00:00:00:00:00:00 Tructus:: 00:00:00:00:00:00:00:00:00:00:00:00:00:	Find	Find next	<u>G</u> o to	Print	Pg <u>T</u> op	Open in <u>e</u> ditor	⊆lose					
Changes overview: Changes overview: The fail with the base maphing the correction has been aphing 1 0.185598 0.000000 0.000000 0.000000 0.000000 0.000000	structure	:									00:09:15 23-12-10	
Things: results: Thinks been applied 0 0.085574:0.00000 0.000000 0.000000 0.000000 1 0.185574:0.000000 0.000000 0.000000 0.000000 1 0.185574:0.000000 0.000000 0.000000 0.000000 1 0.185597:0.000000 0.000000 0.000000 0.000000 1 0.185597:0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.00000 1 0.015400* 0.00055 0.011 1 0.015400* 0.00555												
Acceled a scaled sca	* Changes	: overview *										
bit correction has been applied 7.232 is correction has been applied scale1 scale1 is correction has been applied scale3 scale4 is correction has been applied scale3 scale4 is correction has been applied scale3 scale4 is correction has been applied scale4 scale5 is correction has been applied scale4 scale5 is correction has been applied scale5 scale5 is correction bootoon is conoon on conoon on correction bootoon is correct	*******	********										
scalal scalad	fore real The corre	isitic s.u. ection has b	's can be een applie	achieved d	i by appl	ying the Berar	's factor	7.292				
1 0 0.38337 0.00000 0.00000 0.00000 0.00000 0.000000		scalel	scale2	scale3	scal	e4 scale5	scale6					
2 0.188956 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	1	0.186974	* 0.000000	0.0000	00 0.00	0000 0.000000	0.000000	0.01				
Toverall 0 0.00000 1 0.00000 0.000 0 0.000000 0.00000 0.00 10 0.000000 0.00000 0.00 11 0.000000 0.00000 0.00000 12 0.000000 0.00000 0.00000 11 0.00000 0.00000 0.00000 12 0.15388 0.00000 0.00000 13 0.15588 0.00000 0.00000 14 0.15588 0.00000 0.00000 12 1205.12 - 64.4600* 306.505 -422.1526 227.772 - 120.8255 0.01 12 1205.312 - 64.4600* 306.5070 -421.3409 223.7847 - 120.8911 0.01 2 1205.480 - 654.1136 306.5070 -421.3409 223.7847 - 120.8912 0.01 2 10.5153* 0.023852 0.0000 0.0000 10.01 2 10.5153* 0.023852 0.0000 0.00000 10.35.473 6.741152 -0.03 1 10.30853 10.30853 0.00000 0.00000 0.0	2 511	0.186996 0.002418	0.000000	0.0000	100 0.00 100 0.00	0000 0.000000 0000 0.000000	0.000000					
0 0.00000 0.00 1 0.00000 2 0.00000 3 0.05528 0.00000 3 0.05588 0.00000 0.00000 3 0.05588 0.00000 0.00000 3 0.05588 0.00000 0.00000 3 0.05588 0.00000 0.00000 3 0.05584 0.025852 0.01 2 0.015834 0.028852 0.04 2 0.015834 0.00000 0.00000 0.00000 0.00000 105.473 6.741152 -0.03 2 10.00184 0.00000 0.00000 0.00000 0.00000 10.5475 6.741152 -0.03 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.025 0.00000 0.025 0.00000 0.025 0.00000 0.025 0.00000 0.0000 0.0000 0.025 0.00000 0.0000 0.0000 0.025 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.025 0.00000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00		TOverall										
2 0.000000 the clister sycos sysin 0	0 1	0.000000	0.00									
a b:hift syces sysin 0 -6.132227* 0.00000 0.000000 0.02 2 -6.144224 0.000000 0.000000 1 -6.132227* 0.00000 0.000000 0.02 2 -6.144224 0.00000 0.000000 1 105.5888 0.00000 0.00000 1 105.5888 0.00000 0.00000 1 105.511*-664.4600* 306.505 -642.232.7477 -2.10.8511 0.01 2 103.501*-664.1055 306.6305 -422.702 223.7487* -20.8311 0.01 2 103.501*-664.105 306.6305 -22.1420 223.6354 -10.8011 0.01 2 10.5450* 0.022852 0.21 -23.5354 -10.8011 0.01 3 A b c alpha beta gamma Volume Density 0 0.015450* 0.02852 0.0000 9.00000 193.472 6.741177 0.05 1 10.0652* 10.30852 9.00000 9.00000 193.472 6.741127 -0.03 1 <td>2</td> <td>0.000000</td> <td></td>	2	0.000000										
0 - 5,1115 > 5,050 0,772 -120,525 0,01 0,153588 0,00000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,0000 0,0000 0,0000 0,00000 0,00000 0,0000 <t< td=""><td></td><td>-1./.64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-1./.64										
1 -5.148537 0.00000 0.00000 0.002 m 0.15388 0.00000 0.00000 m 0.15388 0.00000 0.00000 0 1205.312-664.4600* 906.9056 -422.578 223.7872 -120.9255 0.01 1 1205.312-664.4600* 906.9056 -422.578 223.7872 -120.8911 0.01 2 1205.480 -664.1136 906.6056 -422.578 223.7872 -120.8911 0.01 2 1205.480 -664.1136 906.6056 -422.578 223.7872 -120.8911 0.01 2 1205.480 -664.1136 906.6058 -421.578 223.7847 -120.8912 0.01 2 1205.480 -664.1136 906.6058 -421.578 20.8074	0	-6.132227	* 0.000000	0.0000	00 -0.1	0						
su 0.153688 0.00000 0.000000 bckg1 bckg2 bckg3 bckg4 bckg5 bckg5 bckg4 1205.888 0.00000 bckg4 bckg5 bckg5 bckg5 bckg5 1205.849 -640.136.005 0.63056 -422.152 223.7722 120.5355 0.01 1 1205.840 -644.1135 906.6070 -421.3403 223.5722 120.5355 0.01 1 0.015804* 0.028952 0.21 45.0948 49.0074 1 0.015804* 0.028952 0.04 22.001400 0.00000 1 0.015804* 0.028952 0.04 22.001400 0.00000 10.00000 1 0.015804* 0.028952 0.00000 90.00000 90.00000 10.95.473 6.741157 0.05 1 0.001682 10.00863 30.00000 90.00000 10.95.473 6.741157 0.03 1 10.30863 10.30863 30.00000 0.00000 0.0226 <td< td=""><td>2</td><td>-6.146937</td><td>0.000000</td><td>0.0000</td><td>100 U.U 100</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2	-6.146937	0.000000	0.0000	100 U.U 100	2						
bckg1 bckg2 bckg3 bckg4 bckg5 bckg4 0 1205.312-564.400* 905.020 bc.22.7722 - 210.9255 0.01 1 1205.312-564.400* 905.0356 +422.152 (22.7727 - 120.9255 0.01 2 1205.312-564.400* 905.0356 +422.152 (22.7727 - 120.9355 0.01 sn 15.774 28.7042 23.854 + 120.8372 sn 15.774 28.7042 35.4782 41.3072 sn 15.774 28.7042 0.01 0.01 sn 15.774 28.7042 0.01 0.01 sn 15.774 28.7042 0.01 0.01 sn b c 0.01 0.01 0.01 1 0.015934* 0.028952 0.04 0.0000 0.0000 sn b c alpha b*ra gamma 0.1mma Danaity 0 1.03652 10.00662 10.00000 90.0000 00.00000 10.5473 6.741152 -0.033 210.03053 10.00063 10.00006 0.00000 0.00000 0.0256 475 6.741152 -0.033 210.00000 0.00000 0.147312 0.000000 0.0000 0.0252 0.000159 c <t< td=""><td>5u</td><td>0.153688</td><td>0.00000</td><td>0.0000</td><td>00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5u	0.153688	0.00000	0.0000	00							
1 1201.301.**64.2055 906.6358 -421.3709 222.37047 -120.8911 0.01 2 1205.480 -664.1155 906.6070 -421.3409 223.3547 + 120.8372 su 15.774 28.7042 35.4782 41.3072 45.0348 49.0074 5/L N/L 0 0.015430* 0.023952 0.21 1 0.015430* 0.023952 0.04 2 0.015404 0.000000 1 0.03953* 10.30853 10.30853 90.0000 90.0000 105.473 6.741177 0.05 1 10.39553* 10.30853 90.0000 90.00000 105.477 6.741175 0.03 2 10.30853* 10.30853 90.00000 90.00000 105.477 6.741155 -0.03 2 10.30853* 10.30853 10.30853 90.00000 0.00000 105.475 6.741155 su 0.00024 0.000000 0.000000 0.00000 0.00000 0.026 0.000159 CV 657 00 0.0242* 0.000000 0.00000 0.00000 0.00000 0.026 0.000159 su 0.000000 0.000000 1.54324* 0.000000 0.01 2 0.000000 0.000000 1.53542* 0.000000 0.01 2 0.000000 0.000000 1.53542* 0.000000 0.01 2 0.000000 0.000000 1.53542* 0.000000 0.01 2 0.000000 0.000000 1.53548 0.000000 0.01 2 0.000000 0.00000 0.00000 0.00000 0.01 2 0.000000 0.000000 1.53548 0.000000 0.01 2 0.000000 0.000000 1.53548 0.000000 0.01 2 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.026 0.000159 10 0.000000 0.000000 0.000000	0	bckgl 1205.312	bckg2 -664,4600	bekg3 * 906.90	bck	g4 bckg5 1626 223.7722	bckg6 -120.9255	0.01				
xu 15.774 28.7042 35.4782 41.3072 45.0348 49.0074 0 0.015450* 0.023952 0.21 1 0.015503 0.023952 0.04 2 0.015503 0.023952 0.04 2 0.01040 0.00000 a b C c alpha beta gramma Volume Density 0 10.0052* 10.30852 10.30855 9.00000 50.0000 1035.473 6.741177 0.05 1 10.30852* 10.30855 9.00000 50.00000 50.00000 1035.473 6.741177 0.05 1 10.30852* 10.30855 9.00000 50.00000 1035.473 6.741177 0.05 1 0.00024 0.00000 0.00000 0.00000 0.00000 1.00000 1 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.000000 1.647318* 0.000000 0.00000 0.000000 2 <td< td=""><td>1</td><td>1205.381</td><td>*-664.2055</td><td>906.63</td><td>58 -421.</td><td>9709 223.7847 9409 223 8554</td><td>-120.8911</td><td>0.01</td><td></td><td></td><td></td><td></td></td<>	1	1205.381	*-664.2055	906.63	58 -421.	9709 223.7847 9409 223 8554	-120.8911	0.01				
S/L N/L 0 0.015450* 0.028952 0.21 1 0.015503* 0.028952 0.21 2 0.015503* 0.028952 0.04 2 0.015503* 0.028952 0.04 2 0.01563* 0.028952 0.0000 a b c alpha beta gramma Volume Density 0 10.30863* 10.30863 30.00000 90.00000 193.473 6.741177 0.05 1 10.30863* 10.30863 30.00000 90.00000 193.473 6.741157 -0.03 2 10.30863 10.30863 30.00000 0.00000 0.028 0.00015 su 0.00000 0.00000 0.00000 0.00000 0.00015 su 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.000000 0.000000 0.37554 0.000000 0.00000 2 0.0000000 0.37554 0.000000	รน	15.774	28.7042	35.47	82 41.	3072 45.0948	49.0074					
0 0 0.012830 0.028362 0.04 1 0 0.15834 0.028362 0.04 1 0 0.012840 0.000000 0 10.00562 10.00862 10.0000 0.0000 0.0000 0.0000 105.473 6.741177 0.05 1 10.00862 10.00863 10.00863 0.00000 0.00000 105.473 6.741152 -0.03 2 10.00863 10.00863 10.00000 0.00000 0.00000 0.026 0.00010 105.475 6.741155 su 0.00000 0.00000 0.00000 0.00000 0.00000 0.026 0.0001153 		S/L	H/L									
2 0.015903 0.028962 m 0.001440 0.000000 a b c alpha beta gamma Volume Density 0 10.09652 10.09662 10.09663 90.0000 90.00000 105.473 6.741157 0.05 1 10.09653 10.09663 10.09663 90.00000 90.00000 1055.473 6.741152 -0.03 2 10.09653 10.08663 10.00000 0.00000 0.00000 0.0226 0.000159 m 0.000024 0.00000 0.00000 0.00000 0.00000 0.0226 0.000159 CU CU CU CU CU CU CU CU 0 0.000000 0.00000 1.453588 0.000000 0.012 m 0.000000 0.00000 0.375564 0.000000 0.01 tfinement program page= 10	1	0.015450	* 0.028962 * 0.028962	0.21								
a b c alpha beta gamma Uolume Density 0 10.30852*10.30852 10.30852 90.00000 90.00000 105.473 6.74117 0.05 10.30853*10.30853 10.30863 30.00000 90.00000 1055.473 6.74117 0.05 2 10.30853 10.30863 0.00000 90.00000 1055.473 6.74117 0.05 2 10.30863 10.30863 0.00000 90.00000 1055.473 6.741165 5u 0.00024 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.000000 0.00000 1.53546 0.000000 0.00000 0.00000 1 0.000000 0.00000 1.53544 0.000000 0.00000 1.53544 0.000000 1 0.000000 0.000000 1.5	2 511	0.015903 0.001840	0.028962									
0 10.30862* 10.30862 10.30862 30.00000 90.00000 1095.473 6.741177 0.05 1 10.30863 10.30863 10.30863 30.00000 90.00000 1095.473 6.741177 0.05 2 10.30863 10.30863 10.30863 30.00000 90.00000 1095.473 6.741175 -0.03 2 0.00024 0.00000 0.00000 0.00000 0.00000 0.00000 0.025 0.0001159 CU CU CU CU CU CP 0 0.000000 0.000000 1.647318* 0.000000 -0.04 1 0.000000 0.000000 1.635408 0.000000 su 0.000000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.38584 0.0000000 su 0.000000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.38584 0.0000000 su 0.000000 0.00000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.38584 0.000000 su 0.00000 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.00000 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.00000 0.00000 0.00000 0.38584 0.0000000 su 0.00000 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.00000 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.00000 0.38584 0.000000 su 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 su 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000		a	ь	с с	alp	ha beta	gamma	Volume	Density			
2 10.30863 10.30863 10.30863 30.00000 90.00000 1095.475 6.741155 su 0.00024 0.00000 0.00000 0.00000 0.00000 0.00000 0.026 0.000159 CU 6U 6U 6P 0 0.000000 0.000000 1.547318* 0.000000 -0.04 1 0.000000 0.000000 1.535488 0.000000 su 0.000000 0.000000 1.53548 0.000000 su 0.000000 0.000000 1.53548 0.000000 su 0.000000 0.000000 0.37554 0.000000 su 0.000000 0.000000 0.37554 0.000000	0	10.30862	* 10.30862 * 10.30863	10.308	162 90.0 163 90 0	0000 90.00000	90.00000	1095.473	6.741177 6.741152	0.05		
LL 0.00024 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	2	10.30863	10.30863	10.308	63 90.0	90.0000	90.00000	1095.475	6.741165	0.00		
0	5u	0.00024	0.00000	0.000			0.00000	0.026	0.000133			
1 0.00000 0.00000 1.632242* 0.00000 0.01 2 0.00000 0.00000 1.632480 0.000000 su 0.00000 0.00000 1.633540 0.000000 transformer program page= 10 y	0	0.000000	0.000000	50 1.6479	18* 0.00	0000 -0.04						
su 0.000000 0.000000 0.376364 0.000000	1 2	0.000000	0.000000	1.6322	142* 0.00 108 0.00	0000 0.01 0000						
ifinement program page= 10	5U	0.000000	0.000000	0.3763	64 0.00	0000						
efinement program page= 10												
P	Refinemen	it program									page= 10	

2 *∦* ▲ = = = = **₽ ₽**

									테리스
Jana2	006								
Find	Find <u>n</u> ext	<u>G</u> o to	Print F	Pg <u>T</u> op O	oen in <u>e</u> ditor	lose			
Refinemer structure	t program							page= 10 00:09:15 23-12-10	
0 1 2 5u	LX 0.000000 0.000000 0.000000 0.000000	LXe 0.000000 0.000000 0.000000 0.000000	LY 7.26065 7.25046 7.24478 0.42370	LYe 4* 0.000000 1* 0.000000 8 0.000000 0 0.000000	-0.02 -0.01				
0 1 2 5u	pref1 1.100000 1.100000 1.100000 0.000000	pref2 0.000000 0.000000 0.000000 0.000000	0.00 0.00						
Bi 0 1 2 su	ai 0.3333333 0.3333333 0.3333333 0.0000000	x 0.085312 0.085313 0.085314 0.000414	y 0.08531 0.08531 0.08531 0.08531 0.00000	2 0.085312 3 0.085313 4 0.085314 0 0.000000	Uiso 0.032305* 0.032323* 0.032334 0.001418	0.01 0.01			
Si 0 1 2 5u	ai 0.250000 0.250000 0.250000 0.000000	x 0.375000 0.375000 0.375000 0.000000	y 0.00000 0.00000 0.00000 0.00000	2 0 0.250000 0 0.250000 0 0.250000 0 0.000000	Uiso 0.011584* 0.011619* 0.011667 0.009132	0.00 0.01			
0 0 1 2 su	ai 1.000000 1.000000 1.000000 0.000000	x 0.057398 0.057436 0.057448 0.006338	y 0.12646 0.12652 0.12658 0.00643	2 5 0.279119 7 0.279123 1 0.279134 0 0.00551	Uiso 0.045170* 0.044784* 0.044543 0.025695	-0.01 -0.01			
There wer	e no correla	tions lar	ger than	0.900 in t	he last ref	inement	cycle		
1									
									-
*.vvvva *.			6 0.000133				1		± ▼
GU G 1.647918* 0.0 1.632242* 0.0	9 0000 -0.04 0000 0.01						1		¥
a //									

Velmi užitečnou kontrolu refinementu krystalových struktur představuje Bondvalence analýza. Tato je v případě JANY implementovaná v rutině DIST. Rozlikneme pravým tlačítkem myši ikonu DIST a postupujeme následovně.

					اختاك
		Distance o	ommands		17
	Basic	Select atoms	Ì	Modulation	
Ro	und input coordinates	Calc	ulate: Angles	Torsion angles	
List	full coordination			Planes	
C	efine coefficients for b	ond valences	d(min) 0		
	d(max) derived from a and typical distances	tomic <u>r</u> adii	expanded by 5	%	
		Listing	form		
	With <u>o</u> ut symme	etry code	With symm	etry code	
	۲		0		
	I	nclude peaks from	Fourier calculation		
	none	m <u>a</u> xima	minima	both	
	۲	0	0	0	
_					
		For	Ok		
tko\Desktop\meta	ody_prakticka\eulytin\Ri	etveld_eulytine\eulyti	ne_refin		

Odklikněte d(max) volbu a vyplňte d(max) 3 a d(min) 0.5, po té spusťte "Define coefficients…"

Definujte 1st atomic type jako Bi, 2nd jako O, rozklikněte "From file" a zadejte hodnotu 2.094 a 0.37, OK, a nahrajte do okna. Totéž udělejte i pro pár Si a O. Je dobré se koncentrovat, jaké zadáte valence prvků, často se dá rychle udělat chyba.

OK a OK. Yes+start

Open listing, dojeďte až nakonec, kde zjistíte následující

```
* List of bond valences *
```

Bond valence for : Bi4.0(3)Bond valence for : Si3.3(3)Bond valence for : O2.1(2)

Kde kyslík ok, Bi je diference 1.0 v.u. a Si také 1.0 v.u., což je hodně.

Můžeme přemýšlet, co s tím.

Pohledem na data zkusme něco vymyslet.

"Powder", "Sample", "Roughness" Type "Suorti 1"

Nechte refinovat. Zjistíte, že se po chvilce dostáváme na Robs=2.15.

 0
 07610 CPUNTF(0)

 97596 CPUNTF(c)

 97597 CPUNTF(c)

 <t

Důležité je, že všechny ADP jsou nezáporné. Zkusme provést BV analýzu získaných meziatomových vzdáleností.

Bond valence for : Bi	3.2(3)
Bond valence for : Si	4.4(4)
Bond valence for : O	2.2(3)

Což je již o mnoho lepší Bi^{3+} , Si^{4+} , O^{2-}

Tak to by bylo. Ještě nám zbývají možnosti exportu dat, což si ukážeme v závěru.

Good night.