Micas	icas						
Formula	Color/Luster	SG	Н	Crystal system/ habit	Occurrences		
K(Mg, Fe) ₃ (Al, Fe)Si ₃ O ₁₀ (OH,F) ₂	green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous	2.7 - 3.1	2½ - 3	monoclinic; short prismatic or tabular xls; massive aggregates of cleavable scales	mainly in granites, pegmatites, gabbros, norites, diorites, schists, phyllites, and gneisses		
K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂	rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly	2.8 - 3.3	2½ - 3	monoclinic; tabular xls, thick cleavable masses, coarse to fine scaly aggregates	almost exclusively in granite pegmatites, and less commonly in granites, aplites, and high- temperature tin-bearing veins		
KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂	colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky	2.77 - 2.88	2½ - 4	monoclinic; tabular xls, hexagonal or diamond-shaped in cross section; commonly lamellar or scaly massive	many geological environments, especially granites and granitic pegmatites; phyllites, schists and gneisses; in dendritic or authigeni sediments		
KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂	yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly	2.76 - 2.90	2 - 2½	monoclinic; prismatic xls, usually tapered, often long and course	in metamorphic limestones and ultrabasic rocks		
K(V, AI,Mg) ₂ AISi ₃ O ₁₀ (OH) ₂	clove brown to greenish brown, dark green; translucent; pearly	2.97	21/2	monodinic; minute scales	interlaminated with native gold; assoc. with telluride minerals, and with uranium-vanadium deposits		
KLiFe ⁺² AI(AISi ₃)O ₁₀ (F,OH) ₂	gray, brown, sometimes dark green; transparent; vitreous	2.9 - 3.3	2½ - 4	monoclinic; short prismatic or tabular xls; disseminated scales or scaly aggregates	mainly in greisens, high-temperal quartz veins, and in granite pegmatites.		
	Formula K(Mg, Fe) ₃ (AI, Fe)Si ₃ O ₁₀ (OH,F) ₂ K (Li,AI) ₃ (Si, AI) ₄ O ₁₀ (F,OH) ₂ KAI ₂ (AISi ₃ O ₁₀ (OH,F) ₂ KMg ₃ (AISi ₃ O ₁₀ (OH,F) ₂ K(V, AI,Mg) ₂ AISi ₃ O ₁₀ (OH) ₂	Formula Color/Luster K(Mg, Fe) ₃ (Al, Fe)Si ₃ O ₁₀ (OH,F) ₂ green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂ rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ (OH) ₂ Glove brown to greenish brown, dark green; translucent; pearly	Formula Color/Luster SG K(Mg, Fe)3(AI, Fe)Si3O10(OH,F)2 green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous 2.7 - 3.1 K (Li,AI)3 (Si, Al)4O10(F,OH)2 rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly 2.8 - 3.3 KAI2(AISi3O10(OH,F)2 colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky 2.88 KMg3(AISi3O10 (OH,F)2 yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly 2.76 - 2.90 K(V, AI,Mg)2AISi3O10 clove brown to greenish brown, dark green; translucent; pearly 2.97 KLiFe+2AI(AISi3)O10 gray, brown, sometimes dark 2.9 - 2.97	K(Mg, Fe) ₃ (Al, Fe)Si ₃ O ₁₀ (OH,F) ₂ green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂ rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ (OH) ₂ clove brown to greenish brown, dark green; translucent; pearly KLiFe ⁺² Al(AlSi ₃)O ₁₀ gray, brown, sometimes dark 2.7 - 2½ - 2.88 4 2.76 - 2 - 2.90 2½ 2.76 - 2 - 2.90 2½ Clove brown to greenish brown, dark green; translucent; pearly	Formula Color/Luster K(Mg, Fe) ₃ (Al, green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂ rose-red, violet-gray, lilac, pink, white; transparent - translucent; pearly KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ colorless, gray, brown, pale green, ruby; transparent - translucent; vitreous - pearly or silky KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ COH,F Colorless, gray, brown to greenish; transparent to translucent; pearly K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ GOH,F Green; translucent; pearly KLiFe ⁺² Al(AlSi ₃)O ₁₀ Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transp		

Consumption of ground mica in the United States(tonnes)

^{*} includes mica used for molded electrical insulation, rubber, textile and decorative coatings, welding rods, and miscellaneous.

Source: USBM.

Table 73	Garnets							
Minerals	Formula	Color/Luster	SG	Н	Crystal system/ habit	Occurrences		
Almandite Alabanda, Asia Minor, where garnets were cut and polished	3FeO·Al ₂ O ₃ ·SiO ₂	deep red, brownish red & black; transparent - translucent; vitreous - resinous	4.1 - 4.3	7 - 7½	cubic; dodecahedrons or trapezohedrons; massive & compact, coarse granular	schists, gneiss, other metamorphic rocks; contact zones & some igneous rocks; detritd mineral in sedimentary deposits		
Andradite J.B.d'Andrada e Silva (1763- 1838), Brazilian mineralogist	3CaO·Fe ₂ O ₃ ·SiO ₂	yellowish green, greenish brown, reddish brown, grayish black, black; transparent - opaque; vitreous - resinous	3.7 - 4.1	6½ - 7	cubic; dodecahedrons or trapezohedrons; massive & compact, coarse granular	chlorite schist and serpentinite; alkaline igneous rocks (melanite); metamorphosed limestone. or contact zones		
Grossularite Latin grossularium = gooseberry for its pale green color	3CaO·Al ₂ O ₃ ·SiO ₂	colorless, white, gray, yellow, yellowish brown, pink, red, green, black; transparent - opaque; vitreous - resinous	3.4 - 3.6	6½ - 7	cubic; dodecahedrons or trapezohedrons; massive, compact, fine or coarse granular	metamorphosed impure calcareous rocks, especially in contact zones, assoc. with wollastonite, idocrase, diopside, scapolite, and calcite; certain schist and in serpentine		
Pyrope Greek pyr = fire and ops = eye due to its fire-red color	3MgO·Al ₂ O3·SiO ₂	pinkish red, purplish red, orange- red, deep crimson to nearly black; transparent - translucent; vitreous	3.5 - 3.8	6½ - 7½	cubic; usually dodecahedrons or trapezohedrons, often as rounded pebbles or embedded grains	peridotites and assoc. serpentinites, and sand & gravels derived from them; eclogites, hornblende-garnet-plagioclase rocks, Precambrian anorthosites, diamond-bearing peridotites		
Spessartite Spessart in northwestern Bavaria, Germany	3MnO·Al ₂ O ₃ ·SiO ₂	brownish-red to red, reddish orange, yellowish brown; transparent - translucent; vitreous	3.8 - 4.3	7 - 7½	cubic; usually dodecahedrons or trapezohedrons; often striated; massive and compact, or coarse granular	granite pegmatites, gneiss, quartzite, schist, and lithophysae in rhyolite, skarn deposits		
Uvarovite Count Sergei Semeonovich Uvarov (1786-1855), Russian nobleman, St. Petersburg	3CaO·Cr ₂ O ₃ ·SiO ₂	emerald green; transparent - translucent; vitreous	3.4 - 3.8	6½ - 7	cubic; usually dodecahedrons or trapezohedrons, often striated	in assoc. with chromite is serpentine, in skar deposits, and metamorphosed limestone		

Source: various including Roberts et al 1000

Table 75	Grain Sizes of Commercial Garnet						
End use	Size ranges (mm)						
Sand blasting	1.1, 0.5, 0.6/0.4, 0.4/0.2, 0.3/0.15						
Water filtration	2.5/1.7, 1.1, 1.4/0.6, 0.5, 0.6/0.4, 0.4/0.2						
Water jet cutting	1.0/0.3, 0.25/0.18, 0.18, 0.15, 0.18/0.85, 0.12/0.06						
Coated abrasives	0.34/0.1, 0.08/0.036						
Polishing/lapping	0.15/0.18, 0.10/0.15, 0.030, 0.010						

Consumption of almandite garnet in the United States (tonnes)

A Global Geology

					Mullit		
Minerals	Formula	Color/Luster	SG	Н	ization/ vol.	Crystal system/ habit	Occurrences
Andalusite	11.0.0				change		
oality at Andalusia, Spain	Al ₂ SiO ₅ 63.2% Al ₂ O ₃ 36.8% SiO ₂	pink, reddish brown, rose red, grayish, whitish; transparent - nearly opaque; vitreous to subvitreous	3.13		1,380°C +5%	orthorhombic; prismatic xls, nearly square in x section; usually coarse; massive, compact	slates and argillaceous schists (contact); mica schist, gneiss, and related rocks (detrital); granites, granitic pegmatites
Dumortierite Jugène Dumortier (1802 - 873), French Judeontologist	Al ₇ (BO ₃)(SiO ₄) ₃ O ₃	blue, violet, pinkish, brown; transparent - translucent; vitreous dull	3.4	81/2		orthorhombic; rare prismatic xls usually massive, columnar, fibrous, or granular	
yanite (disthene) Treek kyanos = dark blue effecting its color	Al ₂ SiO ₅ 63.2% Al ₂ O ₃ 36.8% SiO ₂	blue, white, gray, green, yellow, pink, or nearly black; transparent to translucent; vitreous to pearly	3.5 - 3.67	4 - 71/2	1,350°C +18%	triclinic; long bladed xls, flattened	paragonite schists, gneiss, granite an granitic pegmatites
Mullite The island of Mull, Scotland	3Al ₂ O ₃ ·2SiO ₂	colorless to pale pink; transparent to translucent; vitreous	3.03	6 - 7	_	orthorhombic; prismatic xls	in fused argillaceous inclusions in Tertiary eruptive rocks on Isle of Mull in slags and firebricks upon heating
ineralogist, Yale	Al ₂ SiO ₅ 63.2% Al ₂ O ₃ 36.8% SiO ₂	colorless, white to gray, yellowish, brownish, greenish, bluish; transparent - translucent; vitreous - silky	3.23 - 3.7	6½ - 7½	+7%		schists, gneisses, and granites; detrita deposits
opaz reek Topazion, an island the Red Sea, meaning to tek since it was often bscured by mist; Sanskrit pos = fire	Al ₂ SiO ₄ (F,OH) ₂	colorless, white, gray, bluish, greenish, yellowish, yellow-brown to orange, purple, pinkish to reddish; transparent to translucent; vitreous	3.49 - 3.57	8		prismatic xls, also massive, coarse to fine granular	pegmatites and high-temperature quartz veins; cavities in granites and rhyolites; contact zones; alluvial deposits

Wollastonite consumption in the United States

simple:

 $SiO_2 + CaCO_3 \Leftrightarrow CaSiO_3 + CO_2$ quartz calcite wollastonite carbon dioxide

The temperature of this "wollastonite reaction" increases with pressure in a closed system, from which carbon dioxide cannot escape (at 506 MPa $P_{\rm CO2}$ at a temperature of almost 800°C). However, in an open system the temperature of wollastonite formation decreases slightly with rising pressure (at 506 MPa $P_{\rm CO2}$ the temperature is about 420°C). Triclinic a-wollastonite forms at 450°C and almost any pressure, and converts into triclinic pseudowollastonite (β -CaSiO_3) at 1,120- $1,160^{\circ}\text{C}$. This occurs only in synthetic wollastonite products in ceramics, slags, cin-

Table 189	Wollastonite								
Minerals	Formula	Color/Luster	SG	Н	Crystal system/ habit	Occurrences			
Wollastonite for William Hyde Wollaston (1766-1828), English chemist and mineralogist	CaSiO ₃ 48.3% CaO 51.7% SiO ₂	White, yellowish; vitreous to pearly luster	2.8 - 2.9		coarsely bladed crystalline masses that break down into acicular cleavage fragments	contact metasomatic or skarn; detrital deposits			
Pseudo-wollastonite	β-CaSiO ₃ 48.3% CaO 51.7% SiO ₂	Colorless; transparent, vitreous	2.9	5	triclinic; equant grains, twinning	pyrometamorphosed Tertiary rocks			

Source: various including Roberts et al., 1990