| Micas | icas | | | | | | | |---|---|---|---|---|--|--|--| | Formula | Color/Luster | SG | Н | Crystal system/ habit | Occurrences | | | | K(Mg, Fe) ₃ (Al,
Fe)Si ₃ O ₁₀ (OH,F) ₂ | green, black, dark brown,
yellow; transparent - opaque;
splendent, submetallic, vitreous | 2.7 -
3.1 | 2½ -
3 | monoclinic; short prismatic or
tabular xls; massive aggregates
of cleavable scales | mainly in granites, pegmatites,
gabbros, norites, diorites, schists,
phyllites, and gneisses | | | | K (Li,Al) ₃ (Si,
Al) ₄ O ₁₀ (F,OH) ₂ | rose-red, violet-gray, lilac, pink,
purple, yellowish, grayish white,
white; transparent - translucent;
pearly | 2.8 -
3.3 | 2½ -
3 | monoclinic; tabular xls, thick
cleavable masses, coarse to
fine scaly aggregates | almost exclusively in granite
pegmatites, and less commonly in
granites, aplites, and high-
temperature tin-bearing veins | | | | KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ | colorless, gray, brown, pale
green, violet, yellow, dark-olive
green, ruby; transparent -
translucent; vitreous - pearly or
silky | 2.77 -
2.88 | 2½ -
4 | monoclinic; tabular xls,
hexagonal or diamond-shaped
in cross section; commonly
lamellar or scaly massive | many geological environments,
especially granites and granitic
pegmatites; phyllites, schists and
gneisses; in dendritic or authigeni
sediments | | | | KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ | yellowish brown, brown to
brownish red, colorless, white,
greenish; transparent to
translucent; pearly | 2.76 -
2.90 | 2 -
2½ | monoclinic; prismatic xls,
usually tapered, often long and
course | in metamorphic limestones and
ultrabasic rocks | | | | K(V, AI,Mg) ₂ AISi ₃ O ₁₀
(OH) ₂ | clove brown to greenish brown,
dark green; translucent; pearly | 2.97 | 21/2 | monodinic; minute scales | interlaminated with native gold;
assoc. with telluride minerals, and
with uranium-vanadium deposits | | | | KLiFe ⁺² AI(AISi ₃)O ₁₀
(F,OH) ₂ | gray, brown, sometimes dark
green; transparent; vitreous | 2.9 -
3.3 | 2½ -
4 | monoclinic; short prismatic or
tabular xls; disseminated scales
or scaly aggregates | mainly in greisens, high-temperal quartz veins, and in granite pegmatites. | | | | | Formula K(Mg, Fe) ₃ (AI, Fe)Si ₃ O ₁₀ (OH,F) ₂ K (Li,AI) ₃ (Si, AI) ₄ O ₁₀ (F,OH) ₂ KAI ₂ (AISi ₃ O ₁₀ (OH,F) ₂ KMg ₃ (AISi ₃ O ₁₀ (OH,F) ₂ K(V, AI,Mg) ₂ AISi ₃ O ₁₀ (OH) ₂ | Formula Color/Luster K(Mg, Fe) ₃ (Al, Fe)Si ₃ O ₁₀ (OH,F) ₂ green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂ rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ (OH) ₂ Glove brown to greenish brown, dark green; translucent; pearly | Formula Color/Luster SG K(Mg, Fe)3(AI, Fe)Si3O10(OH,F)2 green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous 2.7 - 3.1 K (Li,AI)3 (Si, Al)4O10(F,OH)2 rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly 2.8 - 3.3 KAI2(AISi3O10(OH,F)2 colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky 2.88 KMg3(AISi3O10 (OH,F)2 yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly 2.76 - 2.90 K(V, AI,Mg)2AISi3O10 clove brown to greenish brown, dark green; translucent; pearly 2.97 KLiFe+2AI(AISi3)O10 gray, brown, sometimes dark 2.9 - 2.97 | K(Mg, Fe) ₃ (Al, Fe)Si ₃ O ₁₀ (OH,F) ₂ green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂ rose-red, violet-gray, lilac, pink, purple, yellowish, grayish white, white; transparent - translucent; pearly KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ colorless, gray, brown, pale green, violet, yellow, dark-olive green, ruby; transparent - translucent; vitreous - pearly or silky KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ yellowish brown, brown to brownish red, colorless, white, greenish; transparent to translucent; pearly K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ (OH) ₂ clove brown to greenish brown, dark green; translucent; pearly KLiFe ⁺² Al(AlSi ₃)O ₁₀ gray, brown, sometimes dark 2.7 - 2½ - 2.88 4 2.76 - 2 - 2.90 2½ 2.76 - 2 - 2.90 2½ Clove brown to greenish brown, dark green; translucent; pearly | Formula Color/Luster K(Mg, Fe) ₃ (Al, green, black, dark brown, yellow; transparent - opaque; splendent, submetallic, vitreous K (Li,Al) ₃ (Si, Al) ₄ O ₁₀ (F,OH) ₂ rose-red, violet-gray, lilac, pink, white; transparent - translucent; pearly KAl ₂ (AlSi ₃ O ₁₀ (OH,F) ₂ colorless, gray, brown, pale green, ruby; transparent - translucent; vitreous - pearly or silky KMg ₃ (AlSi ₃ O ₁₀ (OH,F) ₂ K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ COH,F Colorless, gray, brown to greenish; transparent to translucent; pearly K(V, Al,Mg) ₂ AlSi ₃ O ₁₀ GOH,F Green; translucent; pearly KLiFe ⁺² Al(AlSi ₃)O ₁₀ Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous Green; transparent; vitreous Gray, brown, sometimes dark green; transparent; vitreous transp | | | ## **Consumption of ground mica in the United States**(tonnes) ^{*} includes mica used for molded electrical insulation, rubber, textile and decorative coatings, welding rods, and miscellaneous. Source: USBM. | Table 73 | Garnets | | | | | | | | |---|---|--|--------------|------------|--|---|--|--| | Minerals | Formula | Color/Luster | SG | Н | Crystal system/ habit | Occurrences | | | | Almandite
Alabanda, Asia Minor, where
garnets were cut and
polished | 3FeO·Al ₂ O ₃ ·SiO ₂ | deep red, brownish red & black;
transparent - translucent; vitreous -
resinous | 4.1 -
4.3 | 7 -
7½ | cubic; dodecahedrons or
trapezohedrons; massive &
compact, coarse granular | schists, gneiss, other metamorphic rocks;
contact zones & some igneous rocks; detritd
mineral in sedimentary deposits | | | | Andradite
J.B.d'Andrada e Silva (1763-
1838), Brazilian mineralogist | 3CaO·Fe ₂ O ₃ ·SiO ₂ | yellowish green, greenish brown,
reddish brown, grayish black,
black; transparent - opaque;
vitreous - resinous | 3.7 -
4.1 | 6½ -
7 | cubic; dodecahedrons or
trapezohedrons; massive &
compact, coarse granular | chlorite schist and serpentinite; alkaline igneous rocks (melanite); metamorphosed limestone. or contact zones | | | | Grossularite Latin grossularium = gooseberry for its pale green color | 3CaO·Al ₂ O ₃ ·SiO ₂ | colorless, white, gray, yellow,
yellowish brown, pink, red, green,
black; transparent - opaque;
vitreous - resinous | 3.4 -
3.6 | 6½ -
7 | cubic; dodecahedrons or
trapezohedrons; massive,
compact, fine or coarse
granular | metamorphosed impure calcareous rocks, especially in contact zones, assoc. with wollastonite, idocrase, diopside, scapolite, and calcite; certain schist and in serpentine | | | | Pyrope Greek pyr = fire and ops = eye due to its fire-red color | 3MgO·Al ₂ O3·SiO ₂ | pinkish red, purplish red, orange-
red, deep crimson to nearly black;
transparent - translucent; vitreous | 3.5 -
3.8 | 6½ -
7½ | cubic; usually dodecahedrons
or trapezohedrons, often as
rounded pebbles or embedded
grains | peridotites and assoc. serpentinites, and sand & gravels derived from them; eclogites, hornblende-garnet-plagioclase rocks, Precambrian anorthosites, diamond-bearing peridotites | | | | Spessartite
Spessart in northwestern
Bavaria, Germany | 3MnO·Al ₂ O ₃ ·SiO ₂ | brownish-red to red, reddish
orange, yellowish brown;
transparent - translucent; vitreous | 3.8 -
4.3 | 7 -
7½ | cubic; usually dodecahedrons
or trapezohedrons; often
striated; massive and compact,
or coarse granular | granite pegmatites, gneiss, quartzite, schist,
and lithophysae in rhyolite, skarn deposits | | | | Uvarovite
Count Sergei Semeonovich
Uvarov (1786-1855),
Russian nobleman, St.
Petersburg | 3CaO·Cr ₂ O ₃ ·SiO ₂ | emerald green; transparent -
translucent; vitreous | 3.4 -
3.8 | 6½ -
7 | cubic; usually dodecahedrons
or trapezohedrons, often
striated | in assoc. with chromite is serpentine, in skar
deposits, and metamorphosed limestone | | | Source: various including Roberts et al 1000 | Table 75 | Grain Sizes of Commercial Garnet | | | | | | | |-------------------|--|--|--|--|--|--|--| | End use | Size ranges (mm) | | | | | | | | Sand blasting | 1.1, 0.5, 0.6/0.4, 0.4/0.2, 0.3/0.15 | | | | | | | | Water filtration | 2.5/1.7, 1.1, 1.4/0.6, 0.5, 0.6/0.4, 0.4/0.2 | | | | | | | | Water jet cutting | 1.0/0.3, 0.25/0.18, 0.18, 0.15, 0.18/0.85, 0.12/0.06 | | | | | | | | Coated abrasives | 0.34/0.1, 0.08/0.036 | | | | | | | | Polishing/lapping | 0.15/0.18, 0.10/0.15, 0.030, 0.010 | | | | | | | ## Consumption of almandite garnet in the United States (tonnes) ## A Global Geology | | | | | | Mullit | | | |--|--|---|----------------|------------|------------------|--|--| | Minerals | Formula | Color/Luster | SG | Н | ization/
vol. | Crystal system/ habit | Occurrences | | Andalusite | 11.0.0 | | | | change | | | | oality at Andalusia, Spain | Al ₂ SiO ₅
63.2% Al ₂ O ₃
36.8% SiO ₂ | pink, reddish brown, rose red,
grayish, whitish; transparent -
nearly opaque; vitreous to
subvitreous | 3.13 | | 1,380°C
+5% | orthorhombic; prismatic xls,
nearly square in x section;
usually coarse; massive,
compact | slates and argillaceous schists
(contact); mica schist, gneiss, and
related rocks (detrital); granites,
granitic pegmatites | | Dumortierite
Jugène Dumortier (1802 -
873), French
Judeontologist | Al ₇ (BO ₃)(SiO ₄) ₃ O ₃ | blue, violet, pinkish, brown;
transparent - translucent; vitreous
dull | 3.4 | 81/2 | | orthorhombic; rare prismatic xls
usually massive, columnar,
fibrous, or granular | | | yanite (disthene)
Treek kyanos = dark blue
effecting its color | Al ₂ SiO ₅ 63.2% Al ₂ O ₃ 36.8% SiO ₂ | blue, white, gray, green, yellow,
pink, or nearly black; transparent
to translucent; vitreous to pearly | 3.5 -
3.67 | 4 - 71/2 | 1,350°C
+18% | triclinic; long bladed xls,
flattened | paragonite schists, gneiss, granite an
granitic pegmatites | | Mullite
The island of Mull, Scotland | 3Al ₂ O ₃ ·2SiO ₂ | colorless to pale pink; transparent
to translucent; vitreous | 3.03 | 6 - 7 | _ | orthorhombic; prismatic xls | in fused argillaceous inclusions in
Tertiary eruptive rocks on Isle of Mull
in slags and firebricks upon heating | | ineralogist, Yale | Al ₂ SiO ₅
63.2% Al ₂ O ₃
36.8% SiO ₂ | colorless, white to gray,
yellowish, brownish, greenish,
bluish; transparent - translucent;
vitreous - silky | 3.23 -
3.7 | 6½ -
7½ | +7% | | schists, gneisses, and granites; detrita
deposits | | opaz reek Topazion, an island the Red Sea, meaning to tek since it was often bscured by mist; Sanskrit pos = fire | Al ₂ SiO ₄ (F,OH) ₂ | colorless, white, gray, bluish,
greenish, yellowish, yellow-brown
to orange, purple, pinkish to
reddish; transparent to
translucent; vitreous | 3.49 -
3.57 | 8 | | prismatic xls, also massive,
coarse to fine granular | pegmatites and high-temperature
quartz veins; cavities in granites and
rhyolites; contact zones; alluvial
deposits | ## **Wollastonite consumption in the United States** simple: $SiO_2 + CaCO_3 \Leftrightarrow CaSiO_3 + CO_2$ quartz calcite wollastonite carbon dioxide The temperature of this "wollastonite reaction" increases with pressure in a closed system, from which carbon dioxide cannot escape (at 506 MPa $P_{\rm CO2}$ at a temperature of almost 800°C). However, in an open system the temperature of wollastonite formation decreases slightly with rising pressure (at 506 MPa $P_{\rm CO2}$ the temperature is about 420°C). Triclinic a-wollastonite forms at 450°C and almost any pressure, and converts into triclinic pseudowollastonite (β -CaSiO_3) at 1,120- $1,160^{\circ}\text{C}$. This occurs only in synthetic wollastonite products in ceramics, slags, cin- | Table 189 | Wollastonite | | | | | | | | | |--|---|---|--------------|---|---|--|--|--|--| | Minerals | Formula | Color/Luster | SG | Н | Crystal system/ habit | Occurrences | | | | | Wollastonite
for William Hyde Wollaston
(1766-1828), English chemist
and mineralogist | CaSiO ₃ 48.3% CaO 51.7% SiO ₂ | White, yellowish;
vitreous to pearly
luster | 2.8 -
2.9 | | coarsely bladed crystalline
masses that break down into
acicular cleavage fragments | contact metasomatic or skarn;
detrital deposits | | | | | Pseudo-wollastonite | β-CaSiO ₃
48.3% CaO
51.7% SiO ₂ | Colorless;
transparent, vitreous | 2.9 | 5 | triclinic; equant grains, twinning | pyrometamorphosed Tertiary rocks | | | | Source: various including Roberts et al., 1990