JAF01

LESSON 5: THE ATOM AND BONDING (adapted from A. Rozkošná)

A) SPEAKING: In the News

In today's lesson you are going to read a BBC newspaper article. Work in small groups and answer these questions:

- Do you like reading newspapers and magazines? How often do you read them?
- What is your favourite magazine / newspaper? What sections of a newspaper do you like to read? What is your favourite topic politics / cars / fashion / computers / science / cooking / sport ?
- How often do you watch the news on TV? What are your favourite broadcasting companies?
- How often do you watch the news on the Internet? What are your favourite websites? What is your favourite activity on the Internet?
- Do you ever read scientific news? Do you know periodicals like Science Daily, The New Scientist etc. or similar magazines in Czech?
- Have you ever read a magazine / newspaper article in English?
- Do you think it's important to read the newspaper and know what is going on in the world? Why or why not? What would the world be like without news?

B) LISTENING: BONDING

Available at http://bcs.whfreeman.com/thelifewire/content/chp02/02020.html (Click on ANIMATION – NARRATED)

1. COVALENT BONDS

Vocabulary

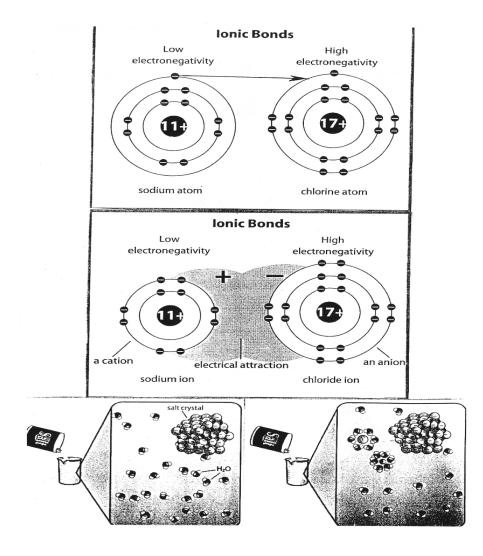
a) Watch the animation and answer the question: What elements or compounds are mentioned?

b) Listen again and fill in the gaps:

Let's now consider ______, an atom with eight electrons. Two electrons fill the ______, and the other six electrons reside in the next shell. This outer shell needs two more electrons to complete it (the _____). Two _____atoms form a covalent double bond by sharing two electron pairs from their outer shells.

Carbon is perhaps the most ______ on Earth, in large part because it contains only four electrons in a shell that can ______ eight. To fill its outer shell, carbon forms four covalent bonds with up to four other atoms.

In a molecule	, carbon shares electrons with, forming			
four covalent single bonds. Although this molecule is relatively simple, carbon often forms				
	of large, complex molecules. With each carbon atom able to bond to four			
other atoms,	molecules are incredibly diverse.			


Triple bonds are rare, but nitrogen gas molecules (the most abundant molecule in_____) form triple bonds. The two nitrogen atoms share_____, allowing each to have eight electrons in its outermost electron shell.

Now answer these questions:

- a) What is a covalent bond?
- b) Which element forms a single covalent bond?
- c) What is the most versatile element?
- d) What is the most abundant molecule in the air?
- e) What kind of bonds does it form?

2. IONIC BONDS

- a) Watch the animation and note down key words.
- b) Watch it again and make notes of the main points.
- c) Work with your neighbour. With the help of the pictures, describe ionic bonds.

http://bcs.whfreeman.com/thelifewire/content/chp02/02020.html (Click on ANIMATION - NARRATED)

JAF01

Fastest View of Molecular Motion

READING ACTIVITIES

1. Read the first part of the text (until the headline "Ultra-fast process") and try to answer the following questions:

- a) What was the timescale that the researchers watched molecules on?
- b) Where could the study be used in the future?
- c) Where was the study published?
- d) What instrument was used at the experiment?
- e) At what university were the researchers based?

2. Read the whole text and give the English equivalents of the following Czech expressions:

- a) vědci provedli pozorování
- b) jedna atosekunda se rovná miliardtině miliardtiny sekundy
- c) pochopení podstaty
- d) vynalézt novou techniku
- e) excitovaný ionizovaný stav
- f) uvolní se rentgenové paprsky
- g) účinek na pohyb v molekule
- h) řízení chemických reakcí
- i) provádět testování

Fastest view of molecular motion

1

Scientists have made the fastest ever observations of motion in a molecule.

They "watched" parts of a molecule moving on an attosecond timescale where one attosecond equals one billion-billionth of a second.

The researchers say the study gives a new in-depth understanding of chemical processes and could be used in future technologies such as quantum computing.

The study, which relies on short pulses of light from a specially built laser, was published in the journal Science.

"Understanding how something changes in time means really understanding its essence, and we are now looking at changes on a very, very fast timescale," said team member Dr John Tisch, of Imperial College London, UK.

Ultra-fast process

The researchers devised a new technique to "see" the motion of protons, one of the building blocks of an atom, in molecules of hydrogen and methane.

The technique involves firing a very short but intense laser pulse at a molecule, which rips an electron away, leaving the molecule in an excited ionised state.

- The electron is then drawn back to the molecule, and when it collides a very short burst of x-rays is released.
- 2 "That has encoded information within it about the state of the molecule at the point of re-collision, and can give us information about the motion of the protons in this molecule," Dr Tisch told the BBC News website.
 3

The process is ultra-fast, and the team was able to observe the effect the laser had on motion in the molecules with an accuracy of 100 attoseconds - the fastest ever recorded.

4 The team said being able to see detailed molecular motion would help scientists understand how molecules behaved in chemical processes, thus providing possibilities for controlling molecules.

"Control of this kind underpins future technologies, such as control of chemical reactions, quantum computing and high brightness x-ray light sources for material processing," said Professor Jon Marangos, another Imperial College author on the Science paper.

- "We now have a much clearer insight into what is happening within molecules and this allows us to carry out more stringent testing of theories of molecular structure and motion."
- Article Available at ©http://news.bbc.co.uk/2/hi/science/nature/4766842.stm

From The BBC News

6

7

JAF01

The protons' motion was seen on the attosecond timescale

POST-READING ACTIVITIES

1. Grammar: Complete the word-formation table. The first has been provided as an example.

Noun	Verb	
observation	to observe	
researcher		
motion		
effect		
study		
	to control	
	to collide	
	to behave	
testing		
reaction		

Now choose 2-4 of these words and use them in a sentence.

Example:

There are many different kinds of chemical reactions.

2. Speaking. In pairs, summarize the text, using the vocabulary you have learnt.

HOMEWORK: Vocabulary in Context Circle the SYNONYM (=word of similar meaning) of the word in <i>italics</i> . 1. Atoms are <i>infinitesimal</i> in size.				
a. tiny	b. huge			
2. Chemists study the composite a. materials	osition of natural <i>substa</i> b. machines	ances.		
3. The fish suddenly <i>emerge</i> a. arose	ed from the water. b. disappeared			
	, solid, or gas, and solic	Is may be <i>subdivided</i> into crystalline and		
amorphous. a. built up	b. broken down			
5. Plastic products are hard to dispose of because they are almost <i>indestructible</i>.a. unable to be destroyed b. unable to be constructed				
6. At one time the atom was thought to be <i>indivisible</i>.a. unable to be divided b. unable to be seen				
7. Einstein's ideas are too <i>al</i> a. practical	<i>bstract</i> for many people b. theoretical	e to understand.		
8. The <i>reaction</i> of iron and of a. chemical activity	bxygen produces rust. b. separation			
9. The airplane had to rely o a. thick	on radar in the <i>dense</i> fog b. thin	<u>5</u> .		
10. The moon <i>revolves</i> arou a. stretches	nd the earth. b. circles			
11. The mosquitoes showed their <i>attraction to</i> the light.a. dislike forb. liking for				
12. Some scientists suspect that the planet Uranus once <i>collided</i> with another object in space.a. crashedb. orbited				
13 . Heat can <i>convert</i> a solid a. condense	-			
14. The ammonia was <i>dilute</i> a. thinned	b. change ed in water to make it w	veaker. b. thickened		
15 A <i>catalyst</i> speeds up a ch a. chemical agent	nemical reaction.	b. forest animal		
16. To obtain aluminum, m a. remove	etallurgists must extrac	<i>t</i> it from bauxite. b. destroy		

Vocabulary – Atom and Bonding

covalent single bond (adj+adj+n)	jednoduchá kovalentní vazba	
double bond (adj+n)	dvojná vazba	
triple bond (adj+n)	trojná vazba	
versatile (adj)	všestranný	
backbone (n)	páteř	
incredibly diverse (adv+adj)	neuvěřitelně rozmanitý	
to result (v)	být výsledkem	
to constitute (v)	vytvářet	
to consider (v)	považovat za, uvažovat o	
to reside (v)	sídlit, spočívat v	
carbon-based molecules (adj+n)	molekuly na bázi uhlíku	
scientists make observations	vědci provádějí pozorování	
to observe (v)	pozorovat	
motion (n)	pohyb	
to move (v)	pohybovat se	
researchers (n)	výzkumníci	
scientists (n)	vědci	
to publish a study (v+n)	publikovat studii	
to release x-rays (v+n)	uvbolnit rentgenové paprsky	
to behave (n [°] v)	chovat se	
behaviour (n)	chování	
effect (n)	vliv	
to affect (v)	mít vliv	
excited ionised state (adj+adj+n)	excitovaný ionizovaný stav	
timescale (n)	časová škála	
encoded information (adj+n)	zakódovaná informace	
understanding the essence (n+n)	pochopení podstaty	
accuracy (n)	přesnost	
to fire a laser pulse	vypálit laserový impuls	
to devise a new technique	vynalézt novou techniku	
to rip an electron away	odtrhnout elektron	
to draw back (v)	vtáhnout zpět	
to collide (v)	srazit se, kolidovat	
collision (n)	srážka, kolize	
to provide (v)	poskytnout	
to rely on (v)	záviset na	
control of chemical reactions	řízení chemických reakcí	
carry out testing (v+n)	provádět testování	
to collide (v)	srážet se, kolidovat	