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This means that the number.of rows in each A. .

must be the same for each i and fhe number of columns
must be the same fTor each J- The siz€ orf A.. is
1]

et ]

“ \
; 2.1fﬁBLOCK OPERATIONS

e

It is very often convenient in both theoretical and
computer work to_partition a matrix into submatrices.
This can be done in numerous ways as suggested by
this example:

1 2 : 3 4 1 2 1 3] 4
[ I
5 6 : 7 8 5 6 | 71 8
————— ———— | I ,
9 10 1 11 12 9 10 11 | 12
k= TA N2 1IN T— —f—~
13 14 |15 16 13 14 ;15 | 16

Each submatrix or block can be labeled by subscripts,
and we can display the original matrix with submat-
rices or blocks for its elements. The general form
of a partitioned matrix therefore is

Byp Byp - By
(2.1.1) A = . : : ) |
By By ee B,

way to indicate partitions. The size of the blocks
must be such that they all fit together properly.

Dotted lines, bars, commas are all used in an obvious |
16 ‘

/

therefore m, x nj for certain integers my and n.. We
indicate this by writihg

No. of columns

ml . m2 e ml No. of rows

M1 Byp vee By o
(2.1.1') a=|[ : : s

By1 Brg - By ny

A square matrix A of order n is often partitioned

symmetrlcally, Suppose that n = ny + ny + oo
with ng > 1l. Partition A as

square matrices of order n,

1
2

A
T Bygoes s Ay
(2.1.2) A = ;
A .
rl Ar2 Z Arr
where size Ajy = nj x nj.

The diagonal blocks Aii are

Example. X X x

bd
X X b:4 bid X n = 6
X ¥ big 3 bl4 b'd MR 2
n, =1
ble 2 3
n =
X 3
ble x X X

is a symmetric partition of a 6 X 6 matrix.

Square matrices are often built up, or compounded,

of square bilocks all of the same size,
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1}

Example. X X X X

X X X

X X X X

3 X X X X

b4

X X X X X

If a square matrix A of order nk is composed of n X n
square submatrices all of order k, it is termed an
(n, k) matrix. Thus the matrix depicted above is a
(2, 3) matrix.

Subject to certain conformability conditions on
the blocks, the ooeratlons of scalar product trans-
pose,

notation as when LI
tion. This means
s

A wme B CA «.e. CA

11 12 11 12
(2.1i.35 =l : : - " ; >
Bg su0 By StE. - SHpy
T T T
Aip -0 By - 8 B
(2.1.4) ; : = | : ¢ ,
T T
B =m» Brg Bq g e By
* * *
gy ee Byy A1 - By
(2.1.5) = : : .
* 7
Apy -0 By AT, )

Here T designates the transpose and * the conjugate

transgose.

Block Operations 9

P Biy --- By,
(2.1.6) : : + | : )
& TSR T} Bi ++ Byy
All + Bll s W All + B12
Bep * Byp ee- A + B,
Byy =ee By Bi1 o Byne ,C1p - Cln\
(2.1.7) : : R P .
Apy wor Py Bg1 -+ By Cr1 == Cyp

_ vk
where C.j = Zr=lAirBrj'

In (2.1.6) the size of each A.. must be the size
of the corresponding B, iq £

In (2.1.7), designate the size of A i by o, % Bj
and the size of B 5 by w5 6 Then, if Br =i for
1 <r <4, the product A B rj can be formed and pro-
duces an ay X 63 matrix, 1ndependently of r. The sum
can then be found as indicated and the C, i3 are a; x Gj

matrices and together constitute a partition. Note
that the rule for forming the blocks C. i3 of the matrix

product is the same as when A and B,. are single
numbers. i3 13

Example. If A and B are n x n matrices and if

A B
C = 7
B -A

then
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2
cz AT + B2, AB - BA
BA - AB, a2 + g2/’
PROBLEMS
1. 1In the example just given what is C2 if A and B
commute?
2. In the example, compute C3. What if A and B com-
mute?
3. Let
Bl 0 1 0
B C
2
M = : , N = 2l
3 . .
Br 0 cs

be two block diagonal matrices. When can the pro-
duct MN be formed? What is the product?

4. “gadamard matrices" of order 20 are given recur-
sively by means of the definition

H H
Hy, = (T 1 Boo= | 2" 2"
2 1 -1 k+1 ~ S

Write out Hy and Hg explicitly. Compute HZHE,
T
H4H4.
5. Let A, B, C, D all be n x n and let a, b, ¢, d be
scalars. What is

A B al bI
C D cI dI
6. Let I_ be the identity of order P. Prove that

i B
det p = det C.
0 c

[AV]
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7. If A and C are square, prove that det(% 2) =
(det A) (det C).

8. If A and C are square, prove that the eigenvalues

of (2 g) are those of A together with those of C.

2.2 DIRECT SUMS

For i =1, 2, ..., k, let Aﬁ be a square matrix of
order n;. The block diagonal square matrix

Al 0 ... 0

0 A2 ey 10
(2.2.1) A= . = diag(Al, A2’ exeny Ak)

-

0 0 ... By

of order n; + ny + --- + np is called the direct sum
of the A; and is designated by

(2.2.2) A = Ai ® A2 S - O Ak = iil Ai.

The following identities are easily established.

o=
(1) (A®B) 8 C=A6® (B&®C).
(2) (A+B) & (C+D) = (aoh + (%;e D).
(3) (A®B)(C®D) =AC & BD.
(4) (ae BT =aTl e pT.
{5) (A ® B)* = A* @ B*.
G (ELEpE)y g ArE EmErl) esEEnsehat LS
indicated inverses exist.
(7) det(a & B) = (det A) (det B). :
(8) tr(an ® B) = tr A + tr B. E
(9) If pa(X) designates the characteristic poly- i
nomial of A, then pA$B(X) = (pA(X))(PB(X))- i
(10) Hence X(A & B) = {AA, AB}. (AA designates
the set of eigenvalues of A.)
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PROBLEMS

i. Let A = Al & A2 ® --- & Ak' Prove that det A =
nk—l det A, and that for integer p, aP = A? ) Ag ®
. e aP.

k
5. Give a linear algebra interpretation of the direct
sum along the following lines. Let V be a finite-
dimensional vector space and let L and M be sub-
spaces. Write V=1 & M if and only if every
vector x € V can be written uniquely in the form
x =y + z withy €L, z&€ M. Show that V=1 & M

if and only if

(a) dim V = dim L + dim M, L M= {0}.
(b) if {xl,...,xi} and {yl,...,ym} are bases for

L and M, then {Xl""'xl’yl""'ym} is a
basis for V.

3. The fundamental theorem of rank-canonical form for
square matrices tells us that 1f A 1s a n X n
matrix of rank r, then there exist nonsingular
matrices P, Q such that PAQ = I & 0 _ . Verify

this formulation.

2.3 KRONECKER RBQ?PCT”

Let A and B be m x n and p x ¢ respectively. Then the
Kronecker product (or tensor, or direct product of A
and B) is that mp x nqrmatrix_defined by

; 4313 3B cevr 29,8
(2.3.1) A ®B = :
amlB, asz, 0 v amnB

Impértaht propefties of the Kronecker product are
as follows f{indicated operations are assumed to be

defined): e R

(1) (ad) @ B=A 9 (aB) = a(A @ B); a scalar.
(2) (A + B) @ C (A®ecC) + (B®C).
(3) A ® (B + C) (A @ B) + (A @ C).

i (4) A® (B®C) = (A ®B) @C.

i n

il

Kronecker Product 23

(5) (A ® B)(C 8 D) = (AC) ® BD.
(6) A ® B=A © B.

(79 (e B)T = aT @ BT; (a ® B)* = A* @ B*.
(8) r(A ® B) = r(A)r(B).

We now assume that A _and B are square and of
orders m_and n. Then

(9) tr(A ® B) = (tr(a)) (tr(B)).

(10) If A and B are nonsingular, so is A ® B and
aeB t=2alest

(11) det (A ® B) = (det a)"(det B)™.

(12) There exists a permutation matrix P (see

Section 2.4) depending only on m, n, such
that B ® A = P*(A © B)P.

(13) Let fg(x, y) designate the polynomial

g(x, y) = ) a,xy
j,k=0 ¥

Let #(A; B) designate the mn x mn matrix

3. k=0

Then the eigenvalues of g(A; B) are

ﬂ(Xr, Us), r=1, 2, ..., m, s =1, 2, ...,

n where Xr and by are the eigenvalues of A

and B respectively. In particular, the
eigenvalues of A ® B are Xrus, r =1, 2,

...m; s =1, 2, ...,n.

e

PROBLEMS

1. Show that I_® I = I__.
m n mn
2. Describe the matrices I @ A, A § I.

3. If A is m x m and B is n x n, then A @ B =
(A® I )J(I ® B)=(I_ ® Bjy(A® I).
n m m n
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4. If A and B are upper (or lower) triangular, then
so is A ® B.

If A ® B# 0 is diagonal, so are A and B.

Let A and B have orders m, n respectively. Show
that the matrix (Im ® B) + (A ® In) has the

eigenvalues A _ + us,/l, =1, 2, ..., m, §=
1, 2, ..., n, where Ar and ng are the eigenvalues

of A and B. This matrix is often called the
Kronecker sum of A and B.

7. Let A and B be of orders m and n. If A and B
both are (1) normal, (2) Hermitian, (3) positive
definite, (4) positive semidefinite, and (5)
unitary, then A ® B has the corresponding
property. See Section 2.9.

8. Kronecker powers: Let A[2] = A ® A and, in

general, a¥*1) = 2 g al¥) | prove thnat alk+t] -
alkl o al21

9. Prove that (AB)[k] = A[k]B[k].

10. Let Ax = Ax and By = uy, x = (xl, . R Xn)T.
Define Z by ZT = [xlyT, KoY ey xmyT]. Prove

that (A ® B)Z = Auz.

/;
§2 4 jPERMUTATION MATRICES

By a permutation ¢ of the set N = {1, 2, ..., n} is
meant a one-to-one mapping of N onto itself. Includ-
ing the identity permutation there are n! distinct
permutations of N. One can indicate a typical per-
mutation by

o(l) = i1
(2.4.1) c(2) = i2
o(n) = in

which is often written as

Permutation Matrices

1 2 eaw N )
(2.4.1") o; ;

The inverse permutation is designated by o l. Thus
(1 ) = k.

Let Ej designate the unit (row) vector of n cor

ponents which has a 1 in the jth position and 0's
elsewhere:

(2.4.2) Ej = (0, +e., 0,1, 0, ..., 0).

By a permutation matrix of order.n is meant a
matrix of the form

(2.4.3) P=P =

One has

(2.4.4) P = (a,.) where tr0(1) ]
a, . = 0, otherwise.

The ith row of SR has s a 1 in the g(i)lth column._and._ OU

elsewhere The, JLh column of P has a 1 in the

(J)Lh row and 0's elsewhere. Thus each row and
each column of P has precisely one 1 in it.

Example
1 2 3 4 gggé
o g% P =
4 1 3 2) o 82%8'

It is easily seen that
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il X5 (1)
b4 X
2 i ag(2)
(2.4.5) Pg ) :
}(n XO (n)
Hence if A = (aij) is an n X r matrix,

(2.4.6) PA = (a ) g

o(i),]

| I S P

that is, PA is A with its rows permuted by o. More-
over,

(2.4.7) (xl, Kor weer xn)P0

R B Xo'l(n))'
so that if A = (aiﬁ) is r X n,
(2.4.8) ap, = (ai,c"l(j)),

=1
That is, AP is A with its columns permuted by o .

Note also that
(2.4.9) |P,P. =P

ot

where the product of the permutations 0, T 1S applied
from left to right. Furthermore,

(2.4.10) (PO)* = Pc_l;

hence

(2.4.11) (PO)*PO = PO—lPG = PI = TI.
Therefore B
(2.4.12) (Po)* = Po_l = (PO) :

The permutation matrices are EEE§MHE£§§£YLH§9§ﬂiES a
subgroup of the unitary group.
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From (2.4.6), (2.4.8) and (2.4.12) it follows
that if A is n X n

—

(2.4.13) i PUAPS (ao(i),c(j))' '.

so that the similarity transformation POAPS causes a

consistent renumbering of the rows and columns of A by
the permutation o.

Among the permutation matrices, the matrix

rﬁ 0 1 8 @ sz 0
0 1

0 san 0
= . . . .

|
|
é : . -

(2.4.14)

-

j T 00 !3/

plays a fundamental role in the theory of circulants.
ThlS corresponds to the forward shift permutation
6(l) = 2, o(2) = 3, ..., o(n-1) = n, o(ny = 1, that

S e A o TS

is, to the cycle ¢ = (1, 2, 3, ..., n) generating the
cyclic group of order n (m is for "push“) One has
0 0 1 0 ... 0
_— 0 0 0 ... 0
(2.4.15) =° = 3 L 7
A})\ . - - ¢ D
0 1 0 0 ... 0/
. 2 ) . 2 2
corresponding to ¢~ for which ¢“(1) = 3, ¢°(2) = 4,
2 e
.«y 07 (n) = 2. Similarly for ﬂk and ok. The matrix

n
m corresponds to o = I, so that

(2.4.16) = 1.

Note also that

(2.4.17) ﬂT = % = n_l = nn‘l

A particular instance of (2.4.13) is

(2.4.18) i MATY = (a. )

f““‘

where A = (a ) and the subscripts are taken mod n.
B i N N e N PN



28 Introductory Matrix Material
Here is a second instance. Let I, = (Al, A2’ o

A )T. Then, for any permutation matrix P _,

n S o]

(2.4.19) PU(diag L)Pg = diag(P L).

A second permutation matrix of 1mportance is

s iy
1 0 i 0 0 0
0 0 . 5 0 0 X
(2.4.20) B 0 0 & O L @ '
\\ 0 0 P 1 0 O//
0 1 v 0 0 0
which corresponds to the permutation o(l) = 1, o(2) =
n, 0(3) =n-1, ..., 0(3j) =n-3 +2, ..., o(n) = 2.
Exhibited as a product of cycles, ¢ = (l)(2, n)
g e R W T
(3; n - 1), ..., (n, 2). It follows that ¢* = I, hence
rt‘h:a"t.../*ﬂ« LN S i ™ N
(2.4.21) Fz = I.
Also,
(2.4.22) r*=r% = =71

e et e e £ad

Again, as an instance of (2.4.13),

(2.4.23) I'(diag L)T = diag(rL).

Finally, we cite the counterldentlty K, which has
1's on the main counterdiagonal and 0's elsewhere:

-
0 0 . i 0 1
0 0 g b 0
(2.4.24) | K = K = . . . . E
- . - - [
1
1 0 - 0 0 :
i i :
One has K = K*, K> = I, K= k1

Let P = P0 designate an n X n permutation matrix.

Permutation Matrices 29

Now ¢ may be factored into a product of disjoint
cycles. This factorization is unique up to the
arrangement of factors. Suppose that the cycles in
the product have lengths Pir Por ever Poy (pl + P, +

+++ 4+ p_ = n). Let w designate the m matrix
m Py
(2.4.14) of order Py By a rearrangement of rows and

columns, the cycles in P can be brought into the

form of involving only contlguous indices, that is,
indices that are successive integers. By (2.4.13),
then, there exists a permutation matrix R of order n
such that

1

(2.4.25) | RPR* = RPR ~ =7 @©@ 7_ © -++ & 7_ .
N | : Py
Since the characteristic polynomlal of w is
p"km‘p':‘l'{"‘_"z'_"_._m..___.___ R - k
(-1) (A -1), it follows that the characterlstlc

Py,
The eigenvalues of the permutation matrix P are there-
fore the roots of unity comprised in the totality of

roots ot "ERETT equations:

polynomial of RPR*, hence of P, is H2=l(_l) k(x

P
yE=1, x=1,2, ..., o

Example. TLet o be the permutation of 1,52, 3+ 4; 5, 6
for which o(l) = 5, 0(2) = 1, 0(3) = 6, o(4) = 4,

o(5) = 2, o(6) = 3. Then o can be factored into cycles
as 0 = (152)(4) (36). Therefore, m = 3 and P, = 3,
Py, = im, B & 2. The matrix P _ is

\

O O O O H~ O
S B O O O O
P © O O O O g
SO O B O O O
o O O o o
o o o = O ©
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The matrix R corresponding to t(l) = 1, 1(5) = 2, ; Example. When n = 3,
T(2) = 3, 1(4) = 4, 1(3) =5, t(6) = 6, is such that 0 + 000 + 000 - 0,
1 -+ 001 - 100 - 4,
U g . 3 B | 2 » 010 + 010 ~+ 2,
0 0 1 0 0 0 : 3 » 011 - 110 - 6,
4 -~ 100 -~ 001 » 1,
- . g v 5 - 101 - 101 = 5,
x = 6 - 110 » 011 -» 3,
RPOR g g 0 1 2 0 ) 7 -~ 111 - 111 -» 7.
0 0 0 0 0 1 ! Discuss the factorization of ¢ for n = 3. What
0 0 0 0 about the general case?

Describe the matrices IIn ® ﬂr; ﬁn ® Im.

LY 1

i of P e th £ I £
Th@ e}ggnvalueégﬁ,, ol War, ?Fegre‘theuroots o 8. Ifm > 1, prove that Im ® nn and 'n'n ® Im are

5] et s et

3 2 _
505 &) L) (A L. derogatory, that is, their minimal polynomial
is not their characteristic polynomial.

A permutation o is called primitive if its fac-

torization consists of one cycle of full length n. 9. Prove that K ® K = K S
: 5 %o : ; m m+n
The eigenvalues of a primitive permutation matrix are o 2 w20 e 20 e
a - - - A ;f Do s ré Al Bl fon
the nth roots of unity, hence they are distinct. 10. Let T be of ordes n.}AProve Chat I & W @ 7T2 +
cee + gL o J, where J is the matrix of all 1's.
EROELEES 11. If o0 is a primitive permutation, prove that G—l

1. If M is m x n, describe the relationship between 12 IESEEOEAVEE
M, KmM, and MK_. : 12. If o and T are primitive permutations, is it true
. L o fra
2. Prove that det K_ = (-1) 2], yhere [x] desig- Ehalt i 5| [eR i eviSh |
. 13. P is a primitive permutation matrix if and only
< q g q .
B eIt EEEOR s ot if it is of the form P = R*7R where R is a

Determine the characteristic polynomial of w. ; permutation matrix.

i 14. P is a primitive permutation matrix of order n

For integer p, set M_ = n¥ + 7 P. Prove that
p ! if and only if n is the least positive integer

M =M M =M =2I, MM =M +M DR L
= "nb—f.lpl:l L M i , R =g p=q’ | ‘ for which P = 1. f U FAR NP et U b
Mp+l T 1p p-1° i ' 7
. ! 0 L O .
5. Let Cn(x) = 2 cos nb, where x = 2 cos 0, desig- i /2.5  THE FOURTER MATRIX |
nate the Tschebyscheff volynomials of the first :i e e s
kind. One knows that Cn+l(x) = xcn(x) - Cn—l(x)’ Let n be a fixed integer > 1 .and set
Ch(x) = 2, C,(x) = x. Referring to Problem 4 i - )
0 1 ! S 2mi, _ 27 .. 2T .
prove that M_ = Cp(Ml)‘ (2.5.1) 1w = exp(—=) = cos — + i sin o i = vy-1.
6. Let N= {0, 1, 2, ..., 2" - 1} and let o desig- N

In a good deal of what follows, w might be taken as
any primitive nth root of unity, but weé prefer to
standardize the selection as in (2.5.1). Note that

nate the permutation of N that results from |
reversing the binary bits of the elements of N. !
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=
(2.5.2) | @ Wt =1,
(b) ww =1,
() w = w-l,
(@) Qk _ w-k - wn-k,
(e) 1 + w + w2 + ..+ wn"l = 0,

By the Fourier matrix of order n, we shall mean

the matrix F (= Fn) where
e

¥

(2.5.3)  F* = 1 (,(1-1)(3-1),
vn
- 1 1 . 1
W W2 . Wn—l
W 42 (n-1)

L .
/5 s : :
Lol 2(n-1) L, (n=1) (n-1)

Note the star on the left-hand member. The sequence

wk, k=20,1, ..., is periodic; hence there are only n

distinct elements in F. F can therefore be written
alternatively as

1 1 5% & 1
1w w2 $5e wh 1
2 -2
1 S g
(2.5.4) F* = n~t/2| 7 " ? v -
\l wn—l wn_2 . W

It is easily established that F and F* are
symmetric:

T T

(2.5.5) F=F, F*¥ = (F¥)" = F, F = F*,

It is of fundamental importance that

Theorem 2.5.1. F is unitary:

I

or

I

3]
o
o

= I or ¥

F*
Frp = T or Fl=F

(2.5.6) FF*
FFL

1l

Proof. This is a result of the geometric series
identity

nglwr(j-k)z 1 - wnfj—k) _ n if j = k,
r=0 1 - Wik Y0 if § # k.

A second application of the geometrical identity
yields

Theorem 2.5,2

¥
1 0 . 0 i
F*? = F*p% = T = 09 ¢ P 2
- 4= 0 0 — 1 0 T
o 1 0
Corollary. F*? =12 = 1, p«3 . redre)7l 2 1F = p,

We may write the Fourier matrix picturesquely in
the form

(2.5.7) 7= "va .

(It may be shown that all the qth roots of I are of

-1 .
the form M "DM where D = dlag(ul, Mor eeey un), uy

and where M 1s any nonsingular matrix.)

- Sy =

Corollary. The eigenvalues of F are +1, fihewith

appropriate multiplicities.

Carlitz has obtained the characteristic polynom-
ials f(X) of F* (= F;). They are as follows.

i n=0(mod 4), £ = (A- L)2(r 4 i) (r + 1)
i Wt o) /4)-1

r
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n = 1l(mod 4), £ = (A - 1) (A - 1) (1/4) (n-1)
n = 2(mod 4), £ = (A2 - 1) - ) /(=2
n = 3(mod 4), £ = (A + i)(a2 -1

(% - 1y (/4 @=3)

The discrete Fourier transform. Working with
complex n-tuples, write :

7 = (zl, CPYARRRY zn) and
= ~ ~ A T
7z = (zl, Zos e zn) .

The linear transformation

(2.5.8) & % =Fi |
where F is the Fourier matrix is known as the discrete
Fourier transform (DFT). Its inverse is given simply
by

_ _lA _ ~
(2.5.9) Z =F 72 = F*Z.

The transform (2.5.8) often goes by the name of

harmonic analysis or periodogram analysis, while the
Inverse transform (Z.E.§i 15 called harmonic synthesis.
The reasons behind these terms are as follows: suppose

that p(z) = a, +oagz o + anzn_l is a polynomial of

degree < n - 1. It will be determined uniquely by

specifying its values p(z ) at n distinct points Zy 1
k=1, 2, ..., n in the complex plane. Select these
points 2z, as the n roots of unity 1, w, w2, EE wn~l.
Then clearly

ag p(l)
a p(w)
(2.5.10) nY/%px | 1 - )
an--l p(wn—l)

so that

The Fourier Matrix 35

a, p(l)

a _ p(w)
(2.5.11) 1 e a7V ;

%n-1 p ™)

The passage from functicnal values to coefficients
through (2.5.11) or (2.5.8) is an analysis of the
function, while in the passage from coefficient values
to functional values through (2.5.10) or (2.5.9) the
functional values are built up or "synthesized."

These formulas for interpolatidh at the roots of
unity can be given another form.

By a Vandermonde matriva(zo, Zye ceey Zn-l) is
meant a mg;rix of thg ﬁorm
1 1 - 1
20 %1 : Zn-1
g 22 z? . 22
(2.5.12) | v = L ; a=f
Zn-l Zn-l Zn—l
0 1 S n-1
From (2.5.4) one has, clearly,
= _ |
V(L w, w2, e, Wl l) = nl/zF*, ;
(2.5.13) 1 = o _
l v(l, w, w2, - (N W l) nl/2F* l/zF.
One now has from (2.5.11)
= T
(2.5.14) p(2) = (L, 2, -on 2 (ags ays ceer g y)
= (1, 2, eeur zn_l)n_l/2
F(p(1), pw), oo P INT
= n—l/@\(ll Zy oo Zn—l)v(ll V—\’l ;Vzr
e W@, P, e TN

b oA it L o P, FTM st
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Note. In the literature of signal processing, a

sequence~to-sequence transform is known as a discrete
or digital filter. Very often the transform T[such as
(RIS 8)] is llnear and is called a llnear fllter.

Fourler Matrlces as Kronecker Products.{ The Fourier

matrLces of orders 20 may be expressed as Kronecker
Eroducts This factorization is a manlfestatlon,
essentially, of the idea known as the Fast Fourier
Transform (FEFT) and is of vital importance in real
time calculations.

Let F'n designate the Fourier matrices of order
2
2" whose rows have been permuted according to the bit

reversing permutation (see Problem 6, p. 30). ’ﬁ

Examples
= 1 /
it o 1 , FEY
2 @ \1 - I
1 1 1 1
P o= 1 1 -1 1 -1 .
4 Ve 1 i -1 -i
N1 -i -1 i
One has
L ]
(2.5.15) F4 (12 ® Fé)D4(F2 ® Iz),
where D4 = diag(l, 1, 1, i). This may be easily

checked out.

As is known, A ® B = P(B ® A)P* for some permu-~
tation matrix P that depends merely on the dimensions
of A and B. We may therefore write, for some permu-

tation matrix S4 (one has, in fact, S;l = 84):
(2.5.16) F4 o (12 ] Fé)D4S4(12 3] Fé)S4.
Similarly,

(2.5.17) FiG = (I4 ® Fa)DlG(F& ® I4)

The Fourier Matrix 2
where
; 2 3
(2.5.18) D, = diag(1, D% D, D7)
with
i -2
(2.5.19) D = diag(l, w, w2, w3), W = exp 121

Again, for an appropriate permutation matrix S16 =
-1 _ T
S16 = S16”

1 = T n
(2.5.20) Flg = (I4 ® F4)D16516(Iq ® r‘4)sl6

For 256 use -

d 8 4 15
(2.5.21) D256 = diag(I, D, D", ..., D7)
where the sequence 0, 8, 4, ..., 15 is the bit
reversed order of 0, 1,...., 15 and where
Tt
(2.5.22) D = diag(l, w, ..., wid),  w = e2"i/256
PROBLEMS

Evaluate det Fn

2. Find the polynomial pn_l(z) of degree < n - 1 that
takes on the values 1/z at the nth roots of unity,
wj, j=1, 2, ..., n. What is the limiting
behavior of pn(z) as n > «? (de Mére)

3. Write F = R + iS where R and S are real and i =

v-1. Show that R and S are symmetric and that

R2 ks 52 = I, RS = SR,

4. Exhibit R and S explicitly.

2.6 HADAMARD MATRICES

By a Hadamard matrix of order n, H (= Hn), is meant a
L AT e T

matrix whose elements are either +1 or -1 and for

which
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T T _ o o gl
(2.6.1) HH™ = H H = nI. (2.6.2) Hy = (1), Hy = (1 _]).
- H = H ® H .
Thus, n l/2H is an orthogonal matrix. 2n+l on P
Examples These matrices have the additional property of being
symmetric,
Hl = (1),
_ o iy A (2.6.3) H = H 7
YZ Fy =Hy; = (3 1), gl on
1 1 11 1 so that
B E (2.6.4)  m% = 2"
4,1 -1 1 1 -1/
1 -1 1 -1 ’
The Walsh-Hadamard Transform. By this is meant the
¥ranstorm.
1 - &
1 r (2.6.5) %z = HZ
H = .
4,2 1 -1 1 1 where H is an Hadamard matrix.
-1 1
PROFLEMS
It is kngwn that if n > 3, then the order of an 1. Hadamard parlor game; Write down in a row any
Hadamard matrix must be a multiple oFf 7.~ WIith oie - four numbers. Then write the sum of the first
possible exception, all multiples of 4 < 200 vield at two, the sum of the last two; the difference of
least one Hadamard matrix. the first two, the difference of the last two to
! form a second row. Iterate this procedure four
Theorem 2.6.1, If A and B are Hadamard matrices of times. The final row will be four times the
erders m and n respectively, then A © B is an Hadamard original row. Explain, making reference to H,.
matrix of order mn. Generalize. 4
Proof 2. Define a generalize rmutat, DatLix.? as
follows. P is sguare and every row and every col-
(A ® B)(A @ B)T = (A & B) (AT @ BTy = (AAT) ® (BBT) umn of P has exactly one nonzero element in it.
That element is either a +1 or a -1. Show that
= (mI_)® (nI.) =mn(I © I ) = mnI . if H is.an Hadamard matrix, and if P and Q are
iy n m n mn generalized permutation matrices, then PHQ is an
Hadamard matrix.
. In some areas, particularly digital signal proc- 3. With the notation of (2.6.2) prove that
essing, the term Hadamard matrix is limited to the
matrices of order 2© given specifically by the recur- H2n+1 5 (H2n ® I2)(I2n ® Hz)'

sion
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4., Using Problem 3, show .that the Hadamard transform
of a vector by H o can be carried out in
2
<n 2" additions or subtractions.

5. If H is an Hadamard matrix of order n, prove that

|det H| = n™2.
2.7 TRACE
The trace of a square matrix A = (a,.) of order n is

defined as the sum of its diagonal elements:

1

{ n
(2.7.1) {traAa= ) a...
‘ j=1 JJ]
The principal general properties of the trace are
e iy R — o — i
© (l) tr(aA + bB) = a tr(A) + b tr(B).
(2) tr(AB) = tr (BA).
i (3) tr A = tr(S—lAs), S nonsingular.
. (4) If Ai are the eigenvalues of A, then
{ _ ¢vh
. tr A = Zi:l A -
(5) More generally, if p designates a polynomial
r .
p(A) = T a,rd,
j=0 J
then tr(p(a)) = JL_; P(AL) .
5 *) = *7) = 8 g =
|o(e) -PF(AA ) tr (A*A) Zi,j=l|aijl square
! of Frobenius norm of A. T
' (7) tr(A ® B) = tr A + tr B.
;| (8) tr(A ® B) = (tr 2)(tr B).
|
il . . N E—

(2.8 | GENERALIZED INVERSE

For large classes of matrices, such as the square
"singular" matrices and the rectangular matrices, no
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inverse exists. That is, there are many matrices A

for which there exists no matrix B such that AB = BA

= I.

" In discussing the solution of systems of linear
equations, we know that if A is n x n and nonsingular
then the solution of the equation

AX = B,

where X and B are n x m matrices, can be written very
neatly in matrix form as
| e

‘ X =A B.i

Although the "solution" give above is symbolic,
and in general is not the most economical way of solv-
ing systems of linear equations, it has important
applications. However, we have so far only been able
to use this idea for square nonsingular matrices. 1In
this section we show that for every matrix A, whether
square or rectangular, singuldr Or AonSingular, there
exists a unique "generalized inverse™ often called
the "MggEEtggpggggj_Epvgzﬁe of A, and employing it,

the formal solution X = A~1B can be given a useful
interpretation. This generalized inverse has several
of the important properties of the inverse of a
square nonsingular matrix, and the resulting theory
is able in a remarkable way to unify a variety of
diverse topics. This theory originated in the 1920s,
but was rediscovered in the 1950s and has been
developed extensively since then.

2.8 Right and Left Inverses

Definifion. If A is an m x n matrix, a right inverse
Of & is an n x m matrix B such that AB = Im. Similar-

ly a left inverse is a matrix C such that CA = In.
Example. If
1 B 1
A= "
1 2 3

a right inverse of A is the matrix



42 Introductory Matrix Material
2 -1
B = -1 1 ’
0 0

since AB = 12.

However, note that A does not have a left
inverse, since for any matrix C, by the theorem on
the rank of a product, r(CA) < r(A) = 2, so that CA #
13. Similarly, although A is, by definition, a left

inverse of B, there exists no right inverse of B.

The following theorem gives necessary and suffic-
ient conditions for the existence of a right or left
inverse.

Theorem 2.8.1.1. An m x n matrix A h§§“§“£¥ghtw(}efp)

inverse if and only if A has rank m(nj.

Proof. We work first with right inverses.
Assume that AB = Im. Then m = r(Im) <r(d) < m.

Hence r (&) = m.

Conversely, suppose that r(A) = m. Then A has m
linearly independent columns, and we can find a per-
mutation matrix P so that the matrix & = AP has its
first m columns linearly iggependgnt. Now, if we c¢an
find a matrix B such that AB = APB = I, then B = PB
is clearly a right inverse for A.

Therefore, we may assume, without loss of gen-
erality, that A has its first m columns linearly
independent. Hence A can be written in the block form

A = (Al, A2)

where Al is an m X m nonsingular matrix and A2 is some
m x (n - m) matrix. This can be factored to yield

_ _ a—1l
A = Al(Im’ Q) Q.= Al Az)-
Now let
B
B = 1
By

where Bl is m x n and B2 is (n ~ m) x m, Then AB = I
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if and only if

A)B, + A,0B, = I,

or if and only if

B =l
By + QB, = A]",
or if and only if
_ -1
By = A" - 0B,.

Therefore, we have

e i
_ /-1

B = Al QB2 = Al — Q B ]

B 0 R i

{

.

2

for an arbitrary (n - m) x m matrix B,. Thus there is

a right inverse, and if n > m, it is not unigue.
We now prove the tHeoTen for a left Inverco:
Suppose, again, that A is m x n and r(aA) = n. Then

T .
A" 1s n x m and r(AT) = n. By the first part, AT has

a right inverse: ATB = I. Hence BTA = I and A has a

left inverse.

Corollary. If A is n X n of rank n, then A has both

«quright and a left inverse

and they are "the same.

) Proof. The existence of a right and a left
inverse for A follows immediately from the theorem.
To prove that they are the same we assume

AB = I, CA = 1I.
Then C(AB) = CI = C. But also,
C(AB) = {(CA)B = IB = B,

so that B = C. This is the matrix that is defined to
be the inverse of A, denoted by A—l.
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PROBLEMS
X 1
1l. Find a left inverse for 2 0 }J. PFind all the
left inverses. 3 1

2. Does

o
SW N
[ B~ — o 8

have a left inverse?

3. Let A bem X n and have a left inverse B. Suppose
that the system of linear equations AX = C has a
solution. Prove that the solution is unique and
is given by X = BC.

4. Let B be a left inverse for A. Prove that ABA = A
and BAB = B.

5. Let A be m x n and have rank n. Prove that A
-1
nonsingular and that (ATa) AT is a left inverse
for A.

6. Let A bem Xxn and have rank n., Let Whbhe m x m

Ta is

positive definite symmetric. Prove that ATWA is

nonsingular and that (ATWA)_lATW is a left inverse

for A.

2.8.2 Generalized Inverses

Definition. Let A be an m X n matrix. Then an n x m
matrix X that satisfies any or all of the following
properties is called a generalized inverse:

(1) AXA = A,
(2) XaX = X,
(3) (aX)* = AX,
(4) (XA)* = XA.

Here the star * represents the conjugate transpose. A
matrix satisfying all four of the properties above is
called a Moore-Penrose inverse of A (for short: an

M-P inverse). We show now that every matrix A has a

unigue M-P inverse. It is denoted by A'. It should
be remarked that the M-P inverse is often designated

W
[%)]

Generalized Inverse

by other symbols, such as AY. The notation A" is used
here because (a) it is highly suggestive and (b) it
comes close to one used in the APL computer language.

We first prove the following lemma on "rank
factorization" of a matrix.

Lemma. If A is anm X n matrix of rank r, then A = BC,
where B ism X r, Cis r x n and r(B) = r(C) = r.

Proof. Since the rank of A is r, A has r linearly
independent columns. We may assume, without loss of
generality, that these are the first r columns of a,
for, if not, there exists a permutation matrix P such
that the first r columns of the matrix AP are the r
linearly independent columns of A. But if AP can be
factored as ‘

AP = BC, r(B) = r(C) = r,
then
A = BC
where C = aP—l and r(C) = r(¢) = r, since P is non-
singular.

Thus if we let B be the m x r matrix consisting
of the first r columns of A, the remaining n - r
columns are linear combinations of the columns of B,

of the form BQ(j) for some r x 1 vector Q(j). Then
if we let Q be the r x (n - r) matrix,
(Q(l)

« e

0 = o{n7r)

we have
r n-r
(B, BQ) (letters over blocks
indicate number of columns).

>
1l

If we let
C = (I

we have

b=
]
o
H
©
)

BC
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.We next show the existence of an M-P inverse in
the case where A has full row or full column rank

Theorem 2 8 2. l

(a) If A is square and nonsingular, set A" = A—l.
(b) If A is n x l (or l X n) and A # 0, set
oLl A =1 _ ax
A A%A) A (or A’ VX3) A%*),
(c) ;f A is m x n'andrt(A)”= m, set A" =
%*}LA*)_l. If Aism x n and r(A) = n, set
A’ = @A) tar.

Then_AT is an M-P inverse for A, Moreover, in the
case of full row rank, it is a rlght 1nverse,71n the
casé of full’ columnvnipk it is a left inverse.

Note that (a) and (b} are really special cases.
" of (c).

Proof. Direct calculation. Observe that if A is
m x n and r(A) = m, then AA* is m x m. It is well

known that r (AA*) = m, so that (AA*)—l can be formed.
Similarly for A*A,.

We can now show the existence of an M-P inverse
for any m X n matrix A.
If A =0, set A" = 0% = 0, p+ This.is readily

. 7
verified to satisfy requirements (1), (2), (3) and (4)
for a generalized inverse.
If A # 0, factor A as in the lemma into the
product

A = BC

where B is m x r, C is r x n and r(B) = r(C) = r. Now
B has full column rank while C has full row rank, so

that B® and C° may be found as in the previous theorem.

Now set

:
- P i
A = i

- -

ey

Theorem 2.8.2.2. Let A  be defined as above. Then it
is an M-P inverse for A.

A= (ENAY (FA)
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Proof. It is easier to verify properties (3)
and (4) first. They will then be used in proving
properties (l) and (2

(3) ar" = B(CC )B7 = BIB' = BB°, and since
BB® = (BB )*, we have an’ = (aa¥)x,

(4) similarly, A'A = c’c = (coyx = (a*a)*.

(1) (AA )A (BB y)BC = BC = A.

(2) (' a)a’ = (c*c)c’s’ = ¢'5° = a'.

Now we prove that for any matrix A the M-P inverse is
unique.

Theorem 2.8.2.3. Given an m x n matrix A, there is

only one matrix A that satisfies all four properties
FOr the Moore-Penrose lnverse""““”

Proof. Suppose that there exist matrices B and
C satisfying

ABA = A (1) ACA = A,
BAB =B (2) cac = C, :
(AB)* = AB (3) (AC)* = AC, §
(BA)* = BA (4) (cAa)* = CA i
Then B
(2) (4) (1) 'S
B = (BA)B = (A*B*)B = (A*C*A*)B*B F’
(4) (4) (2) f
= (CA) (A*B*B) = CA(BAB) = CAB h
and “
I
(2) (3) (1) i
C = C(AC) = CC*A* = CC*(AXB*A*) @
(3) (3) and (2) i
= (CC*A*) (AB) = CAB.

Therefore B = C. The integers over the equality
signs show the equations used to derive the equality.
Penrose has given the following recursive method

B
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for computing A", which is included in case the

reader would like to write a computer program.
Theorem 2.8. (the Penrose algorithm). Let A be
m X n and have rank r 2 0. —

(a) Set B = A*A (B is n x n).

(b) set Cy = I (C1 is n x n).

(c) Bet Tecursively for 1 = Ls 25 reer T = 1:

Ci41 = {l/lltr(CiB}I - CiB (Ci is n % n).
Then tr (C_B) # 0 and A" = rCrA*/tr(CrB). Moreover,

Cr+1B = 0. We therefore do not need to know r
Eeioreﬁana, but merely stop the recurrence when we

have arrived at this stage.

The proof is omitted.

Also very useful is the Greville algorithm. ;%_M -

heorem 2.8.2.5. Define A= (Ap=y &) where a) is the

kth column of A and Ay _q is the submatrix of.A consis-—

ting of its first k - 1 columns. Set 4, = A;_lak and
d Set ?k = Cy if oy # 0. If cy = 0,

S = 3 T M1tk
_ "l.*':'
set b, = (1 + dgdy) "dphAy ;- Then
. . Al - apb
it = Al = ( k-1 Kk )
k b
k
To.start: set AE =0 if 8y = 0: if. not..set A; =
* TLok
(alal)‘ aj-
PROBLEMS
2 2 0
1. If a-= 1 2 1 , verify that
1 2 1
. 18 3 -5
A'=L(~6 3 9> .
; 24 Vg 3 9
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101 .
2, If A= (l 1 ), find A" .
1 2
3. If
1 1
1 2
A= 1 3 ,
1 4
1 5
find A,

4. Use Penrose's formulas to compute the inverse of
the nonsingular matrix

14 8 3
23
3 2 1
Use Greville's algorithm.
5. .If ¢ is a nonzero scalar, prove that (cA)% =
(1/c)a’.
6. Prove that (A')° = A.
7. Prove that (A%)* = (A*)e.
8. I? d is a scalar, define d+ by d% = d—l if d # 0,

a* = 0 if @ = 0. Let A = diag(d;, ..., d,).

prove that A" = diag(di, ceesdl).

9. Prove that (% g)T = (% g%) and (g %)T =
©. B
AT 0 °°
10. Prove that if A" = 0, then A = 0*.
11, Let A = (2 g) and have rank 1. Prove that
A" = L 5 A,

1aj2 + p|? + Jel® + la]
12. TLet J be the J matrix of order n. Prove that
¥ = (1/n?) 7.

13. Let S be an n x n matrix with 1's on the super-
diagonal and 0's elsewhere. Find S*.

14. Le- P be any projection matrix (i.e., P2 = p, P*
= P). Prove that P’ = P.



o

P
prd
p
£
c]
£
e
a

15. Prove that both AA and A "A are prOJectlons.

1l6. Prove that A" = (A*A) A = A*(AA*)

17. Prove that r(a) = r(A ) = r(A”A) ?@(A A%

18. Taking A = (1, 0), B = ( ), show that, in gen-
eral, (AB)+ # B a%.

19. If a and b are column vectors, then a® = (a*a)+a*,
and (ab*)% = (a*a)é(b*b)%ba*.

20. Prove that (A ® B)% = A% ® B+

2.8.3 The UDV Theorem and the M-P Inverse

We begin by establishing a theorem that is of great

utility in visualizing the action and facilitating the
manipulation of rectangular (or square) matrices. This
is the UDV theorem, also called the diagonal decomposi-

tion theorem or the singular value decomposition
thecrem. ..
Theorem 2.8.3.1. Let A be an m x n matrix with com-

plex elements and of rank r. Then the exist unitary
Tatrices U, V of orders m and n respectively such that

(2.8.3.1) A = UDV*

where 5 .
(2.8.3.2) D = (01 o)

is m ¥ n and where D, = diag(dlegj, «ee, d ) is a

nonsingular diagonal matrix of order r.

Note that the representation (2.8.3.1) can be
written as U*AV = D or, changing the notation, JAV =
D, and so on (since U and V are unitary).
=== let A be m % n; then, as is well known, AA* is

positive semidefinite Hermitian symmebsic. and r (AR¥*) =

r{A) = r{A*). Hence the eigenvalues of AA* are real

. . 2 2 2
and nonnegative. Write them as dl’ dz, S dr' 05
0, -.., 0 where the di‘s are positive and where there

are m -— r 0's in the list. The numbers dl' dz, Xry;

dr are known as the singular values of A. ™
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[&;1
e

Proof. Define Dl = diag(dl, d2, 0, dr). Let

Ul be m x r and consist of the (orthonormal) eigenvec-

tors of AA* corresponding to the eigenvalues di, dg,
2

900 dr (cf. Theorems 2.9.3 and 2.9.9). We have AA*Ul

2
= UlDl and U:’L‘U1 = Ir' Let U2 be the m x (m - r) matrix

whose columns consist of an orthonormal basis for the

null space of A*, Then A*02 = 0 and U§U2 = I
Write U = (Ul, Uz) (block notation). Then

u
U*y =
U

LS E N
c
*
=

3 = 2
Now, * = 2 LYWL
ow, since AA U1 U]D], U AA u

0, so that U;A = 0, hence U2U1Dl Since Dl is

nonsingular, it follows that U*U. = U*U. = 0. fThis
means that 2 1'?b 12

o = AV
U*U = X = _'[

0 I X

n 0l
(= <]
. *
c

=]

o

o

S
e

*

(=

il

and hence that U is unitary.
Lit Vl be the n % r matrix defined by Uy -
A*UlDl . Let V2 be the n ¥ (n - r) matrix whose n - r

columns are a set of n - r orthonormal vectors for the

null space of A. Thus AV, = 0 and V3V, = I,-p+ Define
V as the n ¥ n matrix V = (Vl. VZ}. Now

_ -1 2.~1

VY, = D U*A * = *
vy ( 1 ) (A*U Dl ) = Dy UjU,DID;
= Dl Dl = Ir,
= Yk =L

and Vzvl V2A*U1Dl (AVZ)*UlDl = 0. It follows

that V is unitary. Finally,

Ux U*AV U*av

U*AV = 1 A(Vl! Vz) e 12 2
u* * *

2 UZAVl ujav,



ul
[39)

-1
*ARA K
) (UiAVl 0 ) ) ( U$AR*U, Dy 0)
0 0 0 0
_(Dl 0)
0 0

Using UDV theorem, we can produce a very conven-
ient formula for AT,

If A = U*DV*, where U, VvV, D are as

Theorem 2.8.3.2. £ 5
“above, then o e i

1 A" = vD'U
where
r m-r
. Dil 0 r
D’ = .
0 0 n-r
Proof. By a direct computation, it is easy to

show that the n x m matrix

r m-r
Dil (0] r
0 0 n-r

I 0

3 * : r
is D°. Now since A(VD' U) = U*DD U = U*(o 0>U and

. I 0 i
(VD U)A = V(or 0>V*, the third and fourth properties
for the generalized inverse are satisfied. Also,
ar‘A = (U*DV*) (VD'U) (U*DV*) = U*DD DV* = U*DV* = A.
Similarly A%AAe = A", proving the first two properties.

Theorem 2.8.3.3. For each A there exist polynomials p

and q such that

A" = A*p (AA¥*),

A

q (A*A) A%,

;_r———————-———m
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Proof. Let A be m X n and have rank r. Then by
the diagonal decomposition theorem there exist unitary
matrices U, V of order m and n and an m X n matrix

r n-r
D 0 r
1
o (1)
0 0 m-xr
where Dy = diag(dl, d2, T dr), dldz---dr # 0), such
that A = U*DV*, Then A* = VD*U, AA* = U*DD*U, and
A" = VD U. For an arbitrary polynomial p(z), p(AA*) =
p(U* (DD*)U) = U*p(DD*)U. Hence A*p (AA*) =
VD*p (DD*)U., Therefore for A  to equal A*p (AA*)" it is
necessary and sufficient that D = D*p (DD*). Equi-
valently,
N * *
(Dl 0 ) ~ (Dl 0) <D1Dl 0)
= P
¢} 0 0 0 0 0
-1 _ = 2 o 2
or 4~ =dp(|a %), k=1, 2, ..., r. Thus p(|d |

= l/(|dk|2), k=1, 2, ..., r is necessary and suffic-
ient. Let s designate the number of distinct values
among |dl|, la,ls oves |a_|. Then by the fundamental

theorem of polynomial interpolation (see any book on
interpolation, approximation, or numerical analysis)
there is a unique polynomial of degree < s ~ 1 that

takes on the values ]dkl—z at the s points Idklz.

The second identity for A" is proved similarly.

PROBLEMS

1. Iet U and V be unitary. Prove that (UAV)+ =

v*a“ux,

2. Let A be normal. Give a representation for a' in
terms of the characteristic values of A. See
Section 2.9.

3. Prove that if A is normal, AR = A+A.

4. Prove that A" = A* if and only if the singular



Tatroductory Matrix Mat rial 1 i
54 incroa = e | ;enera_'l_l,zed Inverse 55

(1)

values of A are 0 or 1. 1 (1)-inverse, A ,

5. Prove that AT = lim A% (£I + AA*)
0 B = AX, = (AA(]')A)XO = an Mg,

2-374 QEE2£El232Q—lﬂﬂﬁi@ﬁi&ﬂﬁLﬁﬂ@&ﬁmﬁiﬁg Moreover, if X = A(l)B + (I - A(l)A)Y, then with B =

Linear Eguations
‘ an Mg,
Using the properties of the generalized inverse we are (1) (1)
able to determine, for any system of equations i AX = AA B + A(I - A A)Y
AX = B, -8+ a-aaPay=58+0=8
whether or not the system has a solution. If it does, Therefore any such X is a solution.
we can obtain a matrix equation, involving the gener- “To show that it is the general solution, we must

alized inverse, which exhibits this solution. 0oddly show that if AX. = B then X = A(1)B + (T - A(l)A)Y
0

enough, we need only the first property of a general- Ql)
ized inverse. That is, we may use any matrix A(l), i foil?ome Y. Let R =X, =~ A B. Then AR = (l?xo ]
such that AA(1)A - a aa‘t)p = B - B = 0. Now therefore R = R - A‘"'AR.

. e ' Hence, X, = A)B + (1 - A1) aA)R which is of the
Definition. (if Ais m X n, any n x m matrix A that required form with Y = R.
satisfies AA A = A is called a (%)ZinYEEESwgﬁ_é'
More generally, any matrix that satisfies any combina- In the numerical utilization of this theorem one
tion of the four requirements for the_generallzed should, of course, use some standard (1l)-inverse of A

inverse on page 44 1S designated accordingly. such as A%

Example. A (1, 2, 4)-inverse for A is one that satis-
fies conditions (1), (2), and (4).

PROBLEMS
Theorem 2.8.4.1. Let A be m X n. The system of ' 1

Show that if A is an m X n matrix and B is any
equations (1)-inverse of A, then AB and BA are idempotent
o of orders m and n respectively and BAB is a (1,2)-
= inverse of A.

has a solution if and only if B = AA(I)B, for any (1)- 5. Show that if A is m x n (n x m), of rark m, then
any (l)-inverse of A is a right (left) inverse of

A, and any right (left) inverse of A is a (1,2,3)~-

inverse a't! of A. _In this case, the general solution

is given Dby [(1,2,4)-]1 inverse of A.
\ - .
X = A(l’B + (I - A(l)A)Y 3. Consider two systems of equations: (1) AX = B,
(2) CX = D. Find conditions such that every solu-
for an arbitrary n x 1 vector Y. tion of (1) is a solution of (2).

(1) 4. wWhat happens in Problem 3 if B =D = 0?

Proof. Let B = AA(l)B. Then AX = AA B is

solved by X = A(l)B. Suppose, conversely, that the 5. Prove that the matrix equatlog AXB = C has a

system has a solution Xg: AX, = B. Then, for any ' solution if and only if AA"CBB = C. In this
case, the general solution is given by
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x = a“ce® + v - a'ayes’
for an arbitrary Y.

2.8.5 The M-P Inverse and Least Square Problems

Let A be mxn, X and B be n x 1, and consider the sys-

tem of equations mﬂﬂ/kﬁ

If the vector B lies in the range of A, then there
exists one or more solutions to this system. If the
solution is not unique we might want to know which
solution- has minimum norm. Lf the vector B is not in
The range of A, then there is no solution to the sys-
tem, but it is often desirable to find a vector X in
some way closest to a solution. To this end, for any
X, define the residual vector R = AX - B and consider

its Buclidean norm ||R|| = /R*R. A least squares
solution to the system is a vector X such that its*
Tesidual has minimum norm. TREE 1S,

i HRgll = I1axy - Bl] < | |ax - B | for all n x 1
; vectors X.

Theorem 2.8.5.1. The system of equations AX = B
always has a Teast ‘squares solution. This solution is

unique 1f and only if the columns of A are linearly
independent, In this case, the unique Jeast squares

solution is given by X = A’B.

proof. Let R(A) designate the range space of A
and by [R(A)]-L designate its orthogonal complement.
Then we can write B = Bl + B2 where By is in R{A) and
B, is in orthogonal complemant [R(a)]+. For any X,
AX is in R(A) as is AX - B4 hence is orthogonal to
Bz. Now A§ - B = AX - Blz_ B2. Hegce, for agy .
lax - 8[]2 = [|ax = B |1% + 118,112 > [[B,11%.
Therefore ||B,||” is a lower bound for the values
| |ax - BII2 and is achieved if and only if AX = By.

Since Bl is in R(A), there is a solution X0 to AX = Bl'
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For this vector XO’
2 2 2 : 2
IRy 1% = [1ax, - B||® = [IB,]1° < [|ax - B||,
0 0 _ 2
so that the lower bound is achieved. :
Since a unique solution to AX = B, exists if and

only if the columns of A are linearly independent, the
theorem is proved.

For any solution X0 to AX = Bl’

= B, is in [R{A)IT.

R, = AX, - B = B, - (Bl + B2) 2

0 0 1

Therefore A*R0 = 0, or

A*(AXO - B) = 0,
or
* - *
A AXO A*B.
These are the normal equations determining the least

squares solution.
If the columns of A are independent, then

r(A*A) = r(A) = n, so that the n X n matrix A*A is
nonsingular. The least sguares solution XO is deter-
mined by A*AX, = A*B, so that X, = (a*a) "1A*B. But,
from our previous work, A = (a*a) " Lax.

Finally, we take up the general case.

Lemma. Let P = AA , Q = A'A. Then, if X and Y are

ATDitrary Vectors (conformable))

I

llax + (x - 2yy||% = [(ax]|2 + || - Pyy||?

and

g nin

"

|lA%Y||2 + |l - Q)X||2.

Ha'y + (1 - ox|]?

Proof. Since A = AA'A, AX = AA"AX = Pz with 2Z =
AX. We now prove that Pz . (I - P)Y. This is equi-
valent to (PZ)*(I - P)Y = 0 or 2Z*P*(I - P)Y = 0. But

p* = p and P2 = (AA'A)AT = AA® = P. Therefore,
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P*(I - P) = 0. The first equality above now follows
from Pythagoras' theorem. The second equality can be

derived from the first using A° = A.
Another way of phrasing this work is that P is
the projection onto the range space R(A) of A while

I - P is the projection onto the orthogonal complement
of R(A).

Theorem 2.8.5.2. Let A bem x n and B bem x 1. Let

X, =»Ai3: T{Eﬁ for any n x 1 x # XOi we have eithe;_
1) [1ax - B|| > ||axy - Bl|

or
(2) |lax - B[] = [|&ax, - B| | and

1% 11> 1% -

Proof. For any X we have

AX - B = AX - AA'B + AA'B - B

A(X - A'B) + (I - AA") (-B).

By the previous lemma,

lax - 8|12 = [|ax - a'B) |12 + | - aa%) -3y | |2

2 2
- ax - xp 112 + |laxg - Bl

v

2
| lax, - B[],

The equality holds here if and only if A(X - Xo) = 0.
Hence if AX # AXO, inequality (1) holds.
Suppose, then, that AX = AX,. Then ATAX = A'AX

= AéAA+B = A'B = XO' Therefore, X = X0 + (X - XO) =

A+B + (I - AéA)X. Hence by inequality (2) of the
lemma,

0

X112 = 1% 2+ 1% = %112,

so that
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[xi] > Hxgll and  |IX[] = [IX only if

ol
X,-
This theorem may be rephrased as follows. Given

the system AX = B. Then the vector A'B is either the
Unique least squares solution or it is the least
sguares solution of minimum norm.

PROBLEM

1. A is square and singular. Characterize the solu-
tion A'B.

2.9 NORMAL MATRICES, QUADRATIC FORMS, AND FIELD OF

VALUES

e record here a number of important facts. By a
normal matrix is meant a square matrix A for which

(2.9.1) | AA* = A*A, |

Examples. Hermitian, skew-Hermitian, and unitary
Matrices arc normal. Hence real symmetric; SKew-

symmetric, and orthogonal matrices are also normal.
AIT CiTcllants aTe Rormal, &8 WegHgIT sEe T

m

Theorem 2.9.1. A is normal if and only if there is
Thirtary U and diagonal D such that A = U*DU.

Theorem 2.9.2. A is normal if and only if there is a
polynomial p(x) Such that AT = p(A).

Theorem 2.9.3. A is Hermitian if and only if there is
T unitary matrix U and a real diagonal D such that
A=TU%DUY

Theorem 2.9.4. A is (real) symmetric if and only if

There 1s a (real)] orthogonal matrix U and a real

diagonal D such that A = U¥DU.
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PROBLEMS
1. Prove that A is normal if and only if A = R + iS
where R and S are real symmetric and commute.

2. Pprove that A is normal if and only if in the polar
decomposition of A (A = HU with H positive semi-
definite Hermitian, U unitary) one has HU = UH.

3. Let A have eigenvalues Al, —— An. Prove that A
is norma% if an% only if the eigenvalues of AA*
are |a 1%, 1,17 ooor 1A

4. Prove that A is normal if and only if the eigen-
N — =
valuei of A + A* are Al + Al, xz + xz, XY
A+ A
n n

5. If A is normal and p(z) is a polynomial, then

p(A) is normal.
6. If A is normal, prove that A" is normal.
7. 1If A and B are normal, pfove that A ® B is normal.

8. Use Theorem 2.9.1 to prove Theorem 2.19.20

1r cer%n |
(2.9.2) [M(Z) = 7*MZ. |

Quadratic Forms. Let M be n X n and let Z = (Zl’ Zo
e zn)T. By a quadratic form is meant the function
of z z_given by

It is often of importance to distinguish the
guadratic form from a matrix that gives rise to it.
The real and the complex cases are essentially dif-
ferent.

Lemma 2.9.5. Let Q be real and square anc U a.real.

column. _ Then ulou = 0 for .all U if and only if Q =

—QT, that is, if and only if Q is skew-symmetric.

Proof.

) Let 0 = -oF. 1f a=uTQu, of = a = uToty =
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uT(-Q)u = -a. Therefore a = 0.

(b) Let UTQU = 0 for all (real) U. Write Q =
Ql + Q2 where Ql is symmetric and 02 is skew-symmetric.

Then, for all U
T _ T T i -
U Qu 4] QIU + U 02U =0 QlU = 0,
Since Ql is symmetric, we have for some orthogonal P

and real diagonal matrix A: Ql = pTAP. Therefore for

all real U, U'P APU = (PU)A(PU). Write PU =
(ul, vee, ), A= diag(Al, 0000 An). Then we have

NS

n ~
Tx=1 Ak(unz = 0 for all (uj, ..., u ), hence for all
a

(ﬁl, . ). This clearly implies Ay = 0, for k =

n
1, 2, ..., n. Hence Ql = 0 and Q = Q, = skew-symmetric.
Theorem 2.9.6. Let Q and R be real square and U be a

real CQlumn. Then UTQU = UTRU for ali U if and only if
Q - R is skew-symmetric.

Proof. UTQU = UTRU if and only if UT(Q - R)U = 0.

Corollary. Let Q be real and U be a real column.
Then

s T
(2.9.3) viou = vT (& u.

. 1 .
' The matrix 5(Q + QT) is known as the symmetriza-
tion of Q.

We pass now to the complex case.

Lemma 2.9.7. Let M be a square matrix with complex
elements and let 4 be a column with complex elements.

Then
JHE 2 252005

Z*MZ = 0

for all complex 2 if and only if M = 0.

Proof

(a) The "if" is trivial.
(b) "only if." Write 2 = X + iy, M = R + i8S
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where X, ¥, R, S are all real. Then we are given

(2.9.4) (X* - iY*)(R + is) (X + iy) = 0 for all
real X, Y.

select Y = 0. Then X*(R + is)x = 0 for all real X
or X*RX = 0 and X*SX = 0. Therefore, by the first

lemma, R and S must be skew-symmetric: R + RT = 0,

S + ST = 0. Expanding the product on the left side

of (2.9.4), we obtain
X*RX + iX*RY + iX*SX - X*SY - iY*RX + Y*RY

+ Y*SX + 1Y*SY.
In view of the skew symmetry of R and § and the first
jemma, we have X*¥RX = X*SX = Y*RY = Y*SY = 0. There-
fore, we have for all real X, ¥Y:

(Y*sSX - X*SY) + i(X*RY - Y*RX) = 0

or

X*SY

Y*SX Y*S*X

Ii

and

Y*RX X*R*Y.

X*RY

Thus, for all real X, Y, X*(R - R*)Y = 0 and

y*(s - 3%)X = 0. Selecting X and Y as appropriate
unit vectors (0:-:0, 1, 0, «..; 0), this tells us that
R - RF=0and S - S* = 0. But R* = RT = -R and S* =
ST = -G, therefore R =8 =0 and M = 0.

Theorem 2.9.8. Let M and N be square matrices of
order n with complex elements and suppose that

(2.9.5) Z*MZ = Z*NZ
for all complex vectors Z. Then M = N.

Proof. As before, Z*Mz = Z*Nz if and only if
Z2*M - N)Z = 0.
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Note that this theorem is false if (2.9.5) holds
only for real 7.

Corollary. 32*MZ is real for all complex Z if and only
.}f,M is Hermitian.

Proof. %*MZ is real if and only if 2*MZ =
(Z*MZ)* = Z*M*Z. Hence M = M*,

Let M be a Hermitian matrix. It is called
positive definite if 2Z*MZ > 0 for all 2 # 0. It is
Called positive semidefinite if z*Mz > 0 for all Z.
It is called indefinite it there exist 2, # 0 and Z,

* *
# 0 such that ZlMZl > 0 > ZZMZZ’
Theorem 2.9.9. Let M be a Hermitian matrix of order
n with eigenvalues Al' 5560 Aﬁ. Then )

(a) M is positive definite if and only if A > Oy
k=1, 2, «.., N
(b) M is positive semidefinite if and only if
A, > 0, k=1, 2, ...y D.
k —
(¢) M is indefinite if and only if there are
integers j, k, j # k, with lj >0, Ap < 0.

Field of values. Let M designate a matrix of order n.

The Set OFf all complex numbers Z*Mz with ||z]|| = 1 is
known as the field of values of M and is designated
by ZM). ||2]] designates the Euclidean norm of 7.

et

The following facts, due to Hausdorff and
Toeglitz, are known.

(1) % (M) is a closed, bounded, connected,
Convex subset of the complex plane.

(2) The field of values is invariant under
unitary transformations:

(2.9.6) FM) = HU*MU), U = unitary.

(3) If ch M designates the convex hull of the
eigenvalues of M, then

(2.9.7) ch M < FM).

(4) If M is normal, then F(M) = ch M.
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PROBLEMS

1. Show that the field of values of a 2 x 2 matrix M
is either an ellipse (circle), a straight line
segment, or a single point. More specifically,
by Schur's theorem**, if one reduces M unitarily
to upper triangular form,

Al m

M= U*( ) U, U unitary,
0 A
2

then
(a) M is not normal if and only if m # 0.
(a') Al # XZ. (M) is the interior and
boundary of an ellipse with foci at Ay
A., length of minor axis is |m|. Length
of major axis (|m|2 + |Al - Azlz)l/z.
(@) Ay = Ay % (M) is the disk with center
at A, and radius jmj/2.
(b) M is normal (m = 0).
(b") Xl 7 Ay % (M) is the line segment
joining Al and Xz.
(b") Al = Az. (M) is the single point Al.
REFERENCES
General: Aitken, [1]; Barnett and Story; Bellman, [2]);
Browne; Eisele and Mason; Forsythe and Moler; Gant-
macher; Lancaster, [1]; MacDuffee; Marcus; Marcus and

Minc;:; Muir and Metzler; Newman; M. Pearl; Pullman;
Suprunenko and Tyshkevich; Todd; Turnbull and Aitken.

vandermonde matrices: Gautschi.

Discrete Fourier transforms: Aho, Hopcroft and Ullman;
Carlitz; Davis and Rabinowitz; Fiduccia; Flinn and
McCowan; Harmuth; Nussbaumer; Winograd; J. Pearl..

**Any square matrix is unitarily similar to an upper
triangular matrix. s

Normal Matrices 65

Hadamard matrices: Ahmed and Rao; Hall; Harmuth;
Walldis, Street, and Wallis.

Generalized inverses: Ben-Israel and Greville; Meyer.

UDV theorem: Ben-Israel and Greville; Forsythe and
Moler; Golub and Reinsch (numerical methods) .



