[image: image1.png](. \‘ B
(b) If the answer to (a) is yes, compute the equilibrium wno_umE:w\
distribution p.
(9) If X, =3, what is the eventual probability that the position of the
particle is 3?

19. In the Markov chain model of random mating with mutation in 5
population of size N, find P if o) =a, = a 0. Given an arbitrary initia]
probability distribution p(0), find p(1) and deduce that the stationary
distribution is attained in one generation. .

20. What will happen in the Markov chain model of random mating with
mutation if «; 5 0 but a, = 0?

g

Population growth I: birth and
death processes

9.1 INTRODUCTION

1t is clearly desirable that governments and some businesses be able to predict
future human population numbers. Not only are the total numbers of male
and female individuals of interest but also the numbers in certain categories
such as age groups. The subject which deals with population numbers and
movements is called demography.

Some of the data of concern to human demographers is obtained from our
filling out census forms. The type of data is exemplified by that in Tables 9.1
and 9.2.In Table 9.1 s given the total population of Australia at various times
since 1881 and Table 9.2 contains some data on births and deaths and their
rates. Notice the drastic fall in the birth rate in the last few decades compared
with an almost steady death rate.

Table 9.1
Time Population of
Australia (thousands)*
3 April 1881 22502
5 April 1891 3177.8
31 March 1901 37738
3 April 1911 44550
4 April 1921 5435.7
30 June 1933 6629.8
30 June 1947 7579.4
30 June 1954 8986.5
30 June 1961 10548.3
30 June 1966 11599.5
30 June 1971 129372
30 June 1979 144172
30 June 1981 149233

*Obtained from Cameron (1982) and Australian
Bureau of Statistics.
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Table 9.2
Annual (average) number Annual rates per thousand

Time period Births Deaths Births Deaths
1956-60 222459 86488 2259 8.78
196165 232952 95465 21.34 8.75
1966-70 240325 107263 19.95 8.90
1971-175 253438 111216 18.99 8.32

1976 227810 112662 16.37 8.10

1977 226291 108790 16.08 7.73

1978 224181 108425 15.73 7.61

Deterministic model

An accurate mathematical model for the growth of a population would be a
very useful thing to have. Thereisa substantial literature on various models, as
exemplified by the books of Bartlett (1960), Keyfitz (1968), Pollard (1973) and
Ludwig (1978). A first division of such models is into deterministic versus
stochastic ones. In the former category there are no chance effects.

Let N(f) be the population size at time ¢t >0 and assume that the initial
population size N(0) >0 is given. The number of individuals at ¢ is a non-
negative integer, but it is convenient to assume that N(r) is a differentiable
function of time. A simple differential equation for N is obtained by letting
there be bAt births and dAt deaths per individual in (¢,1 + At] where b, d =0
are the per capita birth and death rates. Then

Nt + A) = N(f) + N()bAr — N()dAt
and it follows, upon rearranging and taking the limit At —0, that

dN
G=b-aN, >0

This differential equation is called the Malthusian growth law (after Thomas
Malthus, whose essay on population appeared in 1798). Its solution is

N@) = N(0)e® 9|,

and once we specify N(0) the population size N(1) is determined for all £ > 0.
Three qualitatively different behaviours are possible, depending on the relative
magnitudes of b and d. These are illustrated in Fig. 9.1.

It is seen that

0, b<d (exponential decay)
lim N(f) ={N(0), b= d(constant population)
e o, b>d(exponential growth).

Simple Poisson processes 185
Net)

b>d

N(0)

b<d

¢

Figure 9.1 Population size as a function of time for various relative magnitudes of the
birth and death rates in the Malthusian growth model.

Bxperience tells us that the times of occurrence of births and deaths are not
predictable in real populations. Hence the population sizes N = {N(»), t =0}
constitute a random process. As observed above, the number of individuals isa
non-negative integer so N is a random process with a discrete state space
{0,1,2,...} and a continuous parameter set {t>0}. The models we will
consider do not contain very many elements of reality. They are nevertheless
interesting because they may be solved exactly and provide a starting point for
more complicated models.

9.2 SIMPLE POISSON PROCESSES

The random processes discussed in this section are of fundamental importance
even though, as will be seen, their use as population growth models is very
limited. The following process has a different parameterization from that
defined in Chapter 3.

Definition A collection of random variables ¥V = {V(®), ¢ > 0} is called a simple
Poisson process with intensity X if the following hold:

i) NO0)=0.
(ii) For any collection of times 0 <, <#; <...<?,_; <1, < oo the random
variables N(z,) — N(t,_ ), k=1,2,..., n, are mutually independent.
(iii) For any pair of times 0<¢, <t,, the random variable N(¢,) - Nty is
Poisson distributed with parameter A(t, — ;).

Condition (i) is a convenient initialization. The quantity AN, =
N(t) — N(t,_,) is the change or increment in the process in the time interval
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Pr{N(t;) — N(t) =k} = ) v

k=0,1,2,...

and in particular, choosing ¢, =0 and ¢, = > 0 we have, since N(0) =0,

(Atfe~ i

| Pr{N(e) = k} = — |

The mean and variance of N(z) are therefore

E(N(t)} = Var (N(£)) = At.

k=0,1,2

0.9

Sample paths

/Sz:.aowm a typical realization of a simple Poisson process look like? To get
some insight, let At be a very small time increment and consider the increment

AN(t) = N(t + Af) — N(2).
The probability law of this increment is

Pr{AN@® =k} = (@agreT

1—AAt+o(As), Kk
= {AAL + o(At), k
o(A), k

We see therefore that when A¢ is very small, N(t + At) is most likely to be the
same as N(7), with probability 1At that it is one larger, and there is a negligible
chance that it differs by more than one from N(z). We may conclude that
mmEv_.m paths are right-continuous step functions with discontinuities of
Bmmmﬁcaw unity —see Fig. 9.2. Note that equation (9.2) can be used as a
ammEnos and the probability law of the increments derived from it — see
Exercise 2.

The simple womwmos process is called simple because all of its jumps have
Wﬁ. same Bmmz:c% - MEQ in the above case. This contrasts with compound

oisson processes in which jum i
s o Jumps may be any of several magnitudes (see for

,F n&.mﬁ‘a the .wommmo: process to a growth model we imagine that each time a
new .Ea:qm:m_ is born, N(r) jumps up by unity. Thus N(t) records the number
of births in (0,¢], ie. up to and including time ¢ and {N(z), t >0} may be
regarded as a birth process. If in Fig. 9.2 we place a cross on ﬁmm t-axis at each

0
1
! ©.2)

N(t)

= N W Hp OO NX

1

o

Figure 9.2 Two representative sample paths for a simple Poisson process. The mean
value function At is also indicated.

jump of N(f) we obtain a collection of points. Thus there is a close relationship
between the simple Poisson processes of this section and the Poisson point
processes of Section 3.4. This is elaborated on in the exercises.

Poisson processes, though clearly limited as population growth models, find
many other applications. Some were mentioned in Chapter 3. Furthermore
they may result when several sparse point processes, not themselves Poisson,
are pooled together. This makes them useful in diverse areas (Tuckwell, 1981).

93 MARKOV CHAINS IN CONTINUOUS TIME

In Chapter 8 we encountered Markov random processes which take on
discrete values and have a discrete parameter set. Markov processes of that
kind are called Markov chains. However, Markov processes in continuous
time and with discrete state space are also called Markov chains. Usually we
mention that they have continuous parameter set when we refer to them in
order to distinguish them from the former kind of process. If X = {X(1), t = 0}
is such a process, the Markov property may be written, with to <f; <
P
Pr{X(t,) = Sul X(ta-1) = Su-1 X(tyeo) = Sne2s-- > X(t1) =51, X (o) = S0}
=Pr{X(ts) = 5,/ X(ts—1) = Su-1}»

where {$g,5y,...,5,} is any set in the state space of the process. The quantities

P Lol Sne 1o B 1) = PEX () = 8,1 Xty ) = 821 1,01y <ty <20, (93)

are called the transition probabilities of the continuous time Markoy chain. If
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the transition probabilities depend only on time differences they are said to be
stationary and the corresponding process is called temporally homogeneons,
Simple Poisson processes are examples of continuous time Markov chains
with stationary transition probabilities which may be written
plk, tlf, sy =Pr {N(z) = k| N(s) = j}
(e — ) iemie2
= ’
where 0 < s < r and j < k are two non-negative integers. Further examples are
discussed in the following sections.

k—j=0,12,...

94 THE YULE PROCESS

Among the deficiencies of the Poisson process as a model for the growth of
populations is that no matter how large the existing population, the chance of
a birth in any time interval is always the same. The simple birth process we are
about to describe was proposed by Yule (1924) as a model for the appearance
of new species. Its applicability as a population growth model is limited except
perhaps in a few cases such as algae undergoing relatively unchecked
reproduction in large lakes (Pielou, 1969). The Yule process is sometimes
called the Yule—Furry Process due to a related application in physics by Furry
(1937). Again we denote by N(f) the number of individuals in existence at time L.

Assumptions on births to individuals

We begin with the following assumptions concerning the births which occur to
the individual members of the population.

(i) Births occur to any individual independently of those to any other
individual.

(ii) In any small time interval of length At, the probability of an offspring
to any individual is 2At+ o(A#), the probability of no offspring is
1— At + o(At) and the probability of more than one offspring is o(Af)

Notice that there are no deaths — individuals persist indefinitely and are
forever capable of producing offspring.

Population birth probabilities

Suppose that there are known to be n individuals at time ¢ so that N O =n.
Under the above assumptions (i) and (ii), the number of births in the whole
population in (1, f + Ar] is a binomial random variable with parameters n and
AAt. We can drop reference to o(Ar) as such terms eventually make no
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contribution. Then
Pr{kbirthsin (t,t + At]|N(t) = n}
= M (GAOKL — A8, k=0,1,...,n.

If k=0 we have
Pr{0 births in (¢, ¢+ A][N(@) =n} = (1 — 2A8)"
: = [ — AnAt + o(At), 9.4)
whereas for k=1,
Pr{1 birth in (t,# + Ac}|N(t) = n} = AnAr(l — AAr)" ™!
= AnAt + o(At). 9.5
Also, for k=2 we find

Pr {k births in (5, ¢ + Af]|N(H) = n} = o(A2). ©6)

Differential-difference equations satisfied by the transition probabilities
We consider a continuous time Markov chain N = {N(z), ¢ > 0} with initial
value
N(O)=ny>0,
subject to the evolutionary laws (9.4)~(9.6). Define the transition probabilities
pA8)=Pr {N(t)=n|N(0) = no}, ho>0, >0,

and note that these are stationary. Our aim is first to find equations governing
the evolution in time of p, and then to solve them.

To obtain a differential equation for p, we seck a Ho_.wﬁ.ﬁs between p,(f) and
Pult + AL). IE N(t + At) = n > n, then, ignoring the possibility of more than one
birth, we must have

n and no births in (t,t + At],

o= n—1 and one birth in (¢, t + At].

Dropping reference to the initial state, the law of total probability gives

Pr {N(t + Af) =n} = Pr {N(t + At) = n|N(t) = n}
x Pr{N(t)=n} +Pr{N(t+A)=n|N(t)=n—1}
x Pr{N({t)=n—1}. ©.7)
In symbols this is written, using (9.4) and (5.5),
palt + At) = (1 — AnAfp, () + Aln — D)Atp,_ () + o(A1), n>ny.
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Taking the limit At —0 we obtain the required equation
@H»Q:\Cmv — Ap,] =ng+1
4 1 ] b o+ Ling+2,... 9.8)

since o(At)/At -0 as At — 0 by definition. When n = n, there is no possibility
that the population was ny — 1 so (9.7) becomes

Pr{N(t + At) = no} = Pr {N(t + At) = no| N(t) = no} Pr {N(£) = no}

which leads to

©9)

Initial conditions

Equations (9.8) and (9.9) are first-order differential equations in time. To solve
them the values of p,(0) are needed and since an initial population of n,

individuals was assumed, we have
p0) =

1, n=ng,
0, n>n,.

Solutions of the differential-difference equations
The solution of (9.9) with initial value unity is

Pueft) = &%
>E.maa with this knowledge of p,, we can now find p, . ;. The differential
equation (9.8) is, with n=ny + 1,
APy s
de
This will be recognized as a linear first-order differential equation in

mﬁmsam& form (see any first-year calculus text). Its integrating factor is e+ 1*
and in Exercise 10 it is shown that

Puo+1(8) = nge ™ (1 — ™). 9.11)

EmSmm obtained p,;+ 1 we can solve the equation for p,, ., etc. In general
we obtain for the probability that there have been a total number of k births
at i,

+ Ay + D)Pug+ 1 = APy (9.10)

ne+k—1

—Anot(] _ =AY
no—1 e (1 —e™ %)

Pro+ill) = k=0,1,2,..., (9.12)

as will be verified in Exercise 11.

k|

It can be seen that p, (f) is an exponentially decaying function of time. If we
define T, as the time of the first birth and observe that p,(t) is the probability of
no birth in (0,£] we get

Pi{T, >t} =¢ ",

or equivalently
Pr{T <t} =1—e ™.

Hence T, is exponentially distributed and has mean

1
E(T)= o’

We notice that the larger ng is, the faster does p,(f) decay towards zero — as
it must because the larger the population, the greater the chance for a birth.
Note also that p,(t) is never zero for t < oo. Thus there is always a non-zero
probability that the population will remain unchanged in any finite time
interval.

A plot of p,,(t) versus t when 2 =ng = 1isshownin Fig. 9.3. Also shown are
the graphs of p,,+(f) and Pug2(2) which rise from zero to achieve maxima
before declining to zero at t=co. In Exercise 12 it is shown that for these
parameter values p; + Jt) has a maximum at t= In(1 + k).

1 2 3 4 t

Figure 9.3 Probabilities of no births, one birth and two births as functions of time in
the Yule process with 1= 1 and initially n, = 1 individual.
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For the simple birth process described in the previous maonos we will show
that the mean population size u(f) = E(N()] N(0) = n,) at time ¢ is

() = noe™

This is the same as the Malthusian growth law with no deaths and a birth rate
b=2A4

Proof By definition
©

wey= 3. npdo).

n=ng

Differentiate to get

I n—.
At w5 dt a=teer de

Substituting from the differential and differential-difference equations (9.9)
and (9.8),

o d, dp, > dp,
du M=M=I=owo+ D P

B nip i S L=y —np,)
dt n=ng+1

The coefficient of p,_, is now rewritten to contain a perfect square:

du 2 - 1y
= g, F A Y, (n— 1Py
dt n=hp+1
®
+4 Y (—bp,,—4 M W2,
- n=no+1

Put m = n— 1 in the first two sums on the right and get
du S 2 WU 2, |42 m mp,
L= —nd = n*p, ) .
dt A Anaao + »sM\‘ai b n=nmp+1 W

The terms in brackets cancel to leave the first-order differential equation
dp . &
iy | =y, 9.13)
5= sMg Py = A
which has the initial condition
#0) = ng. (9.14)

Integrating (9.13) and using (9.14) gives the required result. Similarly, .Eo
second moment of N(£) may be found and hence the variance. ﬂosgmr itis
quicker to use the properties of the negative binomial distribution.

Mean and variance from the negative binomial distribution

Consider a sequence of Bernoulli trials with probability p of success and
probability g = 1 — p of failure at each trial. Let the random variable X, be the

number of trials up to and including the rth success, » = 1, 2,....Then it is
easily seen that the distribution of X, is given by
k—1
Pri{X,=k}= 1 g, k=rr+1,r+2,... 9.15)

the smallest possible value of X, being r since there must be at least r trials to

obtain r successes. The mean and variance of X, are found to be (see
Exercise 13),

Bx)=",
p
<mlu@ﬂm.
We now put j =n, + k in (9.12) to get
—1\ _. N
Pri{N@=j} = ML P (P U T SRR [
0

This is seen to be a negative binomial distribution as in (9.15) with parameters

=N,
p=e ¥

Thus we quickly see that the mean and variance of the population in the Yule
process are

at

,q=1—e”

E(N®) =nye®
Var (N(1)) = ng(1 — e~ #)e?¥

Approximations
() Large t For large t the variance is asymptotically

Var(N(®) ~ nge?*

t=~w
and the standard deviation of the population is
o(t) ~ /nge™

Thus the mean and standard deviation grow, as indicated in Fig. 9.4, and
eventually their ratio is constant.
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Figure 9.4 Mean and standard deviation of the population as functions of time in a
Yule process.

(ii) Largen, Let ussuppose that there is just one individual to start with. The
probability that there is still only one individual at time ¢, an event we will call a
“failure’, is

Pr {population is unchanged at t} = ¢~ * = Pr {‘failure’}.

Now, if there are ny > 1 individuals to start with, since individuals act
independently,

Pr {population is unchanged at t} = Pr {n, failures in n, trials}
= (e~ My = g Mot

this being an exact result. Also, when no = 1 let the mean and variance of the
population be denoted by g, and ¢ which are given by

= mfvm.w = mufa — m\fv\

When n, > 1 we may at any time divide the population into n, groups, those
in each group being descendants of one of the original individuals. The number
in each group is a random variable and it follows that the population at time ¢
is the sum of n, independent and identically distributed random variables each
having mean g, and variance o}. By the central limit theorem we see that for
large n, and any ¢, the random variable N(t) is approximately normal with
mean ngu, and variance nyoi. Hence we may estimate with reasonable
accuracy the probability that the population lies within prescribed limits (see
exercises).

9.6 A SIMPLE DEATH PROCESS

In this rather macabre continuous time Markov chain, individuals persist only
until they die and there are no replacements. The assumptions are similar to

Nwmaf\ fu S \:v\«w\&m&x\, Ao Nsm:m

_
!
M

... AA4.J.\{.EE:E%c;c.z,c:.:cxcnc:
individual, if still alive at time ¢, is removed in (, ¢ + Ar] with probability
UAL + ofAt). Again we are interested in finding the transition probabilities

Pt} =Pt {N(t) = n|N(©0) = no}, 2,1,0.

We could proceed via differential-difference equations for p, but there is a
more expeditious method.

= "Hg, g —

The case of one individual

Let us assume n, = 1. Now p,(¢) is the probability that this single individual is
still alive at ¢ and we see that

it + A8 = py(B1— uAl) + o(AD) ©.16)

since 1 — pAt is the probability that the individual did not die in (¢, £ + Af].
From (9.16) it quickly follows that

dp, _

Pramiatzt t>0.

The solution with initial value p,(0) = 1 is just

The initial population size is M0)=n, > 1

If there are n, individuals at ¢t = 0, the number alive at ¢ is a binomial random
variable with parameters #, and p,(¢). Therefore we have immediately

e M1 — gyl n=nen,—1,...,1,0.

Also
E(N(t)) =noe™ ™,
which corresponds to a Malthusian growth law with d =y and b =0, and

Var(N(@®)) =nge #(1 —e™ ).

Extinction

In this pure death process the population either remains constant or it
decreases. It may eventually reach zero in which case we say that the

population has gone extinct. The probability that the population is extinct at
time ¢ is

Pr{N{®=0|N(0) =g} =(1 — e ¥y° 51 as i co.
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Figure 9.5 Probabilities that the population is extinct at ¢, versus ¢ for various initial
populations with ¢ =0.5.

Thus extinction is inevitable in this model. In Fig. 9.5 are shown the
probabilities of extinction versus time for various initial populations.

9.7 SIMPLE BIRTH AND DEATH PROCESS

We now combine the ideas of the Yule process and the simple death process of
the previous section. Let there be 1, individuals initially and N(t) at time ¢. In
(t,t+ Ar] an individual has an offspring with probability AAL + o(At) and
dies with probability uAt + o(Ar). Using the same kind of reasoning as in
Section 9.4 for the population birth probabilities we find that

Pr{one birth in (¢,t + Af]|N(t) = n} = AnAt + o(At)

Pr{one death in (5, + A(]|N() = n} = unAt + o(A)

Pr{no change in population size in (1,7 + At]|N(t)=n}

=1—(A+ wnAt + o(As).
The ways to obtain a population size n at time ¢ + At are, if n 1,
N()=n— 1 and one birth in (t,t + Ar]
N(t)=n and no change in (¢, ¢ + Ar]
N()=n+1 and one death in (¢,t + At].
Hence

Pt + At)=p,_1(A(n — DAL + p, (O] — (A + wnAr]
+ Por 1 (B + DAL + o(As).
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It quickly follows that

N R TN O MBS R X
If n =0 we have simply
dpo _
dr = BP1s 9.18)
and the initial conditions are
1, n=ng,
0) =
2il0) 0, n#n,.

The system of equations (9.17) and (9.18) cannot be solved recursively as
could the equations for the simple birth (Yule) process as there is no place to
get started.

The probability generating function of N(¥)
By definition, the probability generating function of N(¢) is
#s0= 3, pi0)s"

This can be shown (see Exercise 16) to satisfy the first-order partial
differential equation

a9 a¢
L =(is— — 1= 1
5 = s —wls—1) % (9.19)
which is to be solved with the initial condition
d(s, 0) = s™. 9.20)

It may be shown (see, for example, Pollard, 1973; Bailey, 1964) and it will be
verified in Exercise 17, that the solution of (9.19) and (9.20) is

U= yls)e”Grmiyme

T v ) - ©21)

Pls, 1) =
where Js—p

o ©.22)

W) =
The probability of extinction

A few sample paths of the simple birth and death process are shown in Fig. 9.6.
The state space is the set of all non-negative integers {0, 1,2, .. .} and the state 0

) ?)
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Figure 9.6 Two representative sample paths of a birth and death process. Here
N(0) =6 and one path is shown on which the population goes extinct.

is clearly absorbing. A sample path may terminate at 0 which corresponds to
extinction of the population.

‘We can easily find the probability that extinction has occurred at or before
time ¢ from the probability generating function. This is just

Pr{N(t) = 0| N(0) = no} = po(t) = $(0,1).
From (9.22) we have y(0) =  and thence, from (9.21),

tﬁ\mlﬁwt:v o )
G ) AFR ©.23)

#(0,1)= A

When 1 = u the following expression is obtained by taking the appropriate
limit in (9.23):

»Né
H »H. @.NA
@au Af+ﬁvu t Av

In the limit 1 — oo, $(0,1) approaches the probability that the population
ever goes extinct. Denote this quantity by p.,,. Then from (9.23) and (9.24) we
find

1, Ay

Pext = PN
[ Ax
() =

Thus extinction is inevitable if the probability of a birth to any individual is
less than or equal to the probability of death in any small time interval. It may
seem surprising that extinction is certain when 2 = . To understand this we
note that 0 is an absorbing barrier which is always a finite distance from the

|

value of N(¢). The situation is similar in the random walk on [0, 1,2,...) with
p =g where we found that absorption at 0 is certain (see Section 7.6).

In the cases 4 < p where extinction is certain, we may define the random
variable T which is the extinction time. Evidently the distribution function of
Tis

Pr{T <t} =¢(0.9

since this is the probability that extinction occurs at or before z. When 1 = u
the expected extinction time is infinite (see Exercise 18) but it is finite when
A< p. When 4>y we may still talk of the random variable T, the extinction
time. However, we then have

Pr{F<ow}= Amvs»

so we must also have

Pr{T=co}=1— Amv

Clearly in these cases T has no finite moments and, because its probability
mass is not all concentrated on (0, c0) we say it is not a ‘proper’ random
variable.

98 MEAN AND VARIANCE FOR THE BIRTH
AND DEATH PROCESS

The expected number of individuals at time ¢ is

© @

m(t) = EIN@INQ) =nol = ¥, np, )= 3, np,(0).

n=1

n=0
We will find a differential equation for m(t). We have

dm 2 dp,
dr ._MH "t
and on substituting from the differential-difference equation (9.17) we get
dm =
& =, A= Dpams = (ot o+ i+ Dpa]

which rearranges to

dm @ ® @
AL = p s+ M&T:PLLT.E X 7,
n= n=1

n=1

+u M ?.TC»@:.:\E M~A=+Ch=+f

n=1
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In the first three sums here, terms from n, n', n =2 and onward cancel and
leave — (L + wp; + 4p, = — pupy. Thus

dm L&, S
Go= Mt > AP Y, WPy
t n=0 =2

== 3 np,

or simply
dm

@ s (A —pwym.

With initial condition m(0) = n, the solution is

This is the same as the deterministic result (Malthusian law) of Section 9.1 with
the birth rate b replaced by 1 and the death rate d replaced by u.
The second moment of N(t),

©

M) = Mo n2pt)

can be shown to satisfy

% =21 — WM + (A + M, M©O)=ny? ©.25)

as will be seen in Exercise 19. The variance of the population in the birth and
death process may then be shown to be

<m:23_39n§vn :omM‘w%é w;éf: J im?

In the special case 4= 4,
Var (N(t)| N(0) = ng) = 2Ant. .

An alternative method of finding the moments of N(z) is to use the moment
generating function (see Exercise 20).

i

Birth and death processes have recently become very important in studies ol
how ions move across cell membranes. In the simplest model there are just two
states for an ion channel — open and closed. The channel stays in each state for
an exponentially distributed time before making a transition to the other state.
It is hoped that a study of such continuous time Markov chain models will
elucidate the mechanisms by which molecules of the membrane interact with
various drugs. For details of this fascinating application see Colquhoun and
Hawkes (1977), Hille (1984) and Tuckwell (1988).
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EXERCISES

1. Using the birth and death rates for 1966 given in Table 9.2 and the 1966
population of Australia given in Table 9.1, estimate the 1971 population.
Compare with the actual population in 1971. Is the discrepancy in the
direction you would expect? Why?

2. In a simple Poisson process, let p,() = Pr{N(®) =n|N(0) = 0}. Use the

relations
1 — 2At + o(At), k=0,
Pr{AN(t) =k} =< AAt + o(At), k=1,
o(At), k>2,




