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Figure 3.5 A histogram of waiting times between spontaneously occurring small
voltage changes in a muscle cell due to activity in a neighbouring nerve cell. From Fatt
and Katz (1952).

between such events. According to the Poisson assumption, the waiting time
should have an exponential density which is seen to be a good approximation
to the observed data, This may also be rendered more precise with a y2
goodness of fit test. For further details see Van der Kloot et al. (1975),

3.6 POISSON POINT PROCESSES IN TWO DIMENSIONS

Instead of considering random points on the line we may consider random
points in the plane R%={(x, )| — o <X < 0, ~ 00 <y<co}, or subsets
thereof.

Definition A point process NN is an homogeneous Poisson point process in

the plane with intensity A if:

(i) for any subset 4 of RZ, the number of points N(A) occurring in 4 is a Poisson
random variable with parameter 1|4/, where | 4] is the area of 4;

(ii) for any collection of disjoint subsets of R%, A, 4;...s A, the random
variables {V(4,),k =1,2,...,n} are mutually independent.

Note that the number of points in [0, x] x [0, y] is a Poisson random variable

with parameter Axy. Putting x = y = 1 we find that the number of points in the

unit square is Poisson with parameter 4. Hence 4 is the expected number of

points per unit area,

Application to ecological patterns

Ecologists are interested in the spatial distributions of plants and animals (see
for example MacArthur and Connell, 1966). Three of the situations of interest

are:
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. Figure 3.6 Some representative spatial patterns of organisms: (a) random, (b) clumping
“in groups, (c) preferred location, (d) regular.

(i) the organisms are distributed randomly;

i) the otganisms have preferred locations in the sense that they tend to occur
in groups (ie. are clustered or clumped) or in some regions more
frequently than others;

i) the organisms are distributed in a regular fashion in the sense that the

distances between them and their nearest neighbours tend to be constant

These situations are illustrated in Fig, 3.6. We note that clumping indicates
cooperation between organisms. The kind of spacing shown in Fig. 3.6(d
indicates competition as the organisms tend to maintain a certain distance
between themselves and their neighbours.

An important reason for analysing the underlying pattern is that if it is
known, the total population may be estimated from a study of the numbers in 2

small region. This is of particular importance in the forest industry.

. The hypothesis of randomness leads naturally, by the same kind of
~argument as in Section 3.5, to a Poisson point process in the plane. Ecologists
refer to this as a Poisson forest. Under the assumption of a Poisson forest we
“may derive the probability density function of the distance from one organism
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(e.g. tree) to its nearest neighbour. We may use this density to test the
hypothesis of randomness. We first note the following resuit.

Theorem 3.6 In 2 Poisson forest, the distance R, from an arbitrary fixed point
to the nearest event has the probability density

fr(P)=20mrei ™ p>0. (3.11)

Proof We will have R > if and only if there are no events in the circle of
radius r with centre at the fixed point under consideration. Such a circle has
area 7r%, so from the definition of a Poisson point process in the plane, the
number of events inside the circle is a Poisson random variable with mean

Anr?. This gives
Pr{R; >r}=e" %"

We must then have
d

Sul) =g (1=e)

which leads to (3.11) as required.

We may also prove that the distance from an event to its nearest neighbour
in a Poisson forest has the density given by (3.11). It is left as an exercise to
prove the following result.

Theorem 3.7 In a Poisson forest the distance R, to the kth nearest event has the
density '

2rdr(Anrd)e e

Jrd)= G—1)

,  r>0,  k=12,...

Estimating the number of trees in a forest

If one is going to estimate the number of trees in a forest, it must first be
ensured that the assumed probability model is valid. The obvious hypothesis
to begin with is that one is dealing with a Poisson process in the plane. A few
methods of testing this hypothesis and a method of estimating A are now
outlined. For some further references see Patil et al. (1971) and Heltshe and
Ritchey (1984). An actual data set is shown in Fig. 3.7.

Method 1 — Distance measurements
Under the assumption of a Poisson forest the point-nearest tree or tree-
nearest tree distance has the density fg, given in (3.11). The actual measure-
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Figure 3.7 Locations of trees in Lansing Woods. Smaller dots represent oaks, larger
dots reptesent hickories and maples. The data are analysed in Exercise 22, Reproduced
with permission from Clayton (1984).

ments of such distances may be collected into a histogram or empirical
distribution function. A goodness of fit test such as x* (see Chapter 1) or
Kolmogorov-Smirnoy (see for example Hoel, 1971; or Afifi and Azen, 1979)
- can be carried out. Note that edge effects must be minimized since the density
‘of R; was obtained on the basis of an infinite forest.
“" Assuming a Poisson forest the parameter A may be estimated as follows. Let
{X,i=1,2,...,n} be a random sample for the random variable with the
“density (3.11). Then it is shown in Exercise 21 that an unbiased estimator (sce





[image: image3.png]Exercise 6) of 1/A is

An estimate of 1 is thus made and hence, if the total area 4 is known, the total
number of trees may be estimated as 4. For further details see Diggle (1975,
1983), Ripley (1981) and Upton and Fingleton (1985).

Method 2—Counting
Another method of testing the hypothesis of a Poisson forest is to subdivide
the area of interest into N equal smaller areas called cells. The numbers N, of
cells containing k plants can be compared using a y2-test with the expected
numbers under the Poisson assumption using (3.10), with A= the mean
number of plants per cell.

Extensions to three and four dimensions

Suppose objects are randomly distributed throughout a 3-dimensional region.
The above concepts may be extended by defining a Poisson point process in
R, Here, if A is a subset of R®, the number of objects in 4 is a Poisson random
variable with parameter 4| A|, where 4 is the mean number of objects per unit
volume and |4| is the volume of A. Such a point process will be useful in
describing distributions of organisms in the ocean or the earth’s atmosphere,
distributions of certain rocks in the earth’s crust and of objects in space.
Similarly, a Poisson point process may be defined on subsets of R* with a view
to describing random events in space—time.

37 COMPOUND POISSON RANDOM VARIABLES

Let X, k=1,2,... be independent identically distributed random variables
and let N be a non-negative integer-valued random variable, independent of
the X,. Then we may form the following sum:

Sy=X;+ X+ + Xy ¢.12)

where the number of terms is determined by the value of N. Thus Syis a
random sum of random variables: we take Sy to be zero if N =0, If N isa
Poisson random variable, Sy is called a compound Poisson random variable.
The mean and variance of Sy are then as follows.

Theorem 3.8 Let E(X;)=g and Var(X;)=o? |p|<c0,0<0. If Nis

wcmmmg with parameter 2, then Sy defined by (3.12) has mean and variance

E(Sy) = Ap
Var(Sy) =42+ 02,

proof The law of total probability applied to expectations (see p. 8) gives
ESy= Y ESyIN= K)Pr{N =k}.

k=0

,, t conditioned on N =k, there are k terms in (3.12) so E(Sy|N = ky=ky.
hus . .
2]
ESw= 3 wkPr{N=Fk}
¥=o

= pE(N)
=Ap.

‘Similarly,

8

E(S3)= Y E(S}N=kPr{N=k}

k=0

= 3 [Var(SylN =K) + E¥SylN =R]Pr{N =k}

8

k=0
= § (ho*+ k) Pr{N =K}
k=0
= E(N) + 2E(N?)
= g?1+ p*[Var (N) + E¥N)]
=02+ p*A+ 3.

he result follows since Var (Sy) = E(S}) — A2u*

Example The number of seeds (N} produced by a certain kind of planthas a
Poisson distribution with parameter A. Each seed, independently of how many
there are, has probability p of forming into a developed plant. Find the mean
and variance of the number of developed plants (ignoring the parent).

Solution Let X, =1 if the kth seed develops into a plant and let X, =0if it
doesn’t, Then the X, are ii.d. Bernoulli random variables with
Pr{X,=1}=p=1-Pr{X,=0}

and
EX)=p

Var(X,) =p(1—p)
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The number of developed plants is
Sy=X;+X,+ -+ Xy

which is therefore a compound Poisson random variable. By Theorem 3.8,
with = p and o2 = p(1 ~ p) we find

E(Sy)=1p
Var (Sy) = Ap* +p(1 —p)
= Ap.

As might be suspected from these results, in this example Sy is itself a
Poisson random variable with parameter Ap, This can be readily shown using
generating functions — see Section 10.4.

38 THE DELTA FUNCTION

We will consider an interesting neurophysiological application of compound
Poisson random variables in the next section. Before doing so we find it
convenient to introduce the delta function. This was first employed in
quantum mechanics by the celebrated theoretical physicist P.A.M. Dirac, but

has since found application in many areas.
Let X, be a random variable which is uniformly distributed on (xo —&/2,

Xo + ¢/2). Then its distribution function is
0, X< Xo—8/2,
Fy()=Pr{X,<x}= WT —(o—52]  Ix—%ol <82,
L, x2xe+e?2
= H (X — Xo)

x -e/2 X
0

Figure 3.3

TIEe ueltd wuneuvll v

“The density of X, is
Y fifs Ix—xol<e/2,
Fel)= ax gmo‘ otherwise.
= §(x — o).

he functions H, and 8, are sketched in Fig. 3.8.

As &0, Hx — x,) approaches the unit step function, H(x— xo) and
 (x — xo) approaches what is called a delta function, 8(x —~ xo). In the limit as
0, 8, becomes ‘infinitely large on an infinitesimally small interval’ and zero
verywhere clse. We always have for all >0,

@
Byfx — xg)dx = 1.
-
We say that the limiting object o(x — xg) is a delta fun
‘concentrated at xo.

ction or a unit mass

Substitution property
Let f be an arbitrary function which is continuous on (x, — &2, Xo +&/2)-
Consider the integrals

I= .as @B x = oy dx = .&w 63 dx. .,, gl e
When ¢ is very small,
I 22/ (50) = 50
We thus obtain the substitution property of the delta function:
A_yss F()8(x — x0) dx = f(xo)- (3.13)

Technically this relation is used to define the delta function in the theory of
generalized functions (see for example Griffel, 1985). With f(x)=1, (3.13)

becomes

.ﬂa S(x —xg)dx =1

—

Furthermore, since 6(x) =0 for x #0,
0, X < Xo,
I, X Z Xo.

,‘.x 8(x' — %) dx’ = H(x — xo) = %
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Figure 3.9

Thus we may informally regard d(x — x,) as the derivative of the unit step
function H(x — x,). Thus it may be viewed as the density of the constant Xg.

Probability density of discrete random variables

Let X be a discrete random variable with Pr(X =1)=1—Pr(X =0)= .
Then the probability density of X is written

Jalx)= (1~ p)3(x) + pd(x — 1).
This gives the correct distribution function for X because

Fxx)=Pr(X<x)= .ﬁ Sx(x)dx’' =(1 - pH(x) + pH(x~ 1)

0, x<0,
=<41-p, 0sx<],
1, xz1,

as is sketched in Fig. 3.9,
Similarly, the probability density of a Poisson random variable with
parameter A is given by
A

fx(X)=e & ﬁ&x ~k).

3.9 AN APPLICATION IN NEUROBIOLOGY

In Section 3.5 we mentioned the small voltage changes which occur sponta-
neously at nerve-muscle junctions. Their arrival times were found to be well
described by a Poisson point process in time, Here we are concerned with their
magnitudes. Figure 3.10 depicts the anatomical arrangement at the nerve—
muscle junction. Each cross represents a potentially active site.

The small spontaneous voltage changes have amplitudes whose histogram is
fitted to a normal density —see Fig. 3.11. When a merve impulse, having
travelled out from the spinal cord, enters the junction it elicits a much bigger
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igure 3.11 Histogram of small spontaneous voltage changes and fitted normal
lensity, From Martin (1977). Figures 3.11-3.13 reproduced with permission of the
American Physiological Society and the author,
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response whose amplitude we will call V. It was hypothesized that the large
response was composed of many unit responses, the latter corresponding to
the spontaneous activity.

We assume that the unit responses are X 15X 3,... and that these are normal
with mean u and variance o2, A large response consists of a random number &
of the unit responses, If N =0, there is no response at all, Thus

VX +Xy+ o4 Xy,

which is a random sum of random variables. A natural choice for Nis a
binomial random variable with parameters n and p where n is the number of
potentially active sites and p is the probability that any site is activated.
However, the assumption is usually made that N is Poisson. This is based on
the Poisson approximation to the binomial and the fact that a Poisson
distribution is characterized by a single parameter. Hence V is a compound
Poisson random variable. The probability density of ¥ is then found as
follows:

here (v) is a delta function concentrated at the origin. Hence the required
ensity is -

S =e 50+ 3 po) | (.14

k=1

i~ The terms in the expansion of the density of V are shown in Em. u.. 12. Hwa
density of ¥ is shown in Fig. 3.13 along with the empirical &mﬁzvaso?
Excellent agreement is found between theory and experiment, providing a

)
Pr{Ve(,v+do)} = »M Pr{Vewv+do)|N =k} Pr{N =k}
=0
\ alidation of the ‘quantum hypothesis’. For further details see Martin (1977).
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Figure 3.13 Histogram of responses. The curve is the density for E.m om_svo:_a
Poisson distribution, the column at 0 corresponding to the delta function in (3.14).

Amplitude of end-piate potentials {(mV)

Figure 3,12 Decomposition of the compound Poisson distribution. The curve marked
I corresponds to py, the curve marked I to P2 ete, in (3.14),




