Chapter I

INTRODUCTION

Traditionally, engineers have used formulas or “laws” to de-
scribe the behavior of physical systems. Although all physical
systems ‘have randomness in their behavior, most engineering
analysis treats systems as though they were deterministic (non-
random). This practice can be very acceptable where the par-
ticles are very small and the populations of particles are very
large, such as when dealing with gases or electric currents.
When, however, the populations become relatively small and
the particles relatively large so that the observer finds himself
measuring the behavior of individual particles, attention to
random properties becomes all-important, Such is the situation
with automobile traffic.

This monograph deals with some of the relationships which
have been found useful in handling the random properties of
traffic. One principal tool is the Poisson distribution, named
after Simeon Denis Poisson, a French mathematician who car-
ried out many of the early studies on probability. As will be
seen, however, the Poisson distribution has certain limitations
in its application, and other distributions may provide greater
accuracy in certain cases.

NATURE OF THE PoissoN DISTRIBUTION

When events of a given group occur in discrete degrees (heads
or tails, 1 to 6 on the face of a die, etc.) the possibility of occur-
rence of a particular event in a specified number of trials may
be described by the Bernoulli or binomial distribution (See
Appendices B and C).

As an example, let us consider an experiment consisting of
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five successive drawings of a ball from an urn containing uni-
formly mixed black and white balls, with the drawn ball being
returned to the urn after each drawing. Of the five drawings
which comprise a single experiment, let x be the number which
produced black balls, i.e., the number of black balls in a sam-
ple of p where each drawing had a uniform probability. Thus
x can equal 0, 1, 2, §, 4, OF 5. Let P(x) be the probability that
in a given experiment the number of black balls would be
exactly x. If p is the probability that 2 particular drawing will
yield a black ball, and q (=1 —P) is the probability that a
particular drawing yields a white ball, then

P(x) = Czp*q*~*
where C? is the number of combinations of 5 things taken x
at a time. It can be seen that in the above example p, the prob-
ability that a single drawing yields a black ball, is equal to the
percentage (written as a decimal fraction) of black balls in the
urn. With the ball being replaced after each drawing p will
remain constant from drawing to drawing.
The experiment just described is an example of the “Ber-
" poulli” or “binomial” distribution in which P(x), the prob-
ability of exactly x successes out of n trials of an event where
the probability of success remains constant from event to
event, is given by

“TQG = O.mﬁn&uln

If the number of items in the sample n, becomes very large
while the product pn = m is a finite constant, the binomial
distribution approaches the Poisson distribution as a limit. This
implies that the probability of occurrence, p, becomes very small.

mre—®
lim P
EE ) x!

pn =1m

where e is the Napierian base of logarithms. (¢ = 2.7 1828 .. )
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The derivation of the Poisson distribution as a limiting case
of the binomial distribution is given in Appendix D. (The Pois-
son distribution can be derived independently of the binomial
distribution by more advanced concepts. See Appendix D or
Fry (1). .

The mathematical conditions of an infinite number of trials
and an infinitesimal probability are never achieved in practical
problems. Nevertheless, the Poisson distribution is useful as
approximating the binomial distribution under appropriate
conditions.*

For such practical purposes, then, the Poisson distribution
may be stated as follows:

If in a given experiment the number of opportunities for an
event to occur is large (e.g,, n 2= 50)
and
If the probability that a particular event occurs is small (e.g.,
psol)
and

If the average number of times the event occurs has a finite value,
m (m = np)
m¥e—2n

Then P(x)= i

wherex=0,1,2,...

In this statement of the Poisson distribution an experiment
may consist of such things as:

a. Observing the number of micro-organisms in a standard sam-
ple of blood, x representing the number of micro-organisms in
any one sample.

b. Observing the number of alpha particles emitted during each
successive interval of t seconds. The number of such intervals
will be j, and %y, X, . . . %y will be the number of particles
during the 1st, 2nd, . , . jth intervals.

It may also be noted that under appropriate conditions the binomial dis-
tribution may be approximated by the normal distribution.



6 POISSON AND TRAFFIC

. Observing the number of blowholes in each of k castings, X
representing the number of holes in any one casting.

4. Observing the number of cars passing a given point during
each go-second period, i representing the number of periods
observed and x representing the number of cars in any 30
second period. :

H1sTORICAL BACKGROUND or PoissoN DISTRIBUTION

The first record of the use of the Poisson distribution to treat
populations having the properties described is attributed to
Bortkiewicz who studied the frequency of death due to the
“kick of a horse” among the members of ten Prussian cavalry
corps during a period of 20 years (2). A summary of his study
is shown in Example 1, which compares actual and computed
frequencies.

Example 1

Tug NUMBER OF MEN IN TeN PrussiaN CAVALRY Cores KILLED
By A FORsE KICK IN THE TWENTY YEARs 18751894

Theoretical number
of corpsyears during
which the given
number of deaths

Observed number of
corps-years during

Number of which the given occurred (as computed
deaths per number of deaths from the Poisson
corps-year occurred. distribution)

] 109 10857

1 65 66.3

2 22 20.2

3 3 4.1

4 1 0.6

g and over o 0.1

Some of the earliest engineering problems treated by the
Poisson distribution were telephone switching problems. The
following example is based on such data (3):
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Example 2
CoNNECTIONS TO WRONG NUMBER

Theoretical number

Observed number of periods exhibiting
Number of periods during the given number of
of wrong which the given wrong connections
connections number of wrong (Poisson
per period connections occurred distribution)

0 o 0.0

1 o 0.3

2 1 1.6

8 5 48

4 11 10.4

5 14 18.2

6 22 26.4

7 43 881

8 L3 6.0

9 40 852

10 3b 30.7

11 20 24.3

12 18 17.9

18 12 12.0

14 7 76

15 6 , 43

16 2 2.4
>16 0 1.9

Following the pioneer work in the field of telephone appli-
cations, the Poisson distribution was gradually applied to other
engineering problems. The following example adapted from
Grant (4) shows an application to the occurrence of excessive
rainfall:
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Example §
RAINSTORMS
Theoretical
Number number of
of storms Observed oceurrences
per station number of (Poisson
per year occurrences distribution)
o 102 90.3
1 114 110.1
2 74 71.6
3 28 284
4 10 8.6
5 2 2.0
>5 o o4
Total 330 350.0

The application of the Poisson distribution to traffic prob-
lems is not new. Certain applications were discussed by Kin-
zer (5) in 1938, Adams (6) in 1936, and Greenshields (7) in 1947.

The first published examples were those of Adams. The fol-
lowing is one of his examples:

Example 4
RATE OF ARRIVAL (Vere St.)

(Number of vehicles arriving: per 10 second interval)

Number of
vehicles per
10 second Observed Total Theoretical
period frequency vehicles frequency
° 94 o g7.0
1 63 ] 59-9
2 21 42 18.5
3 2 6 38
>3 0 o 0.8
Total 180 111 180.0

Note: Since there were 111 vehicles in 180 ten-second periods, the
hourly volume was 222. ’
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CHAPTER 2

The Poisson Process

2.1. Definition and examples

In several of the applications outlined in Chapter 1 a natural first
hypothesis is that events are occurring completely randomly in time.
Thus, in Example 1.1, if we wish to test the reality of the apparent
trend in the accident rate, we take a null hypothesis that acoidents
occur randomly at constant rate. Such a hypothesis can be considered
for two reasons. First, before we can have confidence in the reality
of an apparent systematic effect in the series, we need to show that the
effeot is unlikely to have arisen just by chance. Secondly, simple
methods for the comparison of the rates of oceurrence in different
geries are available whenever the individual series can be assumed to
be completely random.,

As a mathematical model of & completely random series of events
we consider a Poisson process. The definition and main probabilistic
properties of the Poisson process are well-known and in particular are
discussed very carefully by Feller (1957, p. 400). Therefore here we
merely review these results quickly and then pass to the statistical
procedures connected with a single Poisson process. These procedures
are mostly standard ones, but it is useful to collest them together.
In Chapter 9 we deal with methods for the coraparison of two or more
Poisson processes,

Consider events oocurring along a line which for definiteness will be
oalled the time axis, The reader who likes to think in terms of specific
applications may consider each event to be an emisgion from a radio-
active source. Let A be & constant with the dimensions of the reci-
procal of time. It will measure the mean rate of occurrence of events
over a long period of time and will be called the rate of occurrence or
more fully the probability rate of occurrence of events. Denote by
N¢,e40 the random variable defined as the number of events ocourring
in (¢, ¢ + &1, where & > 0. The conditions for a Poisson process of rate A
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prob(N,e4n =0) =1 — b+ o(h), 1)
prob(Ne, en =1) = AR o(h), (2)

and that the random variable N, 47 is statistically independent of the
number and position of events in (0, #]. This last condition is to hold
m.cw. all ¢, b > 0. Equations (1) and (2) imply that

prob(Ny, s > 2) = o(h). (3)

Tn these equations the terms o(h) denote any quantities which tend
to zero more rapidly than b as h—0, i.e. they denote functions Fr)
such that, as b —0, lim{f (b)/k} = 0. Note particularly that in (1)(3)
the perms o(h) represent three different quantities all having the re-
quired limiting behaviour,

The central features of the definition of the Poisson process are that

(a) the probabilities (1)~(3) do not vary in time, 50 that there is no
trend in the series;.

(b) the chance of two or more events ooourring simultaneously is
negligible;

(c) the chanceof an event in (¢, ¢ + k] is quite independent of what
happens up to ¢ In particular the chance is not affected by the
time that has elapsed since the last preceding event.

The Poisson process is a mathematical concept and no real phe-
nomenon can be expected to be exactly in accord with it. Whether or
not & particular series is in reasonable agreement with a Poisson pro-
cess is ultimately an empirical matter, even though the key agsump-
tions have varying degrees of plansibility in different applications.

Eaample 2.1, Telephone calls. Consider & telephone exchange serving
a large number of subscribers and leb an event be a request for & call.
Then provided that we consider a fairly short period of time, say
15-30 min., the conditions for a Poisson process are likely to be closely
fulfilled, The ocourrence of a call from one subscriber at time ¢ will in
general affeot the chance of a further call arriving at time # 4- f from
that same subseriber, at any rate for small . If the total number of
subseribers were small, this would mean that condition (¢) would not
usually be applicable. However, when, as is assumed here, the number
of subscribers is large and different subscribers act independently of
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one another, the chance of a call arising at one instant is unlikely to be
appreciably affected by what has happened in pre ceding instants. The
effect of superimposing & number of independent sequences of events
is analysed mathematically in Chapter 8.

Condition (¢) is certain to fail if a long period of time is considered,
for the density of the calls will fluctuate between different times of the
day. Hence it is reasonable to hope thata Poisson process with & para-
meter varying slowly and systematically in time will be & very good
representation of the observed distribution of requested calls. Time-
dependent Poisson processes will be diseussed in Section 2.2(v).

Ezample 2.2 Radioactive source, Suppose that an event is an emission
from & radioactive source. A Poisson process is, for substantially the
roasons outlined for Example 2.1, again likely tobea good representa-
tion of the oceurrences over & period during which the strength of the
source remains substantially constant. The events recorded by an
electronic counter, however, do nob form & Poisson process. This is
because of counter dead times; following each recorded event, or
sometimes following each event, there is & period during which no
further events can be recorded. This means that condition (¢) is cer-
tainly not satisfied for the series of recorded events.

The probability problems conneoted. with correcting the recorded
series for loss due to dead time have been extensively treated; Smith
{1958) has given & concise guide to the literature.

Bxample 2.3. Stops of machine. Leb the time axis represent the running
time of & machine, such as & loom, subject to intermittent stops and
suppose that an event is a stop of & specified type. Here the applica-
bility of the Poisson process will very much depend on the nature of
the stop. Some types of stop such as those conneoted with the com-
pletion of an operation, will occur fairly regularly. Others, primarily
thoss due to machine faults or defective material, may be expectec
to ocour irregularly; it does not follow though that they are neces:
sarily well described by a Poisson process. TFor example they may tenc
$0 ocour in bursts, long stretches with very few stops being inter
spersed with short periods with a high rate of ocourrence. In man;
oases, however, the Poisson processisa reasonable first approximatior
although the parameter A is likely to fluctuate in time and possibly t
change suddenly, for example when & new batch of raw material {
introduced.
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2.2. Properties of the Poisson process

(i) Distribution of number of events

We now review, mostly without proof, the main properties of the
Poisson process.

First consider the number of events, Ny, ocourring in an arbitrary
interval of length t. Then ¥, has a Poisson distribution of mean At, i.e.

Av—nvﬁmlxn
7l

Further it is clear from property (¢) in the definition that the numbers
of events in non-overlapping time intervals are independent. Thus if
we consider {No,;}, the number of events in (0, £], as a stochastic
proocess, i.e. as & random function of time, it has the property of having
independent increments in non-overlapping time intervals,

To record the main properties of the Poisson distribution (Cramér,
1048, p. 203), leb Z be & random variable with the distribution

prob(lN; =17) = (r=0,1,...). )

wet

prob(Z =7) = ]

(r=0,1,...); (2)

the corresponding probability generating funotion is

5 Lrprob(Z = r) = ents-),

r=Q
Then if § and var denote, respectively, expectation and variance,
B(Z) =var(Z) =p 3
snd more generally all the semi-invariants of the distribution are
equal to .

It easily follows from (3) with p=2M that Nyt converges in
probability to A as ¢— co, justifying the name rate of occurrence
proposed for the parameter A of the Poisson process.

Theadditive property of the Poisson distribution s thatif Z, ..., Z,
aremubually independent and follow Poisson distributions with means
{415 -+, i, then ¥ Z; follows a Poisson distribution of mean ¥ p4t. This
follows easily from the probability generating function. The meaning
in terms of a Poisson process is clear; if uy = My, the random variable
Zyis distributed as the number of events in an interval of length ¢, and
the summed random variable has the distribution of the number of
events in a single interval of length St
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As pu increases, the Poisson distribution is asymptotically normal
with mean and variance p, That is, if Z,y denotes a Poisson random

variable of mean u, then for large u
T+i—p
Vv

1 .
prob(Zg) < 7) = .—.mxﬁ db (4)

v/(2m)

-
rt+i— .:V
A
say. This can be proved directly, or is a consequence of the central
limit theorem; the inclusion of the continuity correction of § on the

left-hand side is not necessary for the truth of (4), but improves the
numerical approximation for moderate p.

Table 2.1. Adequacy of the normal approwimation to the Poisson

distribution
Poisson Observed prob(Z < 7)

moan;p value, # Exact Normal approx.

5 0 0-0067 0-0221

1 00404 0-0588

9 0-9682 0-9799

11 09946 0-9882

10 3 0-0103 0-0200

] 0-0871 0-0774

16 0-9513 0-9590

18 0-9928 0-0064

20 10 0:0108 0-0168

13 0-0661 00731

27 09476 0-9532

31 0-9919 0-9949

50 34 0-0108 0:0142

38 0-0474 0:0519

61 0-9443 0-9481

87 0-9911 0-9933

Table 2.1 assesses the accuracy of the normal approximation (4)
to the distribution function. For each value of , values are given near
to lower and upper 1 and & per cent points. The table gives the exact
cumulative probability and the corresponding normal approximation,
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with continuity correction. For many problems eonnected with sig-
nificance tests and confidence intervals, the normal approximation
is quite accurate enough even below y = 10. The main source of error
in the approximation arises from the skewness of the Poisson dis-
tribution.

There are a number of tables both of the probabilities (2) and of the
corresponding cumulative probabilities. One of the most accessible
sets is in the Biometrika tables (Pearson and Hartley, 1956, Tables 7
and 39) and one of the more extensive is that of the General Electric
Co. (1962).

(ii) Distribution of intervals between events

A second important group of properties of the Poisson Process concern
the intervalg between events. Let X be the interval from the time
origin to the first event. We can obtain the distribution of X from
first principles (see Exereises) or derive it from (1). For no event
ocours in (0, #] if and only if X > 2. Hence

prob(X > ) =prob(N =0) = ¢~z (6)

Thus Fx(z), the distribution function (d.f) of X, and fx(x), the
probability density function (p.d.f.), are

Fr(@)=1—e? (x320) (8)
Fx(@) = Fy(e) =Xde~4a (2> 0). (7)
We call this the exponential distribution of parameter A.
The Laplace-Stieltjes transform of the distribution is

A
Ads

B(esX) = ,—,m|§> e~ Aoy = (8)
8

It follows from (8), considered as & moment generating function, or
direotly, thab
B(X)=1/A, var(X)=1/A% 9

A very important point is that because the occurrences in any
section of a Poisson process are independent of the preceding sections
of the process, the origin from which X is measured may be defined in
a variety of ways, Thus X may be

(a) the time from the original time origin to the first event;
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(b) the time from any fixed time point to the next event;

(c} the time from any event to the next sucoeeding event, i.e. the
interval between successive events;

(d) the time from any point ¢’ determined by the pattern of events
in {0, '] to the next event.

Further if X1, X3, ... are the intervals between the origin and the
mmmn event, between the first and second events, and so on, the random
variables Xy, X,... are mutually independent and each with the
p.d.f. Ae=42. In fact the Poisson process can be defined by this property.

To stress the wide range of applicability of these results it is useful
to consider two Examples.

Bzample 2.4. Free path length in kinetic theory. The exponential
distribution seems first to have been considered by Clausius in con-
nection with the kinetis theory of gases; see, for example, Jeans
(1925, Section 347). Consider a molecule with given speed and let an
event be a collision with another molecule, It is reasonable to postu-
late & constant probability rate of ocourrence of events per unit
time. Therefore the time between collisions, and hence the free path
length of molecules of & given speed, follows an exponential distri-
bution. The unconditional distribution of fres path length can be
derived when the dependence on velocity of the probability rate of
occurrence is known, and this can in fact be caloulated.

Eoample 2.5. Length of jute fibres. Dr H. P. Stout (personal com.
munication) has discussed the frequency distribution after processing
of the length of jute fibres. This is not in the first place an example of &
series of point events in space or time, but is closely related to such a
series for the following reason. Jute fibres are initially long and are
repeatedly broken during processing. The lengths of the final pieces
are therefore determined by the intervals between sucoessive ‘ weak
points’ in the initial long fibres. If these ‘ weak points’ oceur approxi-
mately randomly, the final distribution of fibre Jength should be
nearly that of the intervals between successive events in & Poisson
process, Dr Stout showed empirically that the observed frequency
distribution is close to the exponential form, except that in some cases
the experimental curve falls slightly below the exponential for small
lengths, Kolmogorov (see Aitehison and Brown, 1957, p. 101) has
given a different stochastio model of breakage leading to & log normal
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distribution. In applications a log normal distribution with
dispersion and an exponential distribution are quite hard to dig
guish.

To continue the general disoussion of the distribution of inte
in & Poisson process, let 7, be the time from the origin to the n;
following event, where ng is a fived integer. In this notation,
random variable of (5) is 74, Now T'y, is the sum of ng independs
random variables each exponentially distributed, so that the Lapla
Stieltjes transform of the distribution of T, is, from (8), Ao/(A 4- )
which corresponds to the p.d.f.

Z»ﬁva,l -t
(no —1)!

t=0), (1

reducing to (7) when 2y =1, For numerical work it is useful to not;
from (10) that 2AT,, has the chi-squared distribution with 2
degrees of freedom; symbolically

2T, = X3ne (L
An important relation between the Poisson distribution and thi
chi-squared distribution is obtained by noting that the event

{Vy <no} and {7y, >t} are identical and therefore have, the-sain
probability, Thus

:._IH
vyhx«l»»
> T =i, > 20
&

or
E_Ml 1 ek - .‘. yho=1 g=v i,
& 1! (mo — 1)1
o
Equation (12) is easily proved directly by integrating by parts. The
type of probabilistie argument leading to (12) will be used again in
Chapterd. . - - )
The main properties of the random variable Ty, follow from (11),

or directly from the p.d.f. (10), or from the definition of Ty, as the sum
of ng random variables. Thus

12y

E(Ty,) =no/A, var(1'n,) = nofA?, (13)
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and standard tables of the chi-squared distribution can be used to find
the percentage points of the &maawﬁmow. . .

For large no, T'n, 18, by the central limit theorem, mmvgpw@ogmmu%
normally distributed. Thus (AT, — 7g)/+/70 can be taken ag w.pqE.m a
standardized normal distribution or, to a closer mwwun.vﬁnmmﬁob
(Cramér, 1946, p. 251), 1/(AT',) can be taken as normally distributed
with mean 4/(ng — ) and variance }. E

For some methods of statistical analysis, especially those of Sectio
3.2(i), it is useful to work with log 7', . By (11),

log 7, = —log(2)) + log(x3,,)»
o

so that the results of Bartlett and Kendall (1946) on the log chi-
squared distribution can be used. In fact from (10) we have that the
gemi-invariant generating funotion of log Ty, is

. AT

o

A(Ag)na—Lg=2t
log B{exp(iflog T's,)} =log .—«3 .WNUHMIVI_I dt
b
I(ng -+ i6) o
H_oL Tino) h —iflog A,

where the Gamma, function is defined by
Iiz) = % to-1 gt g,
0

Thus the semi-invariants of log 7', are given by the m@u?pﬁwcm
of the log Gamma function of argument ng and, in particular, takin,
the coefficients of 76 and of (16)2/2!, we have that :

B(log Ta) =4(no) —log A, ver(log Ta) =(no),  (14)
where It
a log I'(
o) = dx

is the digamma function (Davis, 1933, Table 9).

Bartlett and Kendall (1948) tabulate the first four semi-invariants
of the log chi-squared distribution and give graphs of the p.d.f. The
distribution has a moderate negative skewness and tends rather slowly






