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Simple random walks

71 RANDOM PROCESSES-DEFINITIONS AND
CLASSIFICATIONS

Definition of randem process

Physically, the term random (or stochastic) process refers to any quantity that
evolves randomly in time or space. It is usually a dynamic object of some kind
which varies in an unpredictable fashion. This situation is to be contrasted
with that in classical mechanics whereby objects remain on fixed paths which
may be predicted exactly from certain basic principles.

Mathematically, a random process is defined as a collection of random
variables. The various members of the family are distinguished by different
values of a parameter, o, say. The entire set of values of &, which we shall denote
by A, is called an index set or parameter Set. A random process is then a
collection such as

(X, 0€A}

of random variables. The index set 4 may be discrete (finite or countably
infinite) or continuous. The space in which the values of the random variables
{X,} lie is called the state space.

Usually there is some connection which unites, in some sense, the individual
members of the process. Suppose a coin is tossed 3 times. Let X, with possibie
values 0 and 1, be the number of heads on the kth toss. Then the collection
{X.,X, X3} fits our definition of random process but as such is of no more
interest than its individual members since each of these random variables 1s
independent of the others. If however we introduce ¥, =X, Y, =X, + X,
Y,=X, + X, + X5, so that ¥, records the number of heads up to and
including the kth toss, then the collection { ¥y, ke{1,2, 3} 1} is a random process
which fits in with the physical concept outlined earlier. In this example the
index set is A = {1,2,3} (we have used k rather than « for the index) and the
state space is the set {0, 1,2,3}.

The following two physical examples illustrate some of the possibilities for
index sets and state spaces.
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Examples

(i) Discrete time parameter
Let X, be the amount of ramnfall on day & with k=0,1,2..... The collection of
random variables X = 1 Xuk=0,1,2,... }isarandom processin discrete time

Since the amount of rainfall can be any non-negative number, the X, have a
continuous range. Hence X is said to have a continuous state space.

(ii) Continuous time parameter

Let X(¢) be the number of vehicles on a certain roadway at time ¢t where ¢ 3 0 is
measured relative to some reference time. Then the collection of random
variables X = {X(1),r > 0} is a random process in continuous time. Here the
state space 1s discrete since the number of vehicles is g member of the discrete
set {0, 1,2,..., N} where N is the maximum number of vehicles that may be op

the roadway.

Sample paths of a random Process

T'he sequences of possible values of the family of random variables constituting
a random process, taken in increasing order of time, say, are called sample
paths (or trajectories or realizations). The various sample paths correspond to
‘elementary outcomes’ in the case of observations on a single random variabie.
It 1s often convenient to draw graphs of these and examples are shown in
Fig. 7.1 for the cases:

(2) Discrete time—discrete state Space, e.g., the number of deaths in a city due
to automobile accidents on day k;

(b} Discrete time—continuous state space, ¢.g., the rainfall on day £;

(c} Continuous time-discrete state Space, e.g., the number of vehicles on the
roadway at time ¢

(d} Continuous time—continuous state space, e.g., the temperature at a given
location at time ¢.

Probabilistic description of random processes
Any random variable, X, may be characterized by its distribution function
Fx)=Pr{X<x}, —oogx<oo

A discrete-parameter random process {X, k=01, 2,...,n} may be
characterized by the Joint distribution function of ajl the random variables
involved,

Fl(xg,%q5...,X,) = PriX,sxpX, < K fonennsse oS Bk
X &(— oo, o), k=1,2,...,n,

S By
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(c) (d)

Figure 7.1 Sketches of representative sample paths for the various kinds of random

ProCcesses.

0 et 11111 re
and by the joint distributions of all distinct subsets of (X ﬁ Slmllar; E;tgm;he
: i OC .
' D1l ly to continuous time random pt
complicated descriptions app Mies them to be
f esses, however, enables
robabilistic structure of some proc SES, s b
Eharac:terized much more simply. One important such class of processes

called Markov processes.

Markov processes

Definition Let X = {X,,k=0,1,2,...} be a random process with a discrete

index set and a discrete state space S'= {5,5,,53,... . If
-

) (7.1)

=T {Xn = S};H|Xn—l — Skn_lf

for any n > 1 and any collection of s, €S, j =0, 1,...n, then Xis called a Markov

process.
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Equation (7.1) states that the values of X at all times prior to n — 1 have ng
effect whatsoever on the conditional probability distribution of X, given X —_—"
Thus a Markov process has memory of its past values, but only to a limijted
cxtent.

The collection of quantities

Pr {X" - SkniX""‘l = S*'L'n— 1}

for various n, S, and s, is called the set of one-time-step tranmsition
probabilities. It will be seen iater (Section 8.4) that these provide a complete
description of the Markov process, tor with them the joint distribution
function of (X,, X,_ ,...., X1, Xy), or any subset thereof, can be found for any
n. Furthermore, one only has to know the initial value of the process (in
conjunction with its transition probabilities) to determine the probabilities that
it will take on its various possible values at ali future times. This situation may
be compared with initial-value problems in differential equations, except that
here probabilities are determined oy the initial conditions.

All the random processes we will study in the remainder of this book are
Markov processes. In the present chapter we study simple random walks
which are Markov processes in discrete time and with a discrete state space,
Such processes are examples of Markov chains which will be discussed more
generally in the next chapter.

One note concerning terminology. We often talk of the value of a process at
time ¢, say, which really refers to the value of a single random variable (X{(¢))
even though a process is a collection of several random variables.

»

7.2 UNRESTRICTED SIMPLE RANDOM WALK

Suppose a particle is initially at the point x =0 on the x-axis. At each
subsequent time unit it moves a unit distance to the right, with probability p, or
a unit distance to the left, with probability g, where p+ g = 1.

At time unit » let the position of the particle be X,. The above assumptions
yield

Ay =0, with probability one,
and 1n general,

X=X, +Z2, n=12,...,
where the Z are identically distributed with

PI‘{ZI — -+__1}=
Pri{Z,=—1) =

1 ™y o B bl K | T et A ey W == = 'y

Unrestricted sunple rancoimn walk  laf

[t is further assumed that the steps taken by the particle are mutually
independent random variables.

Definition. The collection of random variables X = { X, X, X,,... } I8 ci'{alledla
simple random walk in one dimension. It is ‘simple’ because the steps ta ¢ only
the values + 1, in distinction to cases where, for example, the Z, are continuous

random variables.

The simple random walk is a random process indexed by a d]_screte t%ﬁa
arameter (n=0,1,2,...} and has a discrete state space because 1ts possible
Ealues are {0, + 1, + 2,...}. Furthermore, because there are no bounds on the

possible values of X, the random walk is said to be unrestricted.

Sample paths
Two possible beginnings of sequences of values of X are

{0,+1:,+2,+1,,0,—1,0,+1,+2,+3,...}
{0,—lﬁ(},—l,—z,—3,—4,,—3,—_4,—5,...}

The corresponding sample paths are sketched in Fig. 7.2.

n
B |
- r— I__I
j
e r_'
I |
l ..._,_.l » L | C—
’ ; T_-i 15 1 10 n
__ L_-i
- .‘.._.I.
|
i .'._.._.I —
] I : |
-5 | 'I

Figure 7.2 Two possible sample paths of the simple random walk.
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Markov property
A simple random walk is clearly a Markov process. For example,

Pr{X4:2]X3=3,X2:2,X1:LXD=0}
=PriX,=2|X3=3=Pr{Z,= + [P i
That is, the probability is g that X o has the value 2 given that X =%

regardless of the values of the process at epochs 0,1, 2.
The one-time-step transition probabilities are

i, ifk=j+1
Pu=Pri{X,=k|X,_,=j= g4, HK=j—1
0, otherwise
and 1n this case these do not depend on n.

Mean and variance
We first observe that

Xl:XD_I-Zl
XE:XI "I_Z?‘:XD—[_ZI +Zz

er:XD‘i_Zl"I_ZZ_I_""‘F'Z”*

Then, because the Z, are identically distributed and mdependent random
variables and X, =0 with probability one,

i

E(X,)= E( 3 zk> = nF(Z,)

unrestricted simple random walk 129

since p®+¢*+2pg=(p+q)>=1. Hence we arrive at the following ex-
pressions for the mean and variance of the process at epoch n:

| EX,)=nlp—q)

(7.2)

| Var(X,) = 4npg (7.3)

We see that the mean and variance grow linearly with time.

The probability distribution of X

Let us derive an expression for the probability distribution of the random
variable X, the value of the process (or x-coordinate of the particle) at time

n= 1. That 1s, we seek

plk,n)=Pr{X, =k,

where k 1s an integer.

We first note that p(k, n) = 0if n < | k| because the process cannot get to level
k1n less than |k| steps. Henceforth, therefore, n > |k|.

Of the n steps let the number of magnitude -+ 1 be N.* and the number of
magnitude — 1 be N, , where N." and N are random variables. We must have

and

Adding these two equations to eliminate N, yields

N+

R

=z(n+ X,). (7.4)

Thus X, =k if and only if N =4(n + k). We note that N is a binomial
random variable with parameters n and p. Also, since from (7.4), 2N =n + X \
18 necessarily even, X, must be even if 11 is even and X » must be odd 1f # 1s odd.

k=1
and
Var(X,) = Var( > Zk) =nVar(Z,).
E=1

Now,

EZ)=1p+(-1)g=p—gq
and

E(Z%) = 1p+ lg=p+g=1.
Thus

Var(Z,) = E(Z%) = EE(ZJ
=1—(p—q)°

1 —(p*+ g —2pg)

=1 —{p* +q° + 2pg) + 4pq

= 4pq,

|

T A T 4T Y ™ 2TTT AR I 7101 bLT.J

Thus we arrive at

j
i1

Ak, o} = ((k +1)/2

e+ nyi2 (n—k)2 |.
)P q ;

nzlkl, k and n either both even or both odd.

For example, the probability that

p(—2,4)

the particle is at k = — 2 after n = 4 steps is

4
= ( )pq:” =4pg*. 7o)

1

This will be verified graphically in Exercise ‘3.



Approximate probability distribution
If Xo,=0, then

where the Z; are i.id. random variables with finite means and variances.
Hence, by the central limit theorem (Section 6.4),

X, ~E(X,)
o(X,)

as n— cc. Since E(X,) and ¢(X,) are known from (7.2) and (7.3), we have

» N(0, 1)

XH_H(F_Q) d

= N(0, 1),
 4npg

Thus for example,

Prin(p — q) — 1.96. /4npg < X, < n(p — g) + 1.96, /4npq } ~0.95.

s G
60 |— w» Bdf

F(X ) when p = (0.8

|
40 |-
.’___Fldf
20 —
20 40 60 80O 100

-2

= E(Kﬂ} = 0 when p = Q.5

Figure 7.3 Mean of the random walk versus n for p=0.5 and p=0.8 and normal
density approxtmations for the probability distributions of the process at epochs 1 = 50

and n = 100.
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After n = 10 000 steps with p = 0.6, E(X,) = 2000 and

Pr {1808 < X ;4000 <2192} ~0.95,

whereas when p = 0.5 the mean is 0 and

Pr{— 196 < X400 < 196} ~ 0.95.

Figure 7.3 shows the growth of the mean with increasing »# and the
approximating normal densities at n = 50 and n = 100 for various p.

73 RANDOM WALK WITH ABSORBING STATES

The paths of the process considered in the previous section increase or decrease
at random, indefinitely. In many important applications this is not the case as
particular values have special significance. This is illustrated in the following
classical example.

A simple gambling game

Let two gamblers, 4 and B, initially have $a and $b, respectively, where g and b
are positive integers. Suppose that at each round of their game, player 4 wins
$1 from B with probability p and loses $1 to B with probability g = [ — p. The
total capital of the two players at all times is

¢c=a-+b.

Let X, be player 4’s capital at round n where # = 0,1,2,...and X, = a. Let
Z, be the amount A wins on trial n. The Z, are assumed to be independent,
It 1s clear that as long as both players have money left,

Xﬁ':XH'—l_]_ZH’ H=1,2,...,

where the Z, are 1.i.d. as in the previous section. Thus I Xsmr=0, 1 Do} 184
simple random walk but there are now some restrictions or boundary
conditions on the values it takes.

Absorbing states

Let us assume that 4 and B play until one of them has no money left; i.e., has
‘gone broke’. This may occur in two ways. A’s capital may reach zero or A4’s
capital may reach ¢, in which case B has gone broke. The process
X =1{X4 X, X,,...} is thus restricted to the set of integers {0,1,2,...,¢} and
It terminates when either the vaiue 0 or ¢ is attained. The values 0 and ¢ are
called absorbing states, or we say there are absorbing barriers at 0 and c.
Figure 7.4 shows plots of A’s capital X, versus trial number for two possible

iy o 0 o bed bl s ) R L B - 1
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Figure 7.4 Two sample paths of a simple random walk with absorbing barriers at 0 and
¢. The upper path results in absorption at ¢ (corresponding to player A winning all the
money) and the lower one in absorption at 0 (player A broke).

games. One of these sample paths leads to absorption of X at 0 and the other to
absorption at c.

7.4 THE PROBABILITIES OF ABSORPTION AT 0

Let P,,a=0,1,2,...,cdenote the probabilities that player 4 goes broke when
his initial capital is $a. Equivalently P,, is the probability that X is absorbed at
Owhen X, = a. The calculation of P, is referred to as a gambler’s ruin problem.
We will obtain a difference equation for P,.

First, however, we observe that the following boundary conditions must

apply:

Py=1
P.=0

since if a=0 the probability of absorption at 0 is one whereas if a =c,
absorption at ¢ has already occurred and absorption at 0 is impossible.
Now, when a is not equal to either 0 or ¢, all games can be divided into two

mutually exclusive categories:

- = g W b o B PPN RL SR, |
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(1) A wins the first round;
(1) A loses the first round.

Thus the event {4 goes broke from a} is the union of two mutually exclusive
events:

' A goes broke from ¢! =
{A wins the first round and goes broke from a + 1}
w14 loses the first round and goes broke from g — 1}, (7.6)

Also, since going broke after winning the first round and winning the first
round are independent,

Pr {4 wins the first round and goes broke from a + 1}
= Pr {4 wins the first round} Pr{A4 goes broke from g -+ 1}
=pP. 4. (7.7)

Similarly,

Pr{ A loses the first round and goes broke from g — 1}
=qP,_,. (7.8)
Since the probability of the union of two mutually exclusive events is the

sum of their individual probabilities, we obtain from (7.6)—(7.8), the key
relation

Pﬂszﬂ+l+Q’Pﬂ_l . £I=],2,...,C"—1* (7.9)

This 1s a difference equation for P, which we will solve subject to the above
boundary conditions.

Selution of the difference equation (7.9)

There are three main steps in solving (7.9).

(1) The first step is to rearrange the equation
Since p+ g =1, we have

P +q@P,=pP,,, +qgP,_,,
071

pPysy —P)=q(P,—P,_))
Dividing by p and letting

gives
PH-]'I__PE'I:?‘(PH_PE—l)'



(11} The second step is to find P,

To do this we write out the system of equations and utifize the boundary

condition P, = 1I:

a=1 . P,—P, =P, — Py) =r(P; —1)
a=2 : P;,—P, =P, —P,) = (P, —)

S (7.10)

a=c-—2: Pr:—l__Pf—il=F(Pc—2_Pc—3)=rE_E(Pl_ 1)
a=c—1: PC—PC—I =F(Pc—]_PC—E)er_I(Pl_l)J

Adding all these and cancelling gives
Po=Pi= =P =P —Dr+r4 .-+, (7.11)

where we have used the fact that P, =0.

I

Special case: p=q=45 Hp=qg=3thenr=1sor+rP4 .. 9 lop_1

Hence
— P, =(P; —Dlc—1).

Solving this gives

—

- -
\P1=1—E . r=1 (7.12)
|

General case: p # q Equation (7.11) can be rearranged to give
Pi—DA+r+r 4+ Y4 1=0
e

1
Ltrtrd 4 gt

P1=1

For r # 1 we utilize the following formula for the sum of a finite number of
terms of a geometric series:

Wadeat | I T ?-f—'
l+r+ri+ o 4p - (7.13)
Hence, after a little algebra,
‘ p— gt l
P, = :
L 1T P r#l (7.14)

Equations (7.12) and (7.14) give the probabilities that the random walk 1S
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absorbed at zero when X = 1, or the chances that player 4 goes broke when
starting with one unit of capital.

(1) The third and final step is to solve for P, a# 1,
From the system of equations (7.10) we get

PE.:Pz‘f‘"E{Pl_I] =P1+(P1_1)(?‘+1’"2)

P,=P, (+7 P, —D=P +(P =D +r’+ - 450

Adding and subtracting one gives

Po=(Py— 1)l 4+r+r24 -+ L1 (7.15)

Special case: p=g=7 When r=1 we have 14+r+r+ ..+ =g 0o
using (7.12) gives

P —I—— prE=g, (7.16)
General case: p #q From (7.14) we find
r— 1
P, — .
=1 1 —¥°

Substituting this in (7.15) and utilizing (7.13) for the sum of the geometric

Series,
r—1 ] —#°
Pﬂ:(1—rf)(1—r)“’

which rearranges to

e |

_{Pﬂ=r — ,, r# 1.
| ] —#¢
s ]

Thus, 1n terms of p and ¢ we finally obtain the following results.

Theorem 7.1 The probability that the random walk is absorbed at 0 when it
starts at X, = a, (or the chances that player 4 goes broke from a) is

_la/p) - (glp¥
© L—(gfpy |

P#4q (7.17)




Table 7.1 Values of P, for various values of p.

a p=140.25 p=04 p=10.3
0 1 1 1
1 0.99097 (0.99118 0.9
2 0.99986 (.97794 0.8
3 0.99956 0.93809 0.7
4 (0.99865 0.92831 0.6
5 0.99590 .88364 0.5
6 0.98767 (.B1663 0.4
7 0.96298 0.71612 0.3
8 0.88890 0.56536 0.2
9 (0.66667 0.33922 0.1
10 {0 0 0
1.0
0.5
0

e

10

Figure 7.5 The probabilities P, that player 4 goes broke. The total capital of both
players 1s 10, a 1s the inttial capital of A, and p = chance that A wins each round.

when p=(q =

-
wm

P=1-°

Some numerical values

Table 7.1 lists values of P, for ¢ =10, g ={,1,...,10 for the three values
p=0.25 p=04and p =0.5. The values of P, are plotted against g in Fig, 7.5.

Also shown are curves for p=0.75 and p = 0.6 which are obtained from the
relation (see Exercise 8)

Pa(p) =1 — Pc-—a(l _p)

In the case shown where p = (.25, the chances are close to one that X will be
absorbed at 0 (4 will go broke) uniess X, is 8 or more. Clearly the chances that
A does not go broke are promoted by:

(1) alarge p value, ie. a high probability of winning each round;
(1) a large value of X, i.e. a large share of the initial capital.

7.5 ABSORPTION AT ¢ > 0

We have just considered the random walk {X,,1n=0,1,2,...} where X, was
player 4’ fortune at epoch n. Let Y, be player B’s fortune at epochn Then {Y,,
n=0,1,2,...} is a random walk with probability g of a step up and p of a step
down at each time unit. Also, Y, =c¢ —a and if Y is absorbed at 0 then X is
absorbed at c¢.

The quantity

Q,=Pr{X is absorbed at ¢ when X, =4},

can therefore be obtained from the formulas for P, by replacing a by ¢ — a and
interchanging p and g.

Special case: p=q=7 Inthiscase P,=1—a/cso Q, =1 — (c — a)/c. Hence

#
Qﬂ_E 1 P=4g.

General case: p # g From (7.17) we obtain

(p/a) —“ —(p/qY)
L—(p/gyr

O, =



138 Simple random walks

Multiplying the numerator and denominator by (g/p)* and rearranging giveg

- 1—(g/p) ]
| Qa i 1 o (qu)f 3

——

p#q.

In all cases we find

f' P,+Q, =1 (7.18)

Thus absorption at one or the other of the absorbing states is a certain event.

That the probabilities of absorption at 0 and at ¢ add to unity is not obvious.
One can imagine that a game might last forever, with A winning one round, B
winning the next, 4 the next, and so on. Equation (7.18) tells us that the
probability associated with such never-ending sample paths is zero. Hence

sooner or later the random walk is absorbed, orin the gambling context, one of
he players goes broke.

/.6 THE CASE ¢ = «

R

ta, which is plaver 4’s initial capital, is kept finite and we let b become infinite,
hen player A is gambling against an opponent with infinite capital. Then,
Ince ¢ = a + b, ¢ becomes infinite. The chances that player 4 goes broke are

btained by taking the limit ¢ — oo in expressions (7.16) and (7.17) for P, There
re three cases to consider.

) p>g
hen player 4 has the advantage and since g/p < 1,

. . (q/p)* —(q/p)
lim P, = lim — =(g/p)",
iy Leefglpf P
hich is less than one.
) p=g
hen the game is “fair’ and
lim P,=lim 1%~
C— o0 C—* o0 &
i) p<g
cre player A is disadvantaged and
e = Toin la/p) —(a/p) _q

C— o w1 —(g/p)
ice gq/p > 1.

e A

How long will absorption take?  13¢

Note that even when A and B have equal chanc{eg to win ;ach munc%, playgr
A goes broke for sure when player B has infinite 1111_‘[131 capital, In gasmaf:f t.te
situation is approximately that of a gambler playing someone with km mi]t E
capital, and, to make matters worse p < g so the gambler goes l'i)lm E} x:red
probability one if he keeps on playing. Casino owners are not usually refe

to as gamblers!

77 HOW LONG WILL ABSORPTION TAKE?

In Section 7.5 we saw that the random walk X on a ﬁqite interval 18 certain tc
be absorbed at 0 or ¢. We now ask how long this wiil take.
Define the random variable

T =time to absorption of X when X, =g, AT T e - )

The probability distribution of T, can be found exactly (see for example Feller,
1968, Chapter [4) but we will find only the expected value of T

D, = E(T).

Clearly, if a=0 or a=c, then absorption is immediate so we have the
boundary conditions

D=0 (7.19)
D =0 (7.20)

X
n
F—k"l———!
B |
—
S
r
r—
S
atl |,
a =
a-1 '—-1r-1
N P W
I"""Iﬁ
.
i ORI —
K

—3 "

Figure 7.6 Paths leading to absorption after & steps.
4—_
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We will dertve a difference equation for D,. Define
Pla k)= Prii{T, =k}, k =1,2,...

which is the probability that absorption takes k time units when the process
begins at a. Considering the possible results of the first round as before (see the

sketch in Fig. 7.6), we find
Pla,k)=pPla+ 1,k—1}+gPla—1,k—1).
Multiplying by k and summing over k gives
ET)=Y kPaki=p Y kPla+ Lk—1)+q > kPla—1,k—1)
k=1 k=1

Putting j = k — 1 this may be rewritten

D,=pY (j+DP@a+1,))+q 3 (j+1)Pa—1,j)
=p ) JPla+ Lj)+q _ZDJP(‘-'I— L,J)

+p Y Pla+1,))+q > Pla—1,)).
=0 =0

But we have seen that absorption is certain, so

3

> Pla+L,j)= % Pla—1,j)=1.
J=0 =1

Hence

Dﬂ=pDﬂ‘+l +qDa-1+p+q

Table 7.2 Values of D, from {7.22) and (7.23) with

c=10

a p=0.23 p=04 p=05
0 0 0 0
1 1.999 4.539 9
2 3.997 8.897 16
3 5.991 12.904 21
4 7.973 16.415 24
5 8918 19.182 25
6 11.753 20.832 24
7 13,260 20,806 21
& 13.778 18.268 16
9 11.334 11.961 9

10 0 0 0

How long will absorption take?  14]

or, {inally,

I I)ﬂzpDaH—FqDa_l—f-I*'J, a=12,...,c—1. (7.21)

This 1s the desired difference equation for D,, which can be written down
without the preceding steps (see Exercise 11},
The solution of (7.21) may be found in the same way that we solved the

difference equation for P,. In Exercise 12 it is found that the solution satisfying
the boundary conditions (7.19), (7.20) is

— i
% Dﬂzﬂ({f'—ﬂ) L P=q, (722)

' ! I —{q/p)" |
D,= — |
L ’ Q*P(a C{I—(q/p)“})P PFY LL23)

Numerical values

Table 7.2 lists calculated expected times to absorption for various values of g

when ¢ = 10 and for p = 0.25, p =04 and p=0.5. These values are plotted as
functions of ¢ in Fig. 7.7.
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Figure 7.7 The expected times to absorption, D,, of the simple random walk starting at
a when ¢ = 10 for various p.
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It 1s seen that when p = g and ¢ = 10 and both players in the gambling game
start with the same capital, the expected duration of the game 18 25 rounds. If
the total capital is ¢ = 1000 and is equally shared by the two players to start
with, then the average duration of their game is 250 000 rounds!

Finally we note that when ¢ = oc, the expected times to absorption are

(a p <y

as will be proved in Exercise 13.

/8 SMOOTHING THE RANDOM WALK - THE WIENER
PROCESS AND BROWNIAN MOTION

In Fig. 7.8a are shown portions of two possible sample paths of a simple
unrestricted random walk with steps up or down of equal magnitudes. The
illustrations'in Fig. 7.8b~f were obtained by successive reductions of F 1g. 7.8a.
In (a), the ‘steps’ are discernible, but after several reductions the paths become
smooth in appearance. In terms of the position and time scales in (a), the steps
in (f') are very small and so is the time between them. The point of this is to
illustrate that paths may be discontinuous but appear quite smooth when
viewed from a distance.

Consider the time interval (0, t]. Subdivide this into subintervals of length At
so that there are r/Ar such subintervals. We now suppose that a particle,
initially at x = 0, makes a step (in one space dimension) at the times At, 2A¢, ... ..
and that the size of the step is either + Ax or — Ax, the probability being 1/2
that the moveis to the left or the right. Thus the position of the particle, X(¢), at
time ¢, is a random walk which has executed t/At steps. Since the position will
depend on the choice of Ar and Ax, we write the position as X(t; At, Ax).

We may write

tlAT

X(;ALAY) = Y Z, (7.25)

=1
where the Z, are independent and identically distributed with
Pr{Z;,=+Ax]=Pr{Z,= — Ax] =12, g

For the Z, we have,

E[Z i:l — U,
and
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Figure 7.8 In(a)are shown two sample paths of a random walk, (b) to (f) we:
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From (7.25) we get
E[X(t; At,Ax) ] =0,

and since the Z, are independent,

HAX)”

Var [ X(t; At, Ax} | =(t/A)Var[Z.] = ¥

Now we let Ar and Ax get smaller so the particle moves by smaller amounts
but more often. If we let At and Ax approach zero we won't be able to find the
limiting variance as this will involve zero divided by zero, unless we prescribe a I
relationship between Ar and Ax.

A convenient choice is Ax = | /At which makes Var [X(t; At, Ax)] = ¢ for all
values of At. In the Iimit Ar — 0 the random variable X(f; At, Ax) converges in
distribution to a random variable which we denote by W(z). From the central
limit theorem (Chapter 6) it is clear that W{y) is normally distributed.
Furthermore,

EIW{i) =0
Var[W(t} ] =t

The collection of random variables {W(r),t = 0}, indexed by ¢, is a |
continuous process in continuous time called a Wiener process or Brownian
motion, though the latter term also refers to a physical phenomenon (sec |
below).

The Wiener process (named after Norbert Wiener, celebrated mathema-
tician, 1894-1964) is a fascinating mathematical construction which has been
much studied by mathematicians. Though it might seem just an abstraction, it |
has provided useful mathematical approximations to random processes in the
real world. One outstanding example is Brownian motion. When a small |
particle is in a fluid (liquid or gas) it is buffeted around by the molecules of the
fluid, usually at an astronomical rate. Each little impact moves the particle a ¢
tiny amount. You can see this if you ever watch dust or smoke particles in 2
stream of sunlight. This phenomenon, the erratic motion of a particle in a fluid,
1s called Brownian motion after the English botanist Robert Brown who
observed the motion of pollen grains in a fluid under a light microscope. In
1905, Albert Einstein obtained a theory of Brownian motion using the same
kind of reasoning as we did in going from random walk to Wiener process. The
theory was subsequently confirmed by the experimental results of Perrin. For
further reading on the Wiener process see, for example, Parzen (1962), and for
more advanced aspects, Karlin and Taylor (1975} and Hida (1980).

Random walks have also been employed to represent the voltage in nerve
cells (neurons). A step up in the voltage is called excitation and a step down is
called inhibition. Also, there is a critical level (threshold) of excitation of which |




