
Algorithm SLOWCONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list L containing the vertices of CH(P) in clockwise order.
1. E← /0.
2. for all ordered pairs (p,q) ∈ P×P with p not equal to q
3. do valid← true
4. for all points r ∈ P not equal to p or q
5. do if r lies to the left of the directed line from p to q
6. then valid← false.
7. if valid then Add the directed edge

→
pq to E.

8. From the set E of edges construct a list L of vertices of CH(P), sorted in clockwise order.

1

Algorithm CONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence p1, . . . , pn.
2. Put the points p1 and p2 in a list Lupper, with p1 as the first point.
3. for i← 3 to n
4. do Append pi to Lupper.
5. while Lupper contains more than two points and the last three points in Lupper do

not make a right turn
6. do Delete the middle of the last three points from Lupper.
7. Put the points pn and pn−1 in a list Llower, with pn as the first point.
8. for i← n−2 downto 1
9. do Append pi to Llower.
10. while Llower contains more than 2 points and the last three points in Llower do not

make a right turn
11. do Delete the middle of the last three points from Llower.
12. Remove the first and the last point from Llower to avoid duplication of the points where the

upper and lower hull meet.
13. Append Llower to Lupper, and call the resulting list L.
14. return L

2

Algorithm FINDINTERSECTIONS(S)
Input. A set S of line segments in the plane.
Output. The set of intersection points among the segments in S, with for each intersection point

the segments that contain it.
1. Initialize an empty event queue Q. Next, insert the segment endpoints into Q; when an

upper endpoint is inserted, the corresponding segment should be stored with it.
2. Initialize an empty status structure T.
3. while Q is not empty
4. do Determine the next event point p in Q and delete it.
5. HANDLEEVENTPOINT(p)

3

HANDLEEVENTPOINT(p)
1. Let U(p) be the set of segments whose upper endpoint is p; these segments are stored with

the event point p. (For horizontal segments, the upper endpoint is by definition the left
endpoint.)

2. Find all segments stored in T that contain p; they are adjacent in T. Let L(p) denote the
subset of segments found whose lower endpoint is p, and let C(p) denote the subset of
segments found that contain p in their interior.

3. if L(p)∪U(p)∪C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p)∪C(p) from T.
6. Insert the segments in U(p)∪C(p) into T. The order of the segments in T should correspond

to the order in which they are intersected by a sweep line just below p. If there is a horizontal
segment, it comes last among all segments containing p.

7. (∗ Deleting and re-inserting the segments of C(p) reverses their order. ∗)
8. if U(p)∪C(p) = /0
9. then Let sl and sr be the left and right neighbors of p in T.
10. FINDNEWEVENT(sl,sr, p)
11. else Let s′ be the leftmost segment of U(p)∪C(p) in T.
12. Let sl be the left neighbor of s′ in T.
13. FINDNEWEVENT(sl,s′, p)
14. Let s′′ be the rightmost segment of U(p)∪C(p) in T.
15. Let sr be the right neighbor of s′′ in T.
16. FINDNEWEVENT(s′′,sr, p)

4

FINDNEWEVENT(sl,sr, p)
1. if sl and sr intersect below the sweep line, or on it and to the right of the current event point

p, and the intersection is not yet present as an event in Q

2. then Insert the intersection point as an event into Q.

5

Algorithm MAPOVERLAY(S1,S2)
Input. Two planar subdivisions S1 and S2 stored in doubly-connected edge lists.
Output. The overlay of S1 and S2 stored in a doubly-connected edge list D.
1. Copy the doubly-connected edge lists for S1 and S2 to a new doubly-connected edge list D.

2. Compute all intersections between edges from S1 and S2 with the plane sweep algorithm
of Section 2.1. In addition to the actions on T and Q required at the event points, do the
following:

•Update D as explained above if the event involves edges of both S1 and S2. (This was
explained for the case where an edge of S1 passes through a vertex of S2.)

•Store the half-edge immediately to the left of the event point at the vertex in D

representing it.

3. (∗ Now D is the doubly-connected edge list for O(S1,S2), except that the information about
the faces has not been computed yet. ∗)

4. Determine the boundary cycles in O(S1,S2) by traversing D.
5. Construct the graph G whose nodes correspond to boundary cycles and whose arcs connect

each hole cycle to the cycle to the left of its leftmost vertex, and compute its connected
components. (The information to determine the arcs of G has been computed in line 2,
second item.)

6. for each connected component in G

7. do Let C be the unique outer boundary cycle in the component and let f denote the face
bounded by the cycle. Create a face record for f , set OuterComponent(f) to some
half-edge of C, and construct the list InnerComponents(f) consisting of pointers to
one half-edge in each hole cycle in the component. Let the IncidentFace() pointers
of all half-edges in the cycles point to the face record of f .

8. Label each face of O(S1,S2) with the names of the faces of S1 and S2 containing it, as
explained above.

6

Algorithm MAKEMONOTONE(P)
Input. A simple polygon P stored in a doubly-connected edge list D.
Output. A partitioning of P into monotone subpolygons, stored in D.
1. Construct a priority queue Q on the vertices of P, using their y-coordinates as priority.

If two points have the same y-coordinate, the one with smaller x-coordinate has higher
priority.

2. Initialize an empty binary search tree T.
3. while Q is not empty
4. do Remove the vertex vi with the highest priority from Q.
5. Call the appropriate procedure to handle the vertex, depending on its type.

7

HANDLESTARTVERTEX(vi)
1. Insert ei in T and set helper(ei) to vi.

8

HANDLEENDVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.

9

HANDLESPLITVERTEX(vi)
1. Search in T to find the edge e j directly left of vi.
2. Insert the diagonal connecting vi to helper(e j) in D.
3. helper(e j)← vi
4. Insert ei in T and set helper(ei) to vi.

10

HANDLEMERGEVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.
4. Search in T to find the edge e j directly left of vi.
5. if helper(e j) is a merge vertex
6. then Insert the diagonal connecting vi to helper(e j) in D.
7. helper(e j)← vi

11

HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j)← vi

12

Algorithm TRIANGULATEMONOTONEPOLYGON(P)
Input. A strictly y-monotone polygon P stored in a doubly-connected edge list D.
Output. A triangulation of P stored in the doubly-connected edge list D.
1. Merge the vertices on the left chain and the vertices on the right chain of P into one

sequence, sorted on decreasing y-coordinate. If two vertices have the same y-coordinate,
then the leftmost one comes first. Let u1, . . . ,un denote the sorted sequence.

2. Initialize an empty stack S, and push u1 and u2 onto it.
3. for j← 3 to n−1
4. do if u j and the vertex on top of S are on different chains
5. then Pop all vertices from S.
6. Insert into D a diagonal from u j to each popped vertex, except the last one.
7. Push u j−1 and u j onto S.
8. else Pop one vertex from S.
9. Pop the other vertices from S as long as the diagonals from u j to them are

inside P. Insert these diagonals into D. Push the last vertex that has been
popped back onto S.

10. Push u j onto S.
11. Add diagonals from un to all stack vertices except the first and the last one.

13

Algorithm INTERSECTHALFPLANES(H)
Input. A set H of n half-planes in the plane.
Output. The convex polygonal region C :=

⋂
h∈H h.

1. if card(H) = 1
2. then C← the unique half-plane h ∈ H
3. else Split H into sets H1 and H2 of size dn/2e and bn/2c.
4. C1←INTERSECTHALFPLANES(H1)
5. C2←INTERSECTHALFPLANES(H2)
6. C←INTERSECTCONVEXREGIONS(C1,C2)

14

Algorithm RANDOMPERMUTATION(A)
Input. An array A[1 · · ·n].
Output. The array A[1 · · ·n] with the same elements, but rearranged into a random permutation.
1. for k← n downto 2
2. do rndindex←RANDOM(k)
3. Exchange A[k] and A[rndindex].

15

Algorithm 2DRANDOMIZEDLP(H,~c)
Input. A linear program (H,~c), where H is a set of n half-planes and~c ∈ R2.
Output. If (H,~c) is unbounded, a ray is reported. If it is infeasible, then two or three certificate

half-planes are reported. Otherwise, the lexicographically smallest point p that maximizes
f~c(p) is reported.

1. Determine whether there is a direction vector ~d such that ~d ·~c > 0 and ~d ·~η(h) > 0 for all
h ∈ H.

2. if ~d exists
3. then compute H ′ and determine whether H ′ is feasible.
4. if H ′ is feasible
5. then Report a ray proving that (H,~c) is unbounded and quit.
6. else Report that (H,~c) is infeasible and quit.
7. Let h1,h2 ∈ H be certificates proving that (H,~c) is bounded and has a unique lexicographi-

cally smallest solution.
8. Let v2 be the intersection of `1 and `2.
9. Let h3,h4, . . . ,hn be a random permutation of the remaining half-planes in H.
10. for i← 3 to n
11. do if vi−1 ∈ hi
12. then vi← vi−1
13. else vi ←the point p on `i that maximizes f~c(p), subject to the constraints in

Hi−1.
14. if p does not exist
15. then Let h j,hk (with j,k < i) be the certificates (possibly h j = hk) with

h j∩hk∩ `i = /0.
16. Report that the linear program is infeasible, with hi,h j,hk as certifi-

cates, and quit.
17. return vn

16

Algorithm RANDOMIZEDLP(H,~c)
Input. A linear program (H,~c), where H is a set of n half-spaces in Rd and~c ∈ Rd .
Output. If (H,~c) is unbounded, a ray is reported. If it is infeasible, then at most d +1 certificate

half-planes are reported. Otherwise, the lexicographically smallest point p that maximizes
f~c(p) is reported.

1. Determine whether a direction vector ~d exists such that ~d ·~c > 0 and ~d ·~η(h) > 0 for all
h ∈ H.

2. if ~d exists
3. then compute H ′ and determine whether H ′ is feasible.
4. if H ′ is feasible
5. then Report a ray proving that (H,~c) is unbounded and quit.
6. else Report that (H,~c) is infeasible, provide certificates, and quit.
7. Let h1,h2, . . . ,hd be certificates proving that (H,~c) is bounded.
8. Let vd be the intersection of g1,g2, . . . ,gd .
9. Compute a random permutation hd+1, . . . ,hn of the remaining half-spaces in H.
10. for i← d +1 to n
11. do if vi−1 ∈ hi
12. then vi← vi−1
13. else vi ←the point p on gi that maximizes f~c(p), subject to the constraints

{h1, . . . ,hi−1}
14. if p does not exist
15. then Let H∗ be the at most d certificates for the infeasibility of the (d−1)-

dimensional program.
16. Report that the linear program is infeasible, with H∗∪hi as certifi-

cates, and quit.
17. return vn

17

Algorithm MINIDISC(P)
Input. A set P of n points in the plane.
Output. The smallest enclosing disc for P.
1. Compute a random permutation p1, . . . , pn of P.
2. Let D2 be the smallest enclosing disc for {p1, p2}.
3. for i← 3 to n
4. do if pi ∈ Di−1
5. then Di← Di−1
6. else Di← MINIDISCWITHPOINT({p1, . . . , pi−1}, pi)
7. return Dn

18

MINIDISCWITHPOINT(P,q)
Input. A set P of n points in the plane, and a point q such that there exists an enclosing disc for

P with q on its boundary.
Output. The smallest enclosing disc for P with q on its boundary.
1. Compute a random permutation p1, . . . , pn of P.
2. Let D1 be the smallest disc with q and p1 on its boundary.
3. for j← 2 to n
4. do if p j ∈ D j−1
5. then D j← D j−1
6. else D j← MINIDISCWITH2POINTS({p1, . . . , p j−1}, p j,q)
7. return Dn

19

MINIDISCWITH2POINTS(P,q1,q2)
Input. A set P of n points in the plane, and two points q1 and q2 such that there exists an

enclosing disc for P with q1 and q2 on its boundary.
Output. The smallest enclosing disc for P with q1 and q2 on its boundary.
1. Let D0 be the smallest disc with q1 and q2 on its boundary.
2. for k← 1 to n
3. do if pk ∈ Dk−1
4. then Dk← Dk−1
5. else Dk ←the disc with q1, q2, and pk on its boundary
6. return Dn

20

Algorithm PARANOIDMAXIMUM(A)
1. if card(A) = 1
2. then return the unique element x ∈ A
3. else Pick a random element x from A.
4. x′←PARANOIDMAXIMUM(A\{x})
5. if x 6 x′

6. then return x′

7. else Now we suspect that x is the maximum, but to be absolutely sure, we
compare x with all card(A)−1 other elements of A.

8. return x

21

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x 6 x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ 6 xν or x > xν)
3. do if x′ 6 xν

4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

22

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported.
4. else (∗ Follow the path to x and report the points in subtrees right of the path. ∗)
5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x 6 xν

8. then REPORTSUBTREE(rc(ν))
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at the leaf ν must be reported.
12. Similarly, follow the path to x′, report the points in subtrees left of the path, and

check if the point stored at the leaf where the path ends must be reported.

23

Algorithm BUILDKDTREE(P,depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line ` through the median x-coordinate

of the points in P. Let P1 be the set of points to the left of ` or on `, and let
P2 be the set of points to the right of `.

5. else Split P into two subsets with a horizontal line ` through the median y-
coordinate of the points in P. Let P1 be the set of points below ` or on `,
and let P2 be the set of points above `.

6. νleft← BUILDKDTREE(P1,depth+1)
7. νright← BUILDKDTREE(P2,depth+1)
8. Create a node ν storing `, make νleft the left child of ν , and make νright the right

child of ν .
9. return ν

24

Algorithm SEARCHKDTREE(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R.
3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

25

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the set Py of y-

coordinates of the points in P. Store at the leaves of Tassoc not just the y-coordinate of the
points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with x-coordinate less

than or equal to xmid, the median x-coordinate, and the other subset Pright contains
the points with x-coordinate larger than xmid.

5. νleft← BUILD2DRANGETREE(Pleft)
6. νright← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make νright the right

child of ν , and make Tassoc the associated structure of ν .
8. return ν

26

Algorithm 2DRANGEQUERY(T, [x : x′]× [y : y′])
Input. A 2-dimensional range tree T and a range [x : x′]× [y : y′].
Output. All points in T that lie in the range.
1. νsplit←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported.
4. else (∗ Follow the path to x and call 1DRANGEQUERY on the subtrees right of the

path. ∗)
5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x 6 xν

8. then 1DRANGEQUERY(Tassoc(rc(ν)), [y : y′])
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at ν must be reported.
12. Similarly, follow the path from rc(νsplit) to x′, call 1DRANGEQUERY with the

range [y : y′] on the associated structures of subtrees left of the path, and check if
the point stored at the leaf where the path ends must be reported.

27

Algorithm TRAPEZOIDALMAP(S)
Input. A set S of n non-crossing line segments.
Output. The trapezoidal map T(S) and a search structure D for T(S) in a bounding box.
1. Determine a bounding box R that contains all segments of S, and initialize the trapezoidal

map structure T and search structure D for it.
2. Compute a random permutation s1,s2, . . . ,sn of the elements of S.
3. for i← 1 to n
4. do Find the set ∆0,∆1, . . . ,∆k of trapezoids in T properly intersected by si.
5. Remove ∆0,∆1, . . . ,∆k from T and replace them by the new trapezoids that appear

because of the insertion of si.
6. Remove the leaves for ∆0,∆1, . . . ,∆k from D, and create leaves for the new trape-

zoids. Link the new leaves to the existing inner nodes by adding some new inner
nodes, as explained below.

28

Algorithm FOLLOWSEGMENT(T,D,si)
Input. A trapezoidal map T, a search structure D for T, and a new segment si.
Output. The sequence ∆0, . . . ,∆k of trapezoids intersected by si.
1. Let p and q be the left and right endpoint of si.
2. Search with p in the search structure D to find ∆0.
3. j← 0;
4. while q lies to the right of rightp(∆ j)
5. do if rightp(∆ j) lies above si
6. then Let ∆ j+1 be the lower right neighbor of ∆ j.
7. else Let ∆ j+1 be the upper right neighbor of ∆ j.
8. j← j +1
9. return ∆0,∆1, . . . ,∆ j

29

Algorithm VORONOIDIAGRAM(P)
Input. A set P := {p1, . . . , pn} of point sites in the plane.
Output. The Voronoi diagram Vor(P) given inside a bounding box in a doubly-connected edge

list D.
1. Initialize the event queue Q with all site events, initialize an empty status structure T and

an empty doubly-connected edge list D.
2. while Q is not empty
3. do Remove the event with largest y-coordinate from Q.
4. if the event is a site event, occurring at site pi
5. then HANDLESITEEVENT(pi)
6. else HANDLECIRCLEEVENT(γ), where γ is the leaf of T representing the arc that

will disappear
7. The internal nodes still present in T correspond to the half-infinite edges of the Voronoi

diagram. Compute a bounding box that contains all vertices of the Voronoi diagram
in its interior, and attach the half-infinite edges to the bounding box by updating the
doubly-connected edge list appropriately.

8. Traverse the half-edges of the doubly-connected edge list to add the cell records and the
pointers to and from them.

30

HANDLESITEEVENT(pi)
1. If T is empty, insert pi into it (so that T consists of a single leaf storing pi) and return.

Otherwise, continue with steps 2– 5.
2. Search in T for the arc α vertically above pi. If the leaf representing α has a pointer to a

circle event in Q, then this circle event is a false alarm and it must be deleted from Q.
3. Replace the leaf of T that represents α with a subtree having three leaves. The middle leaf

stores the new site pi and the other two leaves store the site p j that was originally stored
with α . Store the tuples 〈p j, pi〉 and 〈pi, p j〉 representing the new breakpoints at the two
new internal nodes. Perform rebalancing operations on T if necessary.

4. Create new half-edge records in the Voronoi diagram structure for the edge separating
V(pi) and V(p j), which will be traced out by the two new breakpoints.

5. Check the triple of consecutive arcs where the new arc for pi is the left arc to see if the
breakpoints converge. If so, insert the circle event into Q and add pointers between the
node in T and the node in Q. Do the same for the triple where the new arc is the right arc.

31

HANDLECIRCLEEVENT(γ)
1. Delete the leaf γ that represents the disappearing arc α from T. Update the tuples represent-

ing the breakpoints at the internal nodes. Perform rebalancing operations on T if necessary.
Delete all circle events involving α from Q; these can be found using the pointers from
the predecessor and the successor of γ in T. (The circle event where α is the middle arc is
currently being handled, and has already been deleted from Q.)

2. Add the center of the circle causing the event as a vertex record to the doubly-connected
edge list D storing the Voronoi diagram under construction. Create two half-edge records
corresponding to the new breakpoint of the beach line. Set the pointers between them
appropriately. Attach the three new records to the half-edge records that end at the vertex.

3. Check the new triple of consecutive arcs that has the former left neighbor of α as its middle
arc to see if the two breakpoints of the triple converge. If so, insert the corresponding circle
event into Q. and set pointers between the new circle event in Q and the corresponding leaf
of T. Do the same for the triple where the former right neighbor is the middle arc.

32

Algorithm RETRACTION(S,qstart,qend,r)
Input. A set S := {s1, . . . ,sn} of disjoint line segments in the plane, and two discs Dstart and

Dend centered at qstart and qend with radius r. The two disc positions do not intersect any line
segment of S.

Output. A path that connects qstart to qend such that no disc of radius r with its center on the path
intersects any line segment of S. If no such path exists, this is reported.

1. Compute the Voronoi diagram Vor(S) of S inside a sufficiently large bounding box.
2. Locate the cells of Vor(P) that contain qstart and qend.
3. Determine the point pstart on Vor(S) by moving qstart away from the nearest line segment in

S. Similarly, determine the point pend on Vor(S) by moving qend away from the nearest line
segment in S. Add pstart and pend as vertices to Vor(S), splitting the arcs on which they lie
into two.

4. Let G be the graph corresponding to the vertices and edges of the Voronoi diagram. Remove
all edges from G for which the smallest distance to the nearest sites is smaller than or equal
to r.

5. Determine with depth-first search whether a path exists from pstart to pend in G. If so, report
the line segment from qstart to pstart, the path in G from pstart to pend, and the line segment
from pend to qend as the path. Otherwise, report that no path exists.

33

Algorithm CONSTRUCTARRANGEMENT(L)
Input. A set L of n lines in the plane.
Output. The doubly-connected edge list for the subdivision induced by B(L) and the part of A(L)

inside B(L), where B(L) is a bounding box containing all vertices of A(L) in its interior.
1. Compute a bounding box B(L) that contains all vertices of A(L) in its interior.
2. Construct the doubly-connected edge list for the subdivision induced by B(L).
3. for i← 1 to n
4. do Find the edge e on B(L) that contains the leftmost intersection point of `i and Ai.
5. f ← the bounded face incident to e
6. while f is not the unbounded face, that is, the face outside B(L)
7. do Split f , and set f to be the next intersected face.

34

Algorithm LEGALTRIANGULATION(T)
Input. Some triangulation T of a point set P.
Output. A legal triangulation of P.
1. while T contains an illegal edge pi p j
2. do (∗ Flip pi p j ∗)
3. Let pi p j pk and pi p j pl be the two triangles adjacent to pi p j.
4. Remove pi p j from T, and add pk pl instead.
5. return T

35

Algorithm DELAUNAYTRIANGULATION(P)
Input. A set P of n+1 points in the plane.
Output. A Delaunay triangulation of P.
1. Let p0 be the lexicographically highest point of P, that is, the rightmost among the points

with largest y-coordinate.
2. Let p−1 and p−2 be two points in R2 sufficiently far away and such that P is contained in

the triangle p0 p−1 p−2.
3. Initialize T as the triangulation consisting of the single triangle p0 p−1 p−2.
4. Compute a random permutation p1, p2, . . . , pn of P\{p0}.
5. for r← 1 to n
6. do (∗ Insert pr into T: ∗)
7. Find a triangle pi p j pk ∈ T containing pr.
8. if pr lies in the interior of the triangle pi p j pk
9. then Add edges from pr to the three vertices of pi p j pk, thereby splitting pi p j pk

into three triangles.
10. LEGALIZEEDGE(pr, pi p j,T)
11. LEGALIZEEDGE(pr, p j pk,T)
12. LEGALIZEEDGE(pr, pk pi,T)
13. else (∗ pr lies on an edge of pi p j pk, say the edge pi p j ∗)
14. Add edges from pr to pk and to the third vertex pl of the other triangle that

is incident to pi p j, thereby splitting the two triangles incident to pi p j into
four triangles.

15. LEGALIZEEDGE(pr, pi pl,T)
16. LEGALIZEEDGE(pr, pl p j,T)
17. LEGALIZEEDGE(pr, p j pk,T)
18. LEGALIZEEDGE(pr, pk pi,T)
19. Discard p−1 and p−2 with all their incident edges from T.
20. return T

36

LEGALIZEEDGE(pr, pi p j,T)
1. (∗ The point being inserted is pr, and pi p j is the edge of T that may need to be flipped. ∗)
2. if pi p j is illegal
3. then Let pi p j pk be the triangle adjacent to pr pi p j along pi p j.
4. (∗ Flip pi p j: ∗) Replace pi p j with pr pk.
5. LEGALIZEEDGE(pr, pi pk,T)
6. LEGALIZEEDGE(pr, pk p j,T)

37

Algorithm CONSTRUCTINTERVALTREE(I)
Input. A set I of intervals on the real line.
Output. The root of an interval tree for I.
1. if I = /0
2. then return an empty leaf
3. else Create a node ν . Compute xmid, the median of the set of interval endpoints, and

store xmid with ν .
4. Compute Imid and construct two sorted lists for Imid: a list Lleft(ν) sorted on left

endpoint and a list Lright(ν) sorted on right endpoint. Store these two lists at ν .
5. lc(ν)← CONSTRUCTINTERVALTREE(Ileft)
6. rc(ν)← CONSTRUCTINTERVALTREE(Iright)
7. return ν

38

Algorithm QUERYINTERVALTREE(ν ,qx)
Input. The root ν of an interval tree and a query point qx.
Output. All intervals that contain qx.
1. if ν is not a leaf
2. then if qx < xmid(ν)
3. then Walk along the list Lleft(ν), starting at the interval with the leftmost end-

point, reporting all the intervals that contain qx. Stop as soon as an interval
does not contain qx.

4. QUERYINTERVALTREE(lc(ν),qx)
5. else Walk along the list Lright(ν), starting at the interval with the rightmost

endpoint, reporting all the intervals that contain qx. Stop as soon as an
interval does not contain qx.

6. QUERYINTERVALTREE(rc(ν),qx)

39

REPORTINSUBTREE(ν ,qx)
Input. The root ν of a subtree of a priority search tree and a value qx.
Output. All points in the subtree with x-coordinate at most qx.
1. if ν is not a leaf and (p(ν))x 6 qx
2. then Report p(ν).
3. REPORTINSUBTREE(lc(ν),qx)
4. REPORTINSUBTREE(rc(ν),qx)

40

Algorithm QUERYPRIOSEARCHTREE(T,(−∞ : qx]× [qy : q′y])
Input. A priority search tree and a range, unbounded to the left.
Output. All points lying in the range.
1. Search with qy and q′y in T. Let νsplit be the node where the two search paths split.
2. for each node ν on the search path of qy or q′y
3. do if p(ν) ∈ (−∞ : qx]× [qy : q′y] then report p(ν).
4. for each node ν on the path of qy in the left subtree of νsplit
5. do if the search path goes left at ν

6. then REPORTINSUBTREE(rc(ν),qx)
7. for each node ν on the path of q′y in the right subtree of νsplit
8. do if the search path goes right at ν

9. then REPORTINSUBTREE(lc(ν),qx)

41

Algorithm QUERYSEGMENTTREE(ν ,qx)
Input. The root of a (subtree of a) segment tree and a query point qx.
Output. All intervals in the tree containing qx.
1. Report all the intervals in I(ν).
2. if ν is not a leaf
3. then if qx ∈ Int(lc(ν))
4. then QUERYSEGMENTTREE(lc(ν),qx)
5. else QUERYSEGMENTTREE(rc(ν),qx)

42

Algorithm INSERTSEGMENTTREE(ν , [x : x′])
Input. The root of a (subtree of a) segment tree and an interval.
Output. The interval will be stored in the subtree.
1. if Int(ν)⊆ [x : x′]
2. then store [x : x′] at ν

3. else if Int(lc(ν))∩ [x : x′] 6= /0
4. then INSERTSEGMENTTREE(lc(ν), [x : x′])
5. if Int(rc(ν))∩ [x : x′] 6= /0
6. then INSERTSEGMENTTREE(rc(ν), [x : x′])

43

Algorithm CONVEXHULL(P)
Input. A set P of n points in three-space.
Output. The convex hull CH(P) of P.
1. Find four points p1, p2, p3, p4 in P that form a tetrahedron.
2. C← CH({p1, p2, p3, p4})
3. Compute a random permutation p5, p6, . . . , pn of the remaining points.
4. Initialize the conflict graph G with all visible pairs (pt , f), where f is a facet of C and t > 4.
5. for r← 5 to n
6. do (∗ Insert pr into C: ∗)
7. if Fconflict(pr) is not empty (∗ that is, pr lies outside C ∗)
8. then Delete all facets in Fconflict(pr) from C.
9. Walk along the boundary of the visible region of pr (which consists exactly

of the facets in Fconflict(pr)) and create a list L of horizon edges in order.
10. for all e ∈ L

11. do Connect e to pr by creating a triangular facet f .
12. if f is coplanar with its neighbor facet f ′ along e
13. then Merge f and f ′ into one facet, whose conflict list is the same

as that of f ′.
14. else (∗ Determine conflicts for f : ∗)
15. Create a node for f in G.
16. Let f1 and f2 be the facets incident to e in the old convex hull.
17. P(e)← Pconflict(f1)∪Pconflict(f2)
18. for all points p ∈ P(e)
19. do If f is visible from p, add (p, f) to G.
20. Delete the node corresponding to pr and the nodes corresponding to the

facets in Fconflict(pr) from G, together with their incident arcs.
21. return C

44

Algorithm PAINTERSALGORITHM(T, pview)
1. Let ν be the root of T.
2. if ν is a leaf
3. then Scan-convert the object fragments in S(ν).
4. else if pview ∈ h+

ν

5. then PAINTERSALGORITHM(T−, pview)
6. Scan-convert the object fragments in S(ν).
7. PAINTERSALGORITHM(T+, pview)
8. else if pview ∈ h−ν
9. then PAINTERSALGORITHM(T+, pview)
10. Scan-convert the object fragments in S(ν).
11. PAINTERSALGORITHM(T−, pview)
12. else (∗ pview ∈ hν ∗)
13. PAINTERSALGORITHM(T+, pview)
14. PAINTERSALGORITHM(T−, pview)

45

Algorithm 2DBSP(S)
Input. A set S = {s1,s2, . . . ,sn} of segments.
Output. A BSP tree for S.
1. if card(S) 6 1
2. then Create a tree T consisting of a single leaf node, where the set S is stored explicitly.
3. return T

4. else (∗ Use `(s1) as the splitting line. ∗)
5. S+←{s∩ `(s1)+ : s ∈ S}; T+←2DBSP(S+)
6. S−←{s∩ `(s1)− : s ∈ S}; T−←2DBSP(S−)
7. Create a BSP tree T with root node ν , left subtree T−, right subtree T+, and with

S(ν) = {s ∈ S : s⊂ `(s1)}.
8. return T

46

Algorithm 2DRANDOMBSP(S)
1. Generate a random permutation S′ = s1, . . . ,sn of the set S.
2. T←2DBSP(S′)
3. return T

47

Algorithm 3DBSP(S)
Input. A set S = {t1, t2, . . . , tn} of triangles in R3.
Output. A BSP tree for S.
1. if card(S) 6 1
2. then Create a tree T consisting of a single leaf node, where the set S is stored explicitly.
3. return T

4. else (∗ Use h(t1) as the splitting plane. ∗)
5. S+←{t ∩h(t1)+ : t ∈ S}; T+←3DBSP(S+)
6. S−←{t ∩h(t1)− : t ∈ S}; T−←3DBSP(S−)
7. Create a BSP tree T with root node ν , left subtree T−, right subtree T+, and with

S(ν) = {t ∈ S : t ⊂ h(t1)}.
8. return T

48

Algorithm 3DRANDOMBSP2(S)
Input. A set S = {t1, t2, . . . , tn} of triangles in R3.
Output. A BSP tree for S.
1. Generate a random permutation t1, . . . , tn of the set S.
2. for i← 1 to n
3. do Use h(ti) to split every cell where the split is useful.
4. Make all possible free splits.

49

Algorithm PHASE1(σ ,G,k)
Input. A region σ , a set G of guards in the interior of σ , and an integer k > 1.
Output. A BSP tree T such that each leaf region contains at most k guards.
1. if card(G) 6 k
2. then Create a BSP tree T consisting of a single leaf node.
3. else if exactly one quadrant of σ contains more than k guards in its interior
4. then Determine the splitting lines `v(σ) and `h(σ) for a shrinking step, as ex-

plained above.
5. else Determine the splitting lines `v(σ) and `h(σ) for a quadtree split, as ex-

plained above.
6. Create a BSP tree T with three internal nodes; the root of T stores `v(σ) as its

splitting line, and both children of the root store `h(σ) as their splitting line.
7. Replace each leaf µ of T by a BSP tree Tµ computed recursively on the region

corresponding to µ and the guards inside that region.
8. return T

50

Algorithm LOWDENSITYBSP2D(S)
Input. A set S of n objects in the plane.
Output. A BSP tree T for S.
1. Let G(S) be the set of 4n bounding-box vertices of the objects in S.
2. k← 1; done← false; U ← a bounding square of S
3. while not done
4. do k← 2k; T←PHASE1(U,G(S),k); done← true
5. for each leaf µ of T

6. do Compute the set S(µ) of object fragments in the region of µ .
7. if card(S(µ)) > 5k then done← false
8. for each leaf µ of T

9. do Compute a BSP tree Tµ for S(µ) and replace µ by Tµ .
10. return T

51

Algorithm COMPUTEFREESPACE(S)
Input. A set S of disjoint polygons.
Output. A trapezoidal map of Cfree(R,S) for a point robot R.
1. Let E be the set of edges of the polygons in S.
2. Compute the trapezoidal map T(E) with algorithm TRAPEZOIDALMAP described in

Chapter 6.
3. Remove the trapezoids that lie inside one of the polygons from T(E) and return the resulting

subdivision.

52

Algorithm COMPUTEPATH(T(Cfree),Groad, pstart, pgoal)
Input. The trapezoidal map T(Cfree) of the free space, the road map Groad, a start position pstart,

and goal position pgoal.
Output. A path from pstart to pgoal if it exists. If a path does not exist, this fact is reported.
1. Find the trapezoid ∆start containing pstart and the trapezoid ∆goal containing pgoal.
2. if ∆start or ∆goal does not exist
3. then Report that the start or goal position is in the forbidden space.
4. else Let νstart be the node of Groad in the center of ∆start.
5. Let νgoal be the node of Groad in the center of ∆goal.
6. Compute a path in Groad from νstart to νgoal using breadth-first search.
7. if there is no such path
8. then Report that there is no path from pstart to pgoal.
9. else Report the path consisting of a straight-line motion from pstart to νstart, the

path found in Groad, and a straight-line motion from νgoal to pgoal.

53

Algorithm MINKOWSKISUM(P,R)
Input. A convex polygon P with vertices v1, . . . ,vn, and a convex polygon R with vertices

w1, . . . ,wm. The lists of vertices are assumed to be in counterclockwise order, with v1 and w1
being the vertices with smallest y-coordinate (and smallest x-coordinate in case of ties).

Output. The Minkowski sum P⊕R.
1. i← 1; j← 1
2. vn+1← v1; vn+2← v2; wm+1← w1; wm+2← w2
3. repeat
4. Add vi +w j as a vertex to P⊕R.
5. if angle(vivi+1) < angle(w jw j+1)
6. then i← (i+1)
7. else if angle(vivi+1) > angle(w jw j+1)
8. then j← (j +1)
9. else i← (i+1); j← (j +1)
10. until i = n+1 and j = m+1

54

Algorithm FORBIDDENSPACE(CP1, . . . ,CPn)
Input. A collection of C-obstacles.
Output. The forbidden space Cforb =

⋃n
i=1 CPi.

1. if n = 1
2. then return CP1
3. else C1

forb←FORBIDDENSPACE(P1, . . . ,Pdn/2e)
4. C2

forb←FORBIDDENSPACE(Pdn/2e+1, . . . ,Pn)
5. Compute Cforb = C1

forb∪C2
forb.

6. return Cforb

55

Algorithm NORTHNEIGHBOR(ν ,T)
Input. A node ν in a quadtree T.
Output. The deepest node ν ′ whose depth is at most the depth of ν such that σ(ν ′) is a north-

neighbor of σ(ν), and nil if there is no such node.
1. if ν = root(T) then return nil
2. if ν = SW-child of parent(ν) then return NW-child of parent(ν)
3. if ν = SE-child of parent(ν) then return NE-child of parent(ν)
4. µ ←NORTHNEIGHBOR(parent(ν),T)
5. if µ = nil or µ is a leaf
6. then return µ

7. else if ν = NW-child of parent(ν)
8. then return SW-child of µ

9. else return SE-child of µ

56

Algorithm BALANCEQUADTREE(T)
Input. A quadtree T.
Output. A balanced version of T.
1. Insert all the leaves of T into a linear list L.
2. while L is not empty
3. do Remove a leaf µ from L.
4. if σ(µ) has to be split
5. then Make µ into an internal node with four children, which are leaves that

correspond to the four quadrants of σ(µ). If µ stores a point, then store the
point in the correct new leaf instead.

6. Insert the four new leaves into L.
7. Check if σ(µ) had neighbors that now need to be split and, if so, insert them

into L.
8. return T

57

Algorithm GENERATEMESH(S)
Input. A set S of components inside the square [0 : U]× [0 : U] with the properties stated at the

beginning of this section.
Output. A triangular mesh M that is conforming, respects the input, consists of well-shaped

triangles, and is non-uniform.
1. Construct a quadtree T on the set S inside the square [0 : U]× [0 : U] with the following

stopping criterion: a square is split as long as it is larger than unit size and its closure
intersects the boundary of some component.

2. T← BALANCEQUADTREE(T)
3. Construct the doubly-connected edge list for the quadtree subdivision M corresponding to

T.
4. for each face σ of M

5. do if the interior of σ is intersected by an edge of a component
6. then Add the intersection (which is a diagonal) as an edge to M.
7. else if σ has only vertices at its corners
8. then Add a diagonal of σ as an edge to M.
9. else Add a Steiner point in the center of σ , connect it to all vertices on

the boundary of σ , and change M accordingly.
10. return M

58

Algorithm SHORTESTPATH(S, pstart, pgoal)
Input. A set S of disjoint polygonal obstacles, and two points pstart and pgoal in the free space.
Output. The shortest collision-free path connecting pstart and pgoal.
1. Gvis← VISIBILITYGRAPH(S∪{pstart, pgoal})
2. Assign each arc (v,w) in Gvis a weight, which is the Euclidean length of the segment vw.
3. Use Dijkstra’s algorithm to compute a shortest path between pstart and pgoal in Gvis.

59

Algorithm VISIBILITYGRAPH(S)
Input. A set S of disjoint polygonal obstacles.
Output. The visibility graph Gvis(S).
1. Initialize a graph G = (V,E) where V is the set of all vertices of the polygons in S and

E = /0.
2. for all vertices v ∈V
3. do W ← VISIBLEVERTICES(v,S)
4. For every vertex w ∈W , add the arc (v,w) to E.
5. return G

60

Algorithm VISIBLEVERTICES(p,S)
Input. A set S of polygonal obstacles and a point p that does not lie in the interior of any obstacle.
Output. The set of all obstacle vertices visible from p.
1. Sort the obstacle vertices according to the clockwise angle that the half-line from p to each

vertex makes with the positive x-axis. In case of ties, vertices closer to p should come
before vertices farther from p. Let w1, . . . ,wn be the sorted list.

2. Let ρ be the half-line parallel to the positive x-axis starting at p. Find the obstacle edges
that are properly intersected by ρ , and store them in a balanced search tree T in the order
in which they are intersected by ρ .

3. W ← /0
4. for i← 1 to n
5. do if VISIBLE(wi) then Add wi to W .
6. Insert into T the obstacle edges incident to wi that lie on the clockwise side of the

half-line from p to wi.
7. Delete from T the obstacle edges incident to wi that lie on the counterclockwise side

of the half-line from p to wi.
8. return W

61

VISIBLE(wi)
1. if pwi intersects the interior of the obstacle of which wi is a vertex, locally at wi
2. then return false
3. else if i = 1 or wi−1 is not on the segment pwi
4. then Search in T for the edge e in the leftmost leaf.
5. if e exists and pwi intersects e
6. then return false
7. else return true
8. else if wi−1 is not visible
9. then return false
10. else Search in T for an edge e that intersects wi−1wi.
11. if e exists
12. then return false
13. else return true

62

Algorithm SELECTINHALFPLANE(h,T)
Input. A query half-plane h and a partition tree or subtree of it.
Output. A set of canonical nodes for all points in the tree that lie in h.
1. ϒ ← /0
2. if T consists of a single leaf µ

3. then if the point stored at µ lies in h then ϒ ← {µ}
4. else for each child ν of the root of T

5. do if t(ν)⊂ h
6. then ϒ ← ϒ ∪{ν}
7. else if t(ν)∩h 6= /0
8. then ϒ ← ϒ ∪ SELECTINHALFPLANE(h,Tν)
9. return ϒ

63

Algorithm SELECTINTSEGMENTS(`,T)
Input. A query line ` and a partition tree or subtree of it.
Output. A set of canonical nodes for all segments in the tree that are intersected by `.
1. ϒ ← /0
2. if T consists of a single leaf µ

3. then if the segment stored at µ intersects ` then ϒ← {µ}
4. else for each child ν of the root of T

5. do if t(ν)⊂ `+

6. then ϒ ← ϒ ∪ SELECTINHALFPLANE(`−,Tassoc
ν)

7. else if t(ν)∩ ` 6= /0
8. then ϒ← ϒ ∪ SELECTINTSEGMENTS(`,Tν)
9. return ϒ

64

Algorithm SELECTBELOWPOINT(q,T)
Input. A query point q and a cutting tree or subtree of it.
Output. A set of canonical nodes for all lines in the tree that lie below q.
1. ϒ ← /0
2. if T consists of a single leaf µ

3. then if the line stored at µ lies below q then ϒ ← {µ}
4. else for each child ν of the root of T

5. do Check if q lies in t(ν).
6. Let νq be the child such that q ∈ t(νq).
7. ϒ ← {νq} ∪ SELECTBELOWPOINT(q,Tνq)
8. return ϒ

65

Algorithm SELECTBELOWPAIR(q1,q2,T)
Input. Two query points q1 and q2 and a cutting tree or subtree of it.
Output. A set of canonical nodes for all lines in the tree that lie below q1 and q2.
1. ϒ ← /0
2. if T consists of a single leaf µ

3. then if the line stored at µ lies below q1 and q2 then ϒ ← {µ}
4. else for each child ν of the root of T

5. do Check if q1 lies in t(ν).
6. Let νq1 be the child such that q1 ∈ t(νq1).
7. ϒ1← SELECTBELOWPOINT(q2,T

assoc
νq1

)
8. ϒ2← SELECTBELOWPAIR(q1,q2,Tνq1

)
9. ϒ← ϒ1∪ϒ2
10. return ϒ

66

