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Abstract: Pixel-wise spectral classi�cation is a widely used technique to produce

thematic maps from remotely sensed multispectral imagery. It is commonly based

on purely spectral features. In our approach we additionally consider additional

spatial features in the form of local context information. After all, spatial context

is the de�ning property of an image. Markov random �eld modeling provides the

assumption that the probability of a certain pixel to belong to a certain class de-

pends on the pixel's local neighborhood. We enhance the ICM algorithm of Besag

(1986) to account for the fuzzy class membership in the fuzzy clustering algorithm

of Bezdek (1973). The algorithm presented here was tested on simulated and real

remotely sensed multispectral imagery. We demonstrate the improvement of the

clustering as achieved by the additional spatial fuzzy neighborhood features.

1 Introduction

Spectral classi�cation is a widely used technique to produce thematic maps
from remotely sensed multispectral imagery. The classi�cation or labeling
of each pixel relies on its spectrum or spectral signature, which consists of
n spectral values of the spectral bands i = [1 ::: n] of wavelength �i. The
similarity between an observed spectral vector x = [::: ; x(�i); :::]

t 2 lRn and
a given reference spectrumm is commonly evaluated by the spectral distance
d = kx�mk in the feature space. The n-dimensional spectral feature space
is spanned by the radiance or re
ectance signals x(�i) as received in the n
spectral bands of the sensor or camera.

Given the set of all observed spectral vectors x corresponding to the pixels
of a particular multispectral image, unsupervised clustering algorithms are
employed to �nd k cluster centers in the spectral feature space lRn around
which the observed spectra are scattered. Each pixel of the image can then
be classi�ed (labeled) to the class to which its spectral distance is minimal.

Most classi�cation techniques applied in multispectral remote sensing (Rich-
ards 1993) rely on purely spectral features and consider only one pixel at a
time. More recently, a method for utilizing additional contextual informa-
tion from neighboring pixels has been derived from Markov random �eld
modeling (Besag 1986). This `ICM-algorithm' has been shown to improve



classi�cation results on multispectral imagery (Solberg et al. 1996). So far,
this spectral-spatial labeling approach has been used in conjunction with su-
pervised classi�cation only, i.e., the reference classes were established from
training data by the analyst. In this paper we describe the e�ects of incor-
porating spatial context information into unsupervised clustering techniques
such as the hard and fuzzy k-means algorithms.

2 Hard and Fuzzy Clustering

with Spectral and Spatial Features

All k-means algorithms or `migrating means'-algorithms work iteratively.
Also, all k-means algorithms, as used in multispectral image classi�cation,

determine for each pixel the Euclidean distance d(xjmc) =
qP

i(xi �mc;i)2

between the spectral vector x and the respective mean spectrum mc of each
class !c (c = 1; ::: ; k) in the spectral feature space which is spanned by the
n spectral bands i of the imaging sensor (i = 1; ::: ; n), where xi = x(�i).

The hard k-means algorithm (Ball and Hall 1967) assigns each pixel to the
class !c to which the spectral distance d(xjmc) is minimal. Then the k
cluster centers mc are recomputed as the means of all pixels which currently
belong to the respective class. The process is repeated until convergence.

The fuzzy k-means algorithm (originally `c-means', Bezdek 1973) relies on a
fuzzy membership pspec(xj!c) which is inversely proportional to the spectral
distance d(xjmc) :

pspec(xj!c) =
d�1(xjmc)P
c0 [d�1(xjmc0)]

;
kX

c=1

pspec(xj!c) = 1 : (1)

The algorithm iterates two alternating steps: (a) updating the member-
ship weights pspec(xj!c), and (b) re-estimating the cluster centers mc =P

x
pspec(xj!c)x=

P
x
pspec(xj!c). In contrast to the hard k-means, all pixels

are used for the computation of each cluster center, weighted with their re-
spective fuzzy membership pspec(xj!c). Convergence to a local minimum of
a global objective function has been shown (Bezdek 1981).

Considering contextual image information, we use Markov random �eld mod-
elling, and assume that the conditional spatial probability pspat(xj!c) of pixel
x depends only on the pixels x0 in its spatial neighborhood N (x) (Li 1995).
As the neighborhood N (x) we here use a l� l window around pixel x except
the pixel itself.

For the interaction between neighboring pixels, Besag (1986) has suggested
a neighborhood potential U(x) =

P
x

02N (x) [1� �(x;x0)], with �(x;x0) = 1
for equal classes !(x) = !(x0), and 0 otherwise.

In this paper we use a re�ned `fuzzy' neighborhood potential U(xj!c), based
on the current memberships P (!cjx0) (de�ned in Eq. 4) of the neighboring



pixels x0. The potential U(xj!c) and then the spatial membership pspat(xj!c)
are de�ned as

U(xj!c) =
X

x
02N (x)

[1� P (!cjx
0)] (2)

pspat(xj!c) =
1

Z
e��U(xj!c) ;

kX
c=1

pspat(xj!c) = 1 (3)

where � > 0 is a factor to weight the in
uence of the spatial context. The
spatial membership pspat(xj!c) for class !c is large if the neighboring pixels x

0

have large memberships P (!cjx0) for the same class !c, and small if they tend
to belong to other classes !c0. Computation of the normalization constant
Z is unnecessary here, as it cancels out in Eq. (4). The joint spectral-spatial
membership P (!cjx) of pixel x to belong to class !c then is de�ned to be :

P (!cjx) =
pspec(xj!c) � pspat(xj!c)P

c0 [pspec(xj!c0) � pspat(xj!c0)]
;

kX
c=1

P (!cjx) = 1 : (4)

Using the additional spatial features, we again can perform hard and fuzzy k-
means clustering, depending on whether the cluster centers are re-estimated
from only those pixels currently assigned to each cluster, or from all pixels
using their current memberships as weights.

3 Results on Simulated and Remotely Sensed

Multispectral Imagery

In order to evaluate the e�ect of the additional contextual memberships
(Eq. 3), we have simulated a test image with n = 2 spectral bands and k = 2
spectral classes !1 and !2 (Fig. 1). The spectral vectors x = [x1; x2]

t of each
class are scattered randomly around the two cluster centers m!1 and m!2,
forming uncorrelated Gaussian distributions. In the original spectral feature
space the two clusters (Fig. 1, right, true cluster centers marked by crosses)
are almost indistinguishable by eye appraisal due to the extreme scatter.
The root mean square scatter of both clusters is equal to the Euclidean
distance between the cluster centers.

A number of runs was performed with four di�erent algorithms. The num-
ber of clusters k = 2 and random initial centers (seed coordinates) for the
cluster centers were supplied. The resulting classi�cation accuracies (i.e.,
the relative number of correctly labeled pixels) and the cluster center esti-
mation accuracy (mean relative deviation of coordinates between true and
estimated class centers) are given in Table 1. Typical classi�cation results
of each method are shown in Fig. 2. We observe that the fuzzy k-means
performs slightly better in the estimation of the class center coordinates,
but not in the classi�cation. Also, the hard k-means is improved by the



additional spatial features in classi�cation, but not in cluster center accu-
racy. For fuzzy k-means with additional contextual memberships, however,
the results indicate clearly that not only the classi�cation results are im-
proved, but that also the coordinates of the cluster centers are estimated
with signi�cantly improved accuracy.

Good convergence of the iterative algorithm can be achieved by starting the
iteration with � = 0, i.e., without spatial in
uence, and then increasing
� gradually towards � = 1. For each intermediate �-value, convergence is
waited for before the spatial in
uence is increased (Fig. 4).

Another interesting observation is that the classi�cation and cluster center
accuracy does not deteriorate when the number of classes k is over-estimated.
We performed another series of runs with k = 3 and k = 4 and random
cluster seeds provided. With a fuzzy k-means on purely spectral features this
decreases the classi�cation accuracy as well as the cluster center estimation
(Fig. 3). In contrast, with contextual fuzzy k-means the super
uous classes
are basically not populated at all, and the centers of the actually existing
Gaussian distributions are found correctly. Classi�cation and cluster center
accuracy with over-estimated k = 4 clusters is indeed the same as for the
correct k = 2 case (Table 1, bottom line).

The fuzzy clustering with purely spectral features on the one hand, and with
spectral-spatial features on the other hand, was applied to remotely sensed
multispectral scanner imagery (
ight altitude 300 m) with n = 10 spec-
tral bands. The airborne line scanner of DAEDALUS, Inc., is operated on
board of a Do 228 aircraft by the German Aerospace Research Establishment
(DLR).

Some examplary classi�cation results can be inspected in Fig. 5. The clas-
si�cation results which utilize both spectral and spatial features appear
smoother and without grainy, pixel-size noise. Note that not only the pixel-
wise classi�cation but also the cluster centers di�er when utilizing additional
spatial features. The such established clusters are clearly better suitable for
thematic image segmentation (see e.g. the forest areas in Fig. 5, top).
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Figure 1: Simulated test image (left) with n = 2 spectral bands and k = 2 spec-

tral classes (center) with rms scatter equal to the distance between the cluster

centers in the spectral feature space (right).



hard k-means fuzzy k-means fuzzy k-means

hard w/ context fuzzy w/ context fuzzy w/ context

Figure 2: Typical classi�cation results of the various algorithms (left and center).

On the right-hand side, estimated cluster centers are depicted in the spectral fea-

ture space. The path of the migrating means from random seeds is indicated by

solid lines. (For improved visualization, the original feature space was magni�ed

and the scatter reduced.)

classi�cation accuracy cluster center accuracy
algorithm (correctly classi�ed pixels) (deviation from true centers)

hard k-means 75% (�1%) 5% (�1.5%)

with context 91% (�1%) 5% (�1.5%)

fuzzy k-means 75% (�1%) 3.5% (�1%)

with context 99% (�1%) 0.3% (�0.1%)

Table 1: Results on simulated data. Accuracy of cluster center estimation and

classi�cation for various algorithms. Error margins are estimated from several

runs with random cluster seeds.



spectral spectral-spatial Figure 3: Typical classi-

�cation results (top), and

cluster centers found (bot-

tom), with over-estimated

k = 4 (instead of the cor-

rect k = 2) for fuzzy k-

means clustering,

on purely spectral (left)

and spatial-spectral fea-

tures (right). On the

right-hand side, estimated

cluster centers are de-

picted in the spectral fea-

ture space. The path of

the migrating means from

random seeds is indicated

by solid lines. (For im-

proved visualization, the

original feature space was

magni�ed and the scatter

reduced.)
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Accuracy vs. Rising Spatial Influence

Figure 4: Typical iteration process.

Convergence is achieved for each level

of spatial in
uence �. The spatial in-


uence is raised gradually and yields in-

creasing accuracy of the cluster center

estimation.



image (�=980 nm) spectral spectral-spatial

Figure 5: Multispectral aerial imagery of N�urnberg with n = 10 spectral bands

(�1 = 435 nm, �10 = 2215 nm), unsupervisedly classi�ed by fuzzy k-means cluster-

ing into k = 4 classes (recorded in 1995, 300m altitude, atmospherically corrected,

various scales).



4 Conclusions

We have tested the e�ects of using spatial context features in addition to
spectral features for unsupervised clustering and classi�cation of multispec-
tral imagery. Our observations with simulated and remotely sensed multi-
spectral imagery can be summarized as follows:

� The additional use of spatial features can signi�cantly improve the
classi�cation (labeling) results of unsupervised clustering. The full
bene�ts of additional spatial features are experienced when used in
conjunction with fuzzy clustering (in contrast to hard clustering).

� Moreover, also the accuracy of the cluster center coordinates as esti-
mated by unsupervised clustering is signi�cantly improved when using
additional spatial features in conjunction with fuzzy k-means.

� The additional spatial features avoid e�ectively the deteriorating ef-
fect of over-estimating the number of clusters k. The cluster centers
are found accurately by fuzzy k-means clustering even if the spectral
feature space in fact contains fewer than k clusters of Gaussian distri-
bution.
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spectral spectral-spatial

Figure 5b: Multispectral aerial imagery of N�urnberg with n = 10 spectral bands

(�1 = 435 nm, �10 = 2215 nm), classi�ed by fuzzy k-means clustering into k = 4

classes (recorded in 1995, 300 m altitude, atmospherically corrected).


