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Abstract—The combination of multisource remote sensing and classifiers
geographic data is believed to offer improved accuracies in land
cover classification. For such classification, the conventional para-

metric statistical classifiers, which have been applied successfully combination function
in remote sensing for the last two decades, are not appropriate,
since a convenient multivariate statistical model does not exist for  input patterns result

the data. In this paper, several single and multiple classifiers, that
are appropriate for the classification of multisource remote sensing
and geographic data are considered. The focus is on multiple classi-
fiers: bagging algorithms, boosting algorithms, and consensus-the-
oretic classifiers. These multiple classifiers have different charac-
teristics. The performance of the algorithms in terms of accuracies
is compared for two multisource remote sensing and geographic rig. 1. Schematic diagram of a multiple classifier.
datasets. In the experiments, the multiple classifiers outperform

the single classifiers in terms of overall accuracies.

Index Terms—Bagging, boosting, consensus theory, multiple posgible to hgv_e the indiv_idu_al classifier_s support ea_ch other i_n
classifiers, multisource remote sensing data. making a decision. The aim is to determine an effective combi-
nation method that makes use of the benefits of each classifier
but avoids the weaknesses.

In this paper, the performance of three types of multiple clas-
ATA FUSION of multisource remote sensing and gecsifiers are investigated in terms of classification of multisource
graphic data for classification purposes has been an iremote sensing and geographic data. The paper is organized as

portant research topic for more than a decade. In such fusiémilows. First, multiclassifier systems are discussed with a spe-
different types of information from several data sources, e.gial emphasis on the recently proposed bagging and boosting
Landsat Thematic Mapper data, radar data, elevation data, afgbrithms and statistical consensus theory. Experimental re-
slope data, are used in order to improve the classification agits for the multisource remote sensing and geographic datasets
curacy as compared to the accuracy achieved by single-sougge given in Section IlI. Finally, conclusions are drawn in Sec-
classification. tion V.

A major observation in previous research on multisource
classification is that conventional parametric statistical pattern
recognition methods are not appropriate in classification of
such data, since in most cases they cannot be modeled by &everal methods have been proposed to combine multiple
convenient multivariate statistical model [1], [2]. Thereforeglassifiers [3]-[5]. Wolpert [3]introduced the general method of
other methods have been looked at. stacked generalization where outputs from classifiers are com-

Here, we are interested in the use of an ensemble of classifie¥zed in a weighted sum with weights that are based on the in-
or multiple classifierga schematic representation of which islividual performance of the classifiers. Tumer and Ghosh [4]
shownin Fig. 1) for classification of multisource data. Traditionhave also shown that substantial improvements can be achieved
ally, in pattern recognition, a single classifier is used to detdn difficult pattern recognition problems by combining or in-
mine which class a given pattern belongs to. However, in matggrating the outputs of multiple classifiers. Benediktssbn
cases, the classification accuracy can be improved by usingauncombined classifiers using neural networks [6], [7] and im-
ensemble of classifiers in the classification. In such cases, ipved their overall accuracies as compared to the best results

of the single classifiers involved in the classification.

Manuscript received September 26, 2001; revised May 17, 2002. This re- 1 N€ theory of multiclassifier systems can be traced back at
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University of Iceland, Reykjavik 1S-107, Iceland. He is now with Dimon Soft{12]. Both these approaches are based on manipulating training
ware, Reykjavik 1S-105, Iceland. samples. In contrast, statistical consensus theory is based on
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A. Boosting AdaBoost tends to exhibit virtually no overfitting when the data
Boosting is a general supervised method that is used atga.noiseless. Other advantages of boosting iﬂclude that the _aI-
increase the accuracy of any classifier. Several versions 3¥fithm has a tendency to reduce both the variance and the bias
boosting have been proposed, but we will concentrate 8hthe classification [11], [13]. On the other hand, AdaBoost is
AdaBoost [11], which was proposed in 1995. In pamcu|apomputat|0_n<_':1lly more demanding than_oth_er simpler methods.
we will use the AdaBoost.M1 method, which can be used rherefore, it is dependent on the classification problem whether

classification problem with more than two classes. This versidfiS More valuable to get increased classification accuracy or to
of the AdaBoost algorithm is shown as follows. obtain a simple and fast classifier. Another problem with Ad-

aBoost is that it usually does not perform well in terms of accu-
racies when there is noise in the data.

Input: A training set S with  m samples, where each

sample =z, is of class wj, base classifier Z, and B. Bagging

number of classifiers T. . . -

1 S =5 and weight (x,)=1 for j=1...m (z€8) Bagging is an abbreviation m‘ootstrapaggegatng. Boot- _

2 For i=1to T { strap methods are based on randomly and uniformly collecting
3' C, = () m samples with replacement from a sample set of size

4' . t ]/le: weight () The bagging algorithm (which, like AdaBoost, is supervised)
. i Lz €5;:C(x5)Aw i H H

5. f < >05 et S toa bootstrap sample from was proposed in 1994 [12] and constructs many different

bags of samples by performing bootstrapping iteratively,

S with weight () =1Va2 € S; and go to Step 3 e -
oht (=) : 9 P classifying each bag, and computing some type of an average

If € is stil > 0.5 after 25 iterations, abort! . . . ..
5 B = eif(1—er) of the classifications of each sample via a vote. Bagging is in
7. For each s, € S.{if Ci(r,)=w, then some ways similar to boosting, since both methods design a

collection of classifiers and combine their conclusions with a
vote. However, the methods are different. For example, because
bagging always uses resampling instead of reweighting, it does
not change the distribution of the samples (does not weight

weight (z;) = weight (z;) - 8;}
8. Norm weights such that the total weight
of S; is m

9. e : .

10} C*(x) = arg maxoca 3 log(1/5:) them), so all classifiers in the bagging algorithm have equal
. <) = g weN i:0;(2)=w % . . . . .

Output:  The multiple classifier or weights during the voting. It is also noteworthy that bagging

can be done in parallel, i.e., it is possible to prepare all the bags

at once. On the other hand, boosting is always done in series,
In the beginning of AdaBoost, all samples have the sara@d each sample set is based on the latest weights. The bagging

weight, 1/m, thus forming a uniform distributionD;, and algorithm can be written as follows.

they are used to train the classifi€i. Then, the samples are

reweighted in such a way that the incorrectly classified samples

have more weight than the correctly classified ones. Based 'B%Utl A' tfa'”"f‘g Iset ’5 W;Jth ml sa_r:ples, WheIre ez;ch
this new distribution, the classifier of the next iteration is >0 Pc ¥ 15 0T ClASS = wy, Dase classimier > an
number of bootstrapped sets T.

trained. The classifier of iteratioh) C;, is therefore based on
the distributionD;_; calculated in iteratior — 1. 5
Iteration by iteration, the weight of the samples that are cor-

1. For 1=1to T{
S; = bootstrapped bag from S

rectly classified goes down. Therefore, the algorithm starts coin- Ci = 1(5)

centrating on the difficult samples. At the end of the procedurg,” .

T weighted training sets arifl base classifiers have been gen- ~ (@) = ars mitoco Zf‘?ﬁ‘”):” .
Output:  The multiple classifier C*.

erated.
Itis recognized that not all base classifiers accept a weighted
set of samples. In such cases, instead of supplying the distribuFrom the above, it can be seen that bagging is a very simple
tion D; directly to the base classifier, a set of samples is chosalgorithm. Each classifie€; is trained on a bootstrapped set
from S in accordance witlD; by replacement. This is similar of samplesS; from the original sample se&f. After all classi-
to the bootstrapping performed in the bagging method discus$eds have been trained, a simple majority vote is used, but if
next, except that the distribution generally is not uniform.  more than one class jointly receives the maximum number of
If the classification error is greater than 0.5, an attempt ¥®tes, then the winner is selected using some simple mecha-
made to decrease it by bootstrapping. If the classification ermism, e.g., random selection. For a particular Sagthe prob-
stays above 0.5, then the procedure is stopped (in failure).ahility that a sample fron%' is selected at least oncesin tries
demand is made, therefore, on the minimum accuracy of tisel — (1 — 1/m)™. For a largem, the probability is approxi-
base classifier, which can be of considerable disadvantagematelyl — 1/e & 0.632, indicating that each bag only includes
multiclass problems. about 63.2% of the samples $ If the base classifier is un-
The main advantage of AdaBoost is that in many cases it istable, i.e., when a small change in training samples can result
creases the overall accuracy of the classification. Many practigah large change in classification accuracy, then bagging can im-
classification problems include samples that are not equally difrove the classification accuracy significantly. If the base classi-
ficult to classify, and AdaBoost is suitable for such problem$eris stable, e.g., like a k-NN classifier, then bagging can reduce
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the classification accuracy because each classifier receives less TABLE |
of the training data TRAINING AND TEST SAMPLES FORINFORMATION CLASSES IN THE

. . . . . . EXPERIMENT ON THE COLORADO DATASET
The main advantage of the bagging algorithmis that it can in-
crease the classification accuracy significantly if the base clas

L . . . Class # | Information Class Training | Test
fier is properly selected. The bagging algorithm is also not ver ] )
sensitive to noise in the data. The algorithm uses the instabili Size | Size
of its base classifier in order to improve the classification ac 1 Water 301 302
curacy. Therefore, it is of great importance to select the ba: o Colorado Blue Spruce 56 56
classifier carefully. This is also the case for boosting, sinceiti 5 Mountane/Subalpine Meadow 43 44
sensitive to small changes in the input signal. Bagging reduc
the variance of the classification, just as boosting does, but Aspen 70 7
contrast to boosting, bagging has little effect on the bias of tt 5 Ponderosa Pine 1 157 157
classification. 6 Ponderosa Pine/Douglas Fir 122 122
7 Engelmann Spruce 147 147
C. Consensus Theory 8 Douglas Fir/White Fir 38 38
Consensus theory is not based on manipulating the trainit g Douglas Fir/Ponderosa Pine/Aspen 25 25
data like bagging and boostlng. Consensus theory [§], [1_4] ir o Douglas Fir/White Fir/Aspen 49 50
volves general procedures with the goal of combining singl
probability distributions to summarize estimates from multiple Total 1008 | 1011
experts, with the assumption that the experts make decisions
based on Bayesian decision theory. The combination formula140 .
obtained is called a consensus rule. The consensus rules are (
in classification by applying a maximum rule, i.e., the summe
rized estimate is obtained for all the information classes, andt | N |
patternX is assigned to the class with the highest summarize [ f’
estimate. Probably, the most commonly used consensus rul¢ *®°r [N a
the linear opinion pool (LOP), which is based on a weighte T Aspen e / \\ i
linear combination of the posterior probabilities from each da% gof- [ Ponderosa Pine/Douglas Fir // | f" 7
source. Another consensus rule, the logarithmic opinion po= / | "
(LOGP), is based on the weighted product of the posterior pro:-’f sof ,’I N /-’If 1
abilities. The LOGP differs from the LOP in that it is unimodal LA !
and less dispersed. Also, the LOGP treats the data sourcesin | S N ,/' i
pendently. I SO / 4
The weighting schemes in consensus theory should reflectt =t __ == S Y |
goodness of the input data. The simplest approach is to give Il
the data sources equal weights. Also, reliability measures tt . ' . , .
rank the data sources according to their goodness can be use K 2 3 5 6 7

4
. . . . . . Feature Number
a basis foheuristic weighting6]. Furthermore, the weights can _ '
be chosen to not 0n|y weight the individual sources but also tﬁg. 2. Colorado data. Average spectra for three forest type classes. The first
. . . _four features are the Landsat MSS data, followed by elevation, slope, and aspect
individual classes. For such a scheme, both linear and nonling@pectively.

optimization can be used.

3) simple classifier 1R with minimum bucket size of eight
IIl. EXPERIMENTAL RESULTS [18], which only uses one feature when it determines a
Two experiments were conducted on multisource remote  class.
sensing and geographic data using bagging, boosting, andh summary, the single classifiers applied to the datasets were
consensus-theoretic classifiers. To obtain baseline results g following:
the multiple classifiers, several single classifiers were applied « minimum Euclidean distance (MED);
to the data. These include the minimum Euclidean distance « maximum likelihood (ML);
(MED) classifer, Gaussian maximum likelihood (ML) classi- « conjugate-gradient backpropagation (CGBP);
fier, and conjugate-gradient backpropagation (CGBP) [6] with « decision table;
two and three layers. The base classifiers that were used fore j4.8 (an implementation of the C4.5 decision tree);
bagging and boosting were also trained as single classifiers one 1R (classification based on one feature).
the data. These base classifiers were as follows: In the results below, theverageaccuracyis defined as the av-

1) decision table with a ten-fold cross validation for featurerage of the classification accuracy of each class, regardless of the
selection and termination of search for the best feature sgetmber of samples in each class. Drerall accuracys defined
after 15 nonimproving subsets [15]; asthe number of correctly classified samples, regardless of which

2) j4.8 decision tree [16] (an implementation of the C4.6lass they belong to, divided by the total number of samples.
revision eight-decision tree [17]); The results of the experiments are discussed below.
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TABLE I
TRAINING ACCURACIES INPERCENTAGE FOR THEDIFFERENT CLASSIFICATION METHODS APPLIED TO THECOLORADO DATASET

Method CL CL CL CL CL CL CL Cl CL ClL Avg. | Overall
1 2 3 4 5 6 7 8 9 10 Acc. Acc.
MED 415 | 98.2 | 25.6 | 37.1 | 37.6 | 0.0 73.5 0.0 40.0 24.5 37.8 40.3
Decision Table 100.0 | 89.3 | 67.4 | 84.3 | 54.1 | 80.3 | 100.0 | 36.8 | 24.0 93.9 73.0 82.8
j4.8 100.0 | 83.9 | 79.1 | 87.1 | 68.8 | 88.5 | 99.3 | 57.9 | 52.0 95.9 81.3 88.0
1R 100.0 | 0.0 | 0.0 0.0 382|631 | 973 | 23.7 | 0.0 36.7 35.9 60.3
CGBP (40 hidden neurons) 100.0 | 96.7 | 95.7 | 99.5 | 90.3 | 89.5 | 100.0 | 87.3 | 96.7 | 100.0 || 95.6 | 96.3
LOP (equal weights) 100.0 | 0.0 00 | 929 | 389 | 49.2 | 100.0 | 0.0 12.0 | 100.0 || 49.3 68.1
LOP (heuristic weights) 100.0 | 25.0 | 16.3 | 91.4 | 36.3 | 90.2 | 99.3 0.0 0.0 100.0 || 55.8 74.2

LOP (optimal linear weights) 100.0 | 62.5 | 25.6 | 74.3 | 66.2 | 79.5 | 98.6 | 23.7 | 40.0 91.8 66.2 80.3
LOP (optimized with CGBP) 100.0 | 87.9 | 26.2 | 81.8 | 67.8 | 73.0 | 100.0 | 39.5 | 75.0 944 74.6 83.5
LOGP (equal weights) 99.7 | 96.4 | 209 | 87.1 | 60.5 | 46.7 | 100.0 | 44.7 | 44.0 91.8 69.2 79.0
LOGP (heuristic weights) 99.7 | 91.1 | 23.3 | 95.7 | 45.2 | 83.6 | 100.0 5.3 48.0 | 100.0 69.2 80.5
LOGP (optimal linear weights) | 100.0 | 67.9 | 23.3 | 81.4 | 58.6 | 82.8 | 98.6 | 18.4 | 28.0 | 91.8 65.1 79.7
LOGP (optimized with CGBP) | 100.0 | 80.4 | 69.8 | 99.6 | 78.3 | 82.8 | 100.0 | 80.3 | 100.0 | 100.0 89.1 91.4
Bagging (Decision Table) 100.0 | 69.6 | 76.7 | 95.7 | 81.5 | 82.0 | 100.0 | 31.6 | 60.0 98.0 79.5 88.3

Bagging (j4.8) 100.0 | 89.3 | 74.4 | 929 | 84.1 | 81.1 | 100.0 | 55.3 | 72.0 | 939 | 84.3 90.4
Bagging (1R) 100.0 | 41.1 | 60.5 | 61.4 | 50.3 | 68.0 | 97.3 | 21.1 | 32.0 | 83.7 | 61.5 74.9
Boosting (Decision Table) 100.0 | 82.1 | 88.4 | 98.6 | 75.2 | 83.6 | 100.0 | 68.4 | 100.0 | 100.0 | 89.6 91.4
Boosting (j4.8) 100.0 | 98.2 | 97.7 | 100.0 | 91.1 | 94.3 | 100.0 | 94.7 | 100.0 | 100.0 || 97.6 97.5
Boosting (1R) 100.0 | 94.6 | 79.1 | 95.7 | 78.3 | 76.2 | 100.0 | 63.2 | 100.0 | 100.0 | 88.7 90.9
Number of Samples 301 56 43 70 157 | 122 147 38 25 49 1008
A. Colorado Dataset For the LOP and LOGP, ten data classes were defined in each

gata source. The multispectral remote sensing data sources were
dataset consisting of the following four data sources: modeled to be Gaussian. On the other han(_j, the _topo_graphic
data sources were modeled by Parzen density estimation with
1) Lands.at MSS dat.a (four spectral da‘Fa channels); Gaussian kernels [19], which constructs an average of density
2) elevation data (in 10-m contour intervals, one dantions, centered at each training sample. Several different
channel); o weighting schemes were used for the LOP and LOGP [6].
3) slope data (0to 90" in 1° increments, one data channel); gqth hagging and boosting were applied on the raw data and
4) Aspect data (1to 180 in 1° increments, one datan ysing the WEKA software provided by the University of
channel). Waikato, New Zealand [20]. In the case of bagging, 100 itera-
The area used for classification is a mountainous area in Cghns were selected for the decision table, ten iterations for j4.8,
orado. Ground reference data are available with ten grounghq 200 iterations for 1R. For boosting, the Adaboost.M1 was
cover classes. One class is water; the others are forest typegrgloyed, with 50 iterations for the decision table, 200 itera-
specified in Table I. It is very difficult to distinguish among theions for j4.8, and 60 iterations for 1R. The number of iterations
forest types using the Landsat MSS data alone, since the foigat chosen after trying up to at least 300 iterations for j4.8 and
classes show very similar spectral response. A typical exampig and 100 iterations for the decision table. A plot of the overall
of this is shown in Fig. 2 for the average spectra of three of thest accuracies as a function of the number of iterations is shown
forest type classes. For these classes, it is clear that it helpint®ig. 3. In each case, the ten-class problem was converted into
add the topographic data sources to the Landsat data in ordemigtiple two-class problems, through the use ofithdtiClass-
make the data more distinguishable. Classifier[20], to make it more tractable for the base classi-
The training accuracies for both single and multiple clasiers, especially in view of the stringent classification accuracy
sifiers are given in Table Il. The test accuracies are given demand of the AdaBoost.M1 algorithm. As can be seen from
Table Ill. It was not possible to use the Gaussian maximuRig. 3, all plots have a knee at 10 to 20 iterations. After that,
likelihood classifier for the Colorado dataset. The covariangiey improve only slightly.
matrix, which was computed using the standard unbiased estiAt first glance, it may seem odd that in the experiments
mation on the raw data, became singular for several of the fordgfferent numbers of iterations were used when bagging and
type classes because of little variation in the topographic dab@osting each base classifier (as discussed below). However, the

In the first experiment, classification was performed on
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TABLE Il
TEST ACCURACIES INPERCENTAGE FOR THEDIFFERENT CLASSIFICATION METHODS APPLIED TO THECOLORADO DATASET

Method CL CL CL CL CL CL CL CL Cl CL Avg. | Overall
1 2 3 4 5 6 7 8 9 10 Acc. Acc.
MED 40.1 | 100.0 | 34.1 | 30.0 | 32.5 | 0.8 69.4 0.0 | 28.0 | 20.0 35.5 38.0
Decision Table 100.0 | 804 | 50.0 | 74.3 | 47.1 | 73.0 | 96.6 | 28.9 | 4.0 80.0 63.4 77.0
j4.8 100.0 | 62.5 | 54.5 | 743 | 57.3 | 66.4 | 98.0 | 28.9 | 8.0 84.0 63.4 77.4
1R 100.0 0.0 0.0 0.0 | 306 | 65.6 | 95.9 | 15.8 | 0.0 24.0 33.2 58.3
CGBP (40 hidden neurons) 99.9 57.1 | 61.0 | 67.6 | 59.3 | 69.1 | 974 | 34.6 | 45.3 | 78.7 67.0 78.4
LOP (equal weights) 100.0 | 0.0 | 0.0 | 87.1 350 | 484 | 1000 | 0.0 | 0.0 | 940 | 46.5 | 66.4
LOP (heuristic weights) 100.0 | 30.4 | 18.2 | 80.0 | 35.7 | 83.5 | 100.0 | 0.0 0.0 96.0 54.9 73.4

LOP (optimal linear weights) 100.0 | 80.4 | 25.0 | 77.1 | 66.3 | 75.4 | 99.3 | 15.8 | 32.0 | 92.0 66.1 80.2
LOP (optimized with CGBP) 100.0 | 90.2 | 39.2 | 75.3 | 61.0 | 74.6 | 99.3 | 34.9 | 58.0 | 96.5 72.9 82.2
LOGP (equal weights) 99.3 | 100.0 | 18.2 | 85.7 | 56.7 | 52.5 | 99.3 | 42.1 | 44.0 | 92.0 69.0 78.7
LOGP (heuristic weights) 1000 | 964 | 18.2 | 914 | 40.8 | 87.7 | 99.3 | 10.5 | 24.0 | 100.0 || 66.8 79.6
LOGP (optimal linear weights) | 100.0 | 76.8 | 25.0 | 75.7 | 63.7 | 81.1 | 99.3 | 13.2 | 16.0 | 92.0 64.3 80.0
LOGP (optimized with CGBP) | 99.8 64.3 | 58.0 | 73.9 | 61.5 | 71.7 | 98.6 | 49.3 | 80.0 | 94.0 75.1 82.3
Bagging (Decision Table) 100.0 | 66.1 | 72.7 | 80.0 | 73.2 | 72.1 | 99.3 | 15.8 | 20.0 | 94.0 69.3 82.5

Bagging (j4.8) 100.0 | 60.7 | 63.6 | 75.7 | 69.4 | 75.4 | 99.3 | 28.9 | 40.0 | 82.0 || 69.5 81.7
Bagging (1R) 100.0 | 429 | 54.5 | 61.4 | 446 | 70.5 | 98.0 | 13.2 | 24.0 | 80.0 || 58.9 73.6
Boosting (Decision Table) 100.0 | 67.9 | 70.5 | 80.0 | 67.5 | 73.0 | 99.3 | 28.9 | 76.0 | 98.0 | 76.1 83.8
Boosting (j4.8) 100.0 | 60.7 | 70.5 | 77.1 | 65.6 | 67.2 | 98.6 | 42.1 | 60.0 | 84.0 | 72.6 81.5
Boosting (1R) 100.0 | 73.2 | 70.5 | 77.1 | 68.2 | 73.0 | 100.0 | 60.5 | 72.0 | 100.0 || 79.4 85.3
Number of Samples 302 56 44 | 70 | 157 | 122 | 147 | 38 25 50 1011
Test results using AdaBoost.M1 and Bagging with Decision Table, j4.8 and 1R TABLE |V
9 ' ‘ : ' ' : ' ' : TRAINING AND TEST SAMPLES FORINFORMATION CLASSES IN THE
EXPERIMENT ON THE ANDERSONRIVER DATASET
85
Class # Information Training | Test
éiso Class Size Size
§ 1 Douglas Fir (31-40m) 971 1250
S 2 Douglas Fir (21-30m) 551 817
-.g 3 Douglas Fir + Other Species(31-40m) 548 | 701
§70 4 Douglas Fir + Lodgepole Pine (21-30m) 542 705
o 5 Hemlock + Cedar (31-40m) 317 405
g 65 6 Forest Clearings 1260 1625
© Total 4189 | 5503
60
From Tables Il and 11, it is apparent, that all three multiple

55 s i : ; ; i : ; i
¢ 2 4 80 B0 00 120 140 160 180 200  classifier schemes show improvement over the single classifiers
(minimum Euclidean distance, decision table, j4.8, 1R, and
Fig.3. Colorado data. Testaccuracies as a function of the number of iteratiof§o-|layer conjugate-gradient backpropagation with 40 hidden

neurons) in terms of both average and overall accuracies (the

goal was not to compare the computational demands of baggMy classifier was not applicable here because of singularity
and boosting each base classifier, but rather to compare theidblems). The highest overall and average training accura-
in terms of the highest achievable test accuracies. Thereforei@ts were achieved by boosting the j4.8 decision tree. How-
was decided to use the “optimal” number of iterations for eaever, the highest overall and average test accuracies were ob-
base classifier instead of using the same number of iteratidaged by boosting the 1R base classifier, which gave far worse
for all three base classifiers. training and test accuracies on its own than the other base
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TABLE V
TRAINING ACCURACIES INPERCENTAGE FOR THEDIFFERENT CLASSIFICATION METHODS APPLIED TO THEANDERSONRIVER DATASET

Method Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 Average Overall

Accuracy | Accuracy
MED 40.4 8.9 47.6 67.7 42.3 72.4 46.6 50.5
ML 54.6 31.6 87.8 90.9 814 73.3 69.9 68.2
Decision Table 78.7 59.3 76.8 70.8 75.7 834 74.1 76.1
j4.8 93.9 91.5 93.8 93.9 96.2 97.0 94.4 94.7
1R 61.3 6.5 22.8 74.2 19.2 77.5 43.6 52.4
CGBP (30 hidden neurons) 72.2 34.4 67.2 74.6 79.2 83.1 68.4 70.7
LOP (equal weights) 49.6 0.0 0.0 51.5 0.0 94.9 32.7 47.6
LOP (heuristic weights) 68.2 0.0 0.0 73.1 24.3 89.4 42.5 54.0
LOP (optimal linear weights) 69.8 42.7 81.20 77.5 70.4 78.9 70.1 71.5
LOP (optimized with CGBP) 69.0 45.0 81.3 76.9 85.0 78.4 72.6 71.8
LOGP (equal weights) 68.7 28.1 79.6 78.8 81.7 74.3 68.5 68.8
LOGP (heuristic weights) 68.9 33.2 78.5 79.5 75.7 75.8 68.6 69.4
LOGP (optimal linear weights) 71.9 40.3 79.7 75.1 82.0 79.1 71.4 72.1
LOGP (optimized with CGBP) 81.2 56.0 84.3 88.7 91.7 86.4 81.4 81.6
Bagging (Decision Table) 97.6 91.5 97.6 96.9 100.0 99.0 97.1 97.3
Bagging (j4.8) 98.7 96.2 97.4 98.3 99.4 99.3 98.2 98.4
Bagging (1R) 75.1 14.9 46.7 48.7 71.6 80.6 56.3 61.4
Boosting (Decision Table) 99.5 97.3 99.1 99.3 99.4 99.7 99.0 99.2
Boosting (j4.8) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Boosting (1R) 84.7 71.9 85.0 90.2 96.8 93.3 87.0 87.3
Number of Samples 971 551 548 542 317 1260 4189

classifiers. In contrast, bagging the 1R gave poor accuraciesSix data sources were used:

The best overall and average accuracies for consensus—theoretif) Airborne Multispectral Scanner (AMSS) with 11 spectral

classifiers were achieved with the LOGP optimized by conju- data channels (ten channels from 380-1100 nm and one
gate-gradient backpropagation. Those results were comparable channel from 8—14:m):

in terms of overall accuracies to the best results achieved usingz) steep mode synthetic aperture radar (SAR) with four data

bagging. _ o _ channels (X-HH, X-HV, L-HH, L-HV);
The classification accuracies for the individual classes areln-3) shallow mode SAR with four data channels (X-HH,

teresting in Tables Iland lll. When 1R is used, it gives extremely X-HV, L-HH, L-HV):
low accuracies for classes number 2, 3, 4, 8, and 9. Boosting4
gives significant improvements to the training and test classi-
fication accuracies for all these classes. For example, 1R gives\5
0% training and test accuracies for class number 9, but boosting
the 1R base classifier gives a training accuracy of 100% and test
accuracy of 72% for that class. Boosting using other base classi- 2 + pixel value).
fiers gives accuracy improvements for all other classes. Baggingl_

2lS0 Gives Imbrovements in terms of class-specific accuracies here are 19 information classes in the ground reference map
) gIves Improv int pectll u Iprovided by CCRS. In the experiments, only the six largest ones
but is outperformed by boosting.

were used, as listed in Table IV. Here, training samples were se-
lected uniformly, giving 10% of the total sample size. All other
known samples were then used as test samples.

In the second experiment, the Anderson River dataset, whichThe results of the different classification methods are shown
is a multisource remote sensing and geographic dataset mad@&able V (training) and Table VI (test). For the single clas-
available by the Canada Centre for Remote Sensing (CCR#jer methods in Tables V and VI, the MED and ML showed
[21], was used. This dataset is very difficult to classify [6] dudifferent characteristics. The MED was not acceptable in terms
to a number of mixed forest type classes. of classification accuracies, but the ML accuracies were rela-

) elevation data (one data channel, where elevation in
meters= 61.996 + 7.2266 * pixel value );
slope data (one data channel, where slope in degtees
pixel value);
aspect data (one data channel, where aspect in degrees

B. Anderson River Dataset
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TABLE VI
TESTACCURACIES INPERCENTAGE FOR THEDIFFERENT CLASSIFICATION METHODSAPPLIED TO THEANDERSONRIVER DATASET

Method Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 || Average Overall

Accuracy | Accuracy
MED 39.7 8.9 48.4 70.2 46.0 1.7 47.5 50.8
ML 50.8 27.7 84.5 81.9 73.8 72.0 64.3 65.1
Decision Table 73.8 424 66.5 61.7 72.8 77.0 65.7 67.5
j4.8 71.2 474 69.2 72.3 74.8 81.2 69.4 70.8
1R 58.5 4.3 19.3 74.5 20.0 77.4 42.3 50.2
CGBP (30 hidden neurons) 71.9 29.3 67.5 73.8 79.3 82.4 67.4 68.8
LOP (equal weights) 49.8 0.0 0.0 50.4 0.0 95.3 32.6 45.8
LOP (heuristic weights) 68.9 0.0 0.0 73.1 20.8 89.3 42.0 53.9
LOP (optimal linear weights) 66.4 34.3 78.5 74.8 72.6 79.5 67.7 68.6
LOP (optimized with CGBP) 67.1 36.7 77.3 75.1 83.4 77.6 69.5 69.2
LOGP (equal weights) 67.9 23.1 77.8 77.5 81.2 73.7 66.9 66.4
LOGP (heuristic weights) 69.0 31.8 75.9 78.6 75.6 75.1 67.6 68.6
LOGP (optimal linear weights) 68.6 324 75.2 71.2 81.7 80.1 68.2 68.7
LOGP (optimized with CGBP) 75.4 43.1 76.9 79.5 87.2 82.1 74.0 74.1
Bagging (Decision Table) 80.7 48.2 82.9 77.3 89.6 85.5 7.4 7.8
Bagging (j4.8) 80.0 51.2 81.3 79.6 86.4 87.5 T 78.5
Bagging (1R) 72.7 11.6 39.7 48.5 70.9 80.7 54.0 58.6
Boosting (Decision Table) 77.3 51.7 73.9 75.0 83.7 85.4 74.5 75.6
Boosting (j4.8) 83.0 54.2 81.9 81.4 88.9 88.9 79.7 80.6
Boosting (1R) 61.1 36.2 58.3 69.5 67.4 819 62.4 64.7
Number of Samples 1250 817 701 705 405 1625 5503

tively good, especially considering that the data are clearly mailts were reached with 45 hidden neurons. These results are not
Gaussian [21]. The j4.8 method outperformed the other singlerprising. The LOP is a linear combination of posterior proba-
classifier methods in terms of both training and test accuracigiities, but the LOGP is nonlinear.
and achieved an overall accuracy for test data of 70.8%. The tedin the case of bagging, 100 iterations were selected for the
accuracy of the decision table was somewhat lower than that4, 30 iterations for the decision table, and 700 iterations for
the CGBP neural network, which achieved a test accuracy IR. The test accuracies, both for bagging and boosting, as a
68.8%. function of the number of iterations are shown in Fig. 4. The
For the LOP and LOGP, six data classes (correspondingltagging of the decision table and the j4.8 was done directly on
the information classes in Table IV) were defined in each dattae six-class classification problem. However, the 1R classifier
source. The AMSS and SAR data sources were modeled toHaeal difficulties with the six-class problem, so it was fragmented
Gaussian, but the topographic data sources were modeledriig multiple two-class problems usingultiClassClassifier
Parzen density estimation with Gaussian kernels [6]. From the was done for all cases in the classification of the ten-class
results for the consensus-theoretic methods in Tables V abdlorado dataset. As can be seen in Fig. 4, the test accuracy
VI, it is clear that the LOGP optimized with a neural networlseemed to have approximately converged in all bagging cases.
outperformed all other consensus-theoretic methods in terEgdently, the bagging algorithm improved on the best training
of overall and average training and test accuracies. It is note-test results given by LOGP when the j4.8 base classifier is
worthy that the CGBP optimization increased the overall accused. This result comes as no surprise, since decision tree clas-
racies of the equally weighted LOGP by approximately 12%ifiers are typical unstable classifiers that should perform well in
(training) and 6% (test), and the LOGP with nonlinearly opticlassification by the bagging algorithm. Bagging based on the
mized weights outperformed easily the best single-stage newtatision table does almost as well in terms of test accuracies
network classifiers both in terms of training and test accuraciesd, in fact, slightly better than bagging based on the j4.8 after
In contrast, the CGBP-optimized LOP only gave comparab8® iterations.
results to the single-stage CGBP with 30 hidden neurons. How+or boosting, the Adaboost.M1, with 100 iterations for
ever, the best CGBP-optimized LOP results were achieved wjth8, was employed. However, after 19 iterations the boosting
zero hidden neurons where the best CGBP-optimized LOGP od-the decision table aborted. This demonstrates how strict
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In this paper, three multiple classification schemes were
investigated. All three schemes performed well and out-
performed several single classifiers in terms of accuracies.
Therefore, the results presented here demonstrate that multiple
classification methods can be considered desirable alternatives
to conventional classification methods for classification of
multisource remote sensing and geographic data. In particular,
the AdaBoost.M1 method yielded the most accurate classifier
both in terms of training and test accuracies, when the j4.8
decision tree was used as the base classifier in the case of
the Anderson River dataset, and when the 1R method was
used as the base classifier in the case of the Colorado dataset.
The AdaBoost.M1 did not demonstrate overtraining although
it achieved 100% training accuracy. For the Anderson River
dataset, the simpler bagging algorithm performed better than
AdaBoost.M1 in the case of the decision table base classifier,
Fig. 4. Anderson River data. Test accuracies as a function of the numbeM¥p€re the AdaBoost.M1 aborted after only 19 iterations.
iterations. Bagging does not suffer from the restriction of needing at

least 50% accuracy and has the further advantage of needing
the demand for 50% accuracy is for multiclass problemsot as much computational resources as the other methods.
Nevertheless, th#ultiClassClassifierwas only employed for The LOGP consensus-theoretic classifier performed well in
the 1R base classifier. The fact tHdultiClassClassifierwas experiments. Consensus-theoretic classifiers have the potential
used for all bagging and boosting methods on the Coloragbbeing more accurate than conventional multivariate methods
dataset, and the 1R method on the Anderson River datasetclassification of multisource data, since a convenient mul-
but not for the Decision Table and j4.8 methods on the Amivariate model is not generally available for such data. Also,
derson River dataset, skews the comparison between differemhsensus theory overcomes two of the problems with the
methods somewhat. Itis expected that, in general, given enougiventional ML method. First, using a subset of the data for
data and computational resources, better accuracies woldividual data sources lightens the computational burden of
be achieved by applying the base classifiers directly on themultivariate statistical classifier. Second, a smaller feature
multiclass problem, instead of multiple two-class problemset helps in providing better statistics for the individual data
However, it was deemed necessary for the ten-class Coloragairces when a limited number of training samples is available.
dataset to split it into multiple two-class problems, and the
1R base classifier could not make a single iteration of the

AdaBoost.M1 on the Anderson River dataset without applying
the MultiClassClassifier The Colorado dataset was loaned by R. Hoffer of Colorado

The justification for using different numbers of iterations foPtate University. The Anderson River SAR/MSS dataset was

each method is that our aim was to compare the methodsffuired, preprocessed, and loaned by the Canada Centre for

terms of the highest achievable test accuracies, rather than f&&note Sensing, Department of Energy Mines, and Resources,
computational requirements. of the Government of Canada.
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