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a b s t r a c t

Awide range of methods for analysis of airborne- and satellite-derived imagery continues to be proposed
and assessed. In this paper, we review remote sensing implementations of support vector machines
(SVMs), a promising machine learning methodology. This review is timely due to the exponentially
increasing number of works published in recent years. SVMs are particularly appealing in the remote
sensing field due to their ability to generalize well even with limited training samples, a common
limitation for remote sensing applications. However, they also suffer from parameter assignment issues
that can significantly affect obtained results. A summary of empirical results is provided for various
applications of over one hundred published works (as of April, 2010). It is our hope that this survey will
provide guidelines for future applications of SVMs and possible areas of algorithm enhancement.

© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Remotely-sensed data are used in numerous applications. Typ-
ically, an image classification process is initiated to convert data
into meaningful information. Unfortunately, image classification
is not a trivial task. As noted by Chi et al. (2008), classification of
remote sensing data is particularly daunting because most of the
supervised learning schemes require sufficiently large amount of
training samples, yet definition and acquisition of reference data
is often a critical problem. Various classification techniques, both
parametric and non-parametric, have been developed and used in
different contexts — remote sensing inclusive.

Previous reviews, such as that by Plaza et al. (2009), focused
on recent developments in methodologies for processing a
specific type of imagery, for example hyperspectral images. The
review provided in this paper follows the algorithmic perspective
rather than image characteristics. More specifically, we focus on
applications of support vectormachines (SVMs) in remote sensing.
The motivation to carry out this study comes from different
sources. First, SVMs are not as well-known as other classifiers
(e.g., decision trees, variants of neural networks) in the general
remote sensing community, yet they can match if not exceed the
performance of established methods. Second, their performance
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gains seem well-suited for remote sensing applications, where a
limited amount of reference data is often provided. Third, even
though the method is not widely popular, in recent years there
has been a significant increase in SVM works on remote sensing
problems suggesting this review is current and appropriate.

This review focuses on recent research papers (available by
April, 2010) published in eight major journals of remote sens-
ing, namely, ISPRS Journal of Photogrammetry and Remote Sens-
ing, Remote Sensing of Environment, Photogrammetric Engineer-
ing & Remote Sensing, IEEE Transactions on Geoscience and Re-
mote Sensing, IEEE Geoscience and Remote Sensing Letters, Inter-
national Journal of Remote Sensing, Canadian Journal of Remote
Sensing and GIScience and Remote Sensing. A limited number of
research papers relevant to the thematic point and thus included
in this review came from additional sources. The selected papers
represent a wide range of: (i) applications from coal reserve detec-
tion to urban growth monitoring, (ii) resolutions from sub-meter
to several kilometers pixel size, (iii) spectral resolution from single
to hundreds of bands, and (iv) comparative methods from max-
imum likelihood classifiers to neural networks. For completeness,
we first recap on the basics of SVMmethodology before diving into
specific works. Relevant papers are then summarized, while juxta-
position of general patterns enables us to derive conclusions and
recommendations for further investigations.

2. Overview of support vector machines

Support vectormachines (SVMs) is a supervisednon-parametric
statistical learning technique, therefore there is no assumption
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Fig. 1. Linear support vector machine example.
Source: adapted from Burges (1998).

made on the underlying data distribution. In its original formula-
tion (Vapnik, 1979) the method is presented with a set of labeled
data instances and the SVMtraining algorithmaims to find ahyper-
plane that separates the dataset into a discrete predefined number
of classes in a fashion consistent with the training examples. The
term optimal separation hyperplane is used to refer to the deci-
sion boundary that minimizes misclassifications, obtained in the
training step. Learning refers to the iterative process of finding a
classifier with optimal decision boundary to separate the training
patterns (in potentially high-dimensional space) and then to sep-
arate simulation data under the same configurations (dimensions)
(Zhu and Blumberg, 2002).

In its simplest form, SVMs are linear binary classifiers that
assign a given test sample a class from one of the two possible la-
bels. An instance of a data sample to be labeled in the case of re-
mote sensing classification is normally the individual pixel derived
from themulti-spectral or hyperspectral image. Such a pixel is rep-
resented as a pattern vector, and for each image band, it consists
of a set of numerical measurements. Elements of the feature vec-
tor may also include other discriminative variable measurements
based onpixel spatial relationships such as texture. Fig. 1 illustrates
a simple scenario of a two-class separable classification problem
in a two-dimensional input space. An important generalization
aspect of SVMs is that frequently not all the available training ex-
amples are used in the description and specification of the separat-
ing hyperplane. The subset of points that lie on the margin (called
support vectors) are the only ones that define the hyperplane of
maximummargin.

The implementation of a linear SVM assumes that the multi-
spectral feature data are linearly separable in the input space.
In practice, data points of different class memberships (clusters)
overlap one another. This makes linear separability difficult as the
basic linear decision boundaries are often not sufficient to classify
patterns with high accuracy. Techniques and workarounds such as
the soft margin method (Cortes and Vapnik, 1995) and the kernel
trick are used to solve the inseparability problem by introducing
additional variables (called slack variables) in SVM optimization
and mapping (using a suitable mathematical function) the non-
linear correlations into a higher (Euclidean or the Hilbert) space,
respectively. A kernel function typically needs to fulfill Mercer’s
Theorem in order to be a valid kernel in SVMs (Scholkopf and
Smola, 2001). The choice of a kernel function often has a bearing
on the results of analysis. Furthermore, typical remote sensing
problems usually involve identification of multiple classes (more
than two). Adjustments are made to the simple SVM binary
classifier to operate as a multi-class classifier using methods such
as one-against-all, one-against-others, and directed acyclic graph
(Knerr et al., 1990).

SVMs are particularly appealing in the remote sensing field due
to their ability to successfully handle small training data sets, often
producing higher classification accuracy than the traditionalmeth-
ods (Mantero et al., 2005). The underlying principle that benefits
SVMs is the learning process that follows what is known as struc-
tural risk minimization. Under this scheme, SVMsminimize classi-
fication error on unseen data without prior assumptions made on
the probability distribution of the data. Statistical techniques such
as maximum likelihood estimation usually assume that data dis-
tribution is known a priori. Burges (1998) in a well-organized SVM
tutorial described a simple experiment to illustrate an advantage
of SVMs in an image recognition problem. In that demonstration,
the performance of a basic multi-way SVM-based recognizer was
assessed on image classification in the presence of prior knowl-
edge. The accuracy turned out to be approximately the same if the
pixels were first shuffled, with each image instance suffering the
same random permutation. Yet, when the act of ‘vandalism’ (or re-
moval of prior knowledge) took place, SVM still outperformed even
the best neural networks. This discovery is particularly appealing
in remote sensing applications since data acquired from remotely
sensed imagery usually have unknown distributions, and meth-
ods such as Maximum Likelihood Estimation (MLE) that assume
a multivariate normal data model do not necessarily match that
assumption. Even if the data, whose dimensionality is assumed to
match the number of spectral bands, were normally distributed,
the assumption that the distribution can be described using a bell-
shaped (Gaussian) function ceases to be sound, since the concen-
tration of data in higher dimensional space tends to be in the tails
(Fauvel et al., 2009). This phenomenonwill continue to be encoun-
tered in remote sensing as new sensors increase spectral resolution
and therefore data dimensionality.

There is also another interesting concept that serves as a
key attraction to SVMs. Commonly described by many authors
under the notion of overfitting (Montgomery and Peck, 1992), yet
variously referred to by others as bias-variance tradeoff (Geman
et al., 1992) or capacity control (Guyon et al., 1992), SVM-based
classification has been known to strike the right balance between
accuracy attained on a given finite amount of training patterns and
the ability to generalize to unseen data.

Alongside the benefits derived from the SVM formulation there
are also several challenges. The major setback concerning the ap-
plicability of SVMs is the choice of kernels. Althoughmany options
are available, some of the kernel functions may not provide opti-
mal SVM configuration for remote sensing applications. Empirical
evidence indicates that kernels such as radial basis function and
polynomial kernels applied on SVM-based classification of satellite
image data produce different results (Zhu and Blumberg, 2002). A
good explanation on SVM kernels and their functionality is pre-
sented in numerous papers (e.g., Kavzoglu and Colkesen, 2009).
From the non-expert user point of view, SVM theory is a bit in-
timidating, particularly due to the fact that the more efficient SVM
variants often incorporate some difficult to understand concepts.
This limits effective cross-disciplinary applications of SVMs.

Numerous SVM tutorials are available (such as Cortes and
Vapnik (1995) and Burges (1998)), but none of these contains an
exhaustive discussion on the increasing number of newly proposed
variants of SVMs. In the remote sensing field a good starting point
would be a textbook by Tso and Mather (2009) that provides a
review of the entire field of classification methods for remotely
sensed data, including SVMs. For those interested in rule extraction
from SVMs a recent computer science review is available (Barakat
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Fig. 2. Growth of SVMs popularity in remote sensing over the past decade.

and Bradley, in press). Chen and Ho (2008) provide an excellent
general reference for statistical learning in remote sensing. It
should be noted that for this review the term SVM is inclusive of
the traditional SVM method as well as SVM-based variants, since
most of the latter still heavily rely on the standard SVMmethod.

3. Brief overview

Support vectormachines (SVMs) have recently foundnumerous
applications in remote sensing. For this review we identified 108
relevant papers, withmore than half published in the last 2.5 years
(Fig. 2). This increasing trend is expected to grow, making this a
critical time for a review of existing work.

The SVM papers included a wide range of remote sensing ap-
plication domains and sensors. A summary of this diverse group is
presented in Fig. 3. Satellite sensors are preferred, especially mul-
tispectral ones. There is some limited interest in change detection
(10% of the papers), a pattern that is expected to significantly in-
crease as the Landsat archive is now freely available. There is an
almost equal split between high and medium resolution sensors,
mostly related to a strong preference to Ikonos and Landsat im-
agery, but also to high resolution airborne sensors.
4. SVM works focusing on algorithmic advancements

This section summarizes SVMadvancements thatwere achieved
during the past decade. Papers that merely contrasted SVM per-
formance with other methods or papers incorporating SVMs for a
specific application are discussed in the next section.

4.1. Classification

SVMs are typically a supervised classifier, which requires train-
ing samples. Literature shows that SVMs are not relatively sensi-
tive to training sample size and scientists have improved SVMs
to successfully work with limited quantity and quality of train-
ing samples. For example, Foody and Mathur (2004b) showed that
only a quarter of the original training samples acquired from SPOT
HRV satellite imagerywas sufficient to produce an equally high ac-
curacy for a two-crop classifier. Mantero et al. (2005) estimated
probability density of thematic classes using an SVM. The SVM-
based approach used a recursive procedure to generate prior prob-
ability estimates for known and unknown classes by adapting the
Bayesian minimum-error decision rule. The approach was tested
using synthetic data and two optical sensor data (i.e., Daedalus
ATM and Landsat TM) and confirmed method effectiveness, espe-
cially when the availability of ground reference data was limited.
Transductive inference learning theory was incorporated into an
SVM for remote sensing classification in Bruzzone et al. (2006).
Their SVM-based approach defines the separating hyperplane ac-
cording to a process that integrates the unlabeled samples together
with the training samples. Experiments showed that the proposed
method was effective, particularly for a set of ill-posed remote
sensing classification problemsdue to the limited training samples.
Foody and Mathur (2006) proposed a focus on mixed pixel train-
ing samples over more tedious, conventional pure pixel acquisi-
tion, assuming an SVM classifier. The analysis of a three-waveband
multispectral SPOT HRV image showed the benefits of mixed pixel
sampling on a crop type classification task. Foody et al. (2006)
evaluated four dataset reduction methods for a one-class problem
Fig. 3. Summary statistics of selected works.
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(cotton vs. others) using SVMs and LISS-III data and found that sig-
nificant data reductionwas feasible (∼90%)withminimal informa-
tion loss.

Sahoo et al. (2007) investigated the incorporation of localized,
highly sensitive transformations to capture subtle changes in hy-
perspectral signatures. They compared the so called S-transform
to classifiers without it and found encouraging results. The imple-
mentation algorithm was an SVM that showed additional robus-
tness to small data samples in a geological classification. Blanzieri
and Melgani (2008) investigated a local k-nearest neighbor adap-
tation to formulate localized variants of SVM approaches. Their
results indicated substantial improvements, especially with the
integration of non-linear kernel functions. Tuia and Camps-
Valls (2009) addressed the issue of kernel predetermination by
proposing a regularization method that identifies kernel struc-
ture through analysis of unlabeled samples. Camps-Valls et al.
(2010) proposed an improvedmethodology for assessing kernel in-
dependence in various imagery types using the Hilbert–Schmidt
independence criterion. Marconcini et al. (2009) discussed the
incorporation of spatial information through composite kernels
finding substantial improvements however with an additional
computation cost. Camps-Valls et al. (2008) proposed a method-
ological framework using composite kernels for multi-temporal
classification of remote sensing data from different sources. The
method was tested using both synthetic and real optical Land-
sat TM data and found that the cross-information composite ker-
nel was the best in general, but a simple summation kernel also
showed similar performance. Composite kernels that take advan-
tage of the properties of Mercer’s kernels were further discussed
in their prior work (Camps-Valls et al., 2006c). Chi et al. (2008)
proposed a method, called primal SVM that is capable of differen-
tiating land covers using a reasonably small amount of training ex-
amples. Their method sought to replace the regularization-based
approach previously employed in SVMs. The primal SVM formu-
lation makes it possible to optimize directly on the primal repre-
sentation, and therefore limits the number of samples. Evaluation
was performed using Hyperion imagery of the Okavango Delta (in
Botswana) for vegetation classification. Primal SVM yielded com-
petitive accuracy values as the state-of-art alternative algorithms
trained on larger datasets. Gómez-Chova et al. (2008) investigated
the addition of a regularization term on the geometry of both la-
beled and unlabeled samples that was based on graph Laplacian,
leading to a Laplacian SVM variant. This semisupervised classifica-
tionmethod offers improvementswhen comparedwith traditional
SVMs, especially in small training datasets and underlying com-
plex problems. Castillo et al. (2008) proposed amodified version of
the SVM classifier, called bootstrapped SVM. The training strategy
adapted in the bootstrapped SVM is such that an incorrectly clas-
sified training sample in a given learning step is removed from the
training pool, re-assigned a correct label, and re-introduced into
the training set in the subsequent training cycles. The key result
was the ability to capture data variability in a highly biased bi-
nary dataset, only 0.05% of the total number of training pixels were
needed to achieve about the same accuracy level as the standard
SVM. An interesting SVM adaptation was proposed by Wang and
Jia (2009), where the space between support vectors is considered
to provide a soft classification in addition to the traditional hard
classification. Demir and Erturk (2009) offered an improvement to
hyperspectral SVM classifiers by incorporating border training
samples in a two step classification process. Song et al. (2005) pro-
posed an SVM adaptation for Landsat-based vegetation monitor-
ing. The SVM v parameter was tackled through an integration of
one and two class SVM sequential classification steps.

Mathur and Foody (2008b) investigated methods for efficient
reduction of field data. They concluded that for cropland mapping
equivalent classification results can be obtained with a third of
the original dataset assuming SVM methods are used for the
classification process. At the 24mground pixel size acquired by the
LISS-III sensor the reduced dataset yielded a small 1.34% accuracy
loss at 90.66%.

Integration of a genetic algorithm (GA) and SVM for remote
sensing classification was evaluated with a limited availability of
training samples in Ghoggali et al. (2009). The experimental re-
sults revealed again an ability to improve classification accuracy
with a small training sample size. However, the computational load
was significant mainly due to the slow GA convergence. Ghoggali
and Melgani (2008) integrated genetic training into SVM classifi-
cation in order to incorporate land cover transition rules in multi-
temporal classification. The results indicated amixed performance,
however the algorithmic flexibility and humanly intuitive pro-
cess suggest promising future work. Bruzzone and Persello (2009)
proposed a novel context-sensitive semi-supervised SVM classi-
fication model, which can be successfully utilized when some of
training data are not reliable. Their model explores the contextual
information of the neighboring pixels of each training sample and
improves the unreliable training data. They tested their model us-
ing Ikonos and Landsat TM data and compared the results with
those based on some of the widely used classification algorithms
such as the standard SVM, a progressive semi-supervised SVM,
maximum likelihood and k-nearest neighbor. The proposed SVM
algorithmoutperformed the other classificationmodels in terms of
robustness and effectiveness, particularly when non-fully reliable
training samples were used. Huang and Zhang (2010) compared
multi-SVMmethodswith traditional vector stacking techniques on
high resolution urban mapping.

Su (2009) investigated training data reduction using a hier-
archical clustering analysis and Multiangle Imaging SpectroRa-
diometer (MISR) satellite data (250 m–1.1. km, 17 products) on a
vegetation classification problem. It was shown that a two thirds
reduction of the dataset size was possible without significant ac-
curacy degradation in SVM and maximum likelihood classifier
(MLC) methods. Gomez-Chova et al. (2010) proposed a method
to increase classification reliability and accuracy by combining la-
beled and unlabeled pixels using clustering and the mean map
kernel. They tested their approach to classify clouds using En-
visat’s Medium Resolution Imaging Spectrometer (MERIS) data.
They found that their method was particularly successful when
sample selection bias (i.e., training and test data follow different
distributions) exists.

Selecting an optimum SVM method for remote sensing classi-
fication is not an easy task. Foody and Mathur (2004a) proposed
a single multiclass SVM classification method while typical multi-
class SVMs are basedmainly on the use ofmultiple binary analyses.
They compared their approach with other classification methods
such as discriminant analysis, decision trees, and neural networks,
and found that the SVM-based approach outperformed the other
methods with different sizes of training samples. Bazi andMelgani
(2006) investigated the most appropriate feature subspace and
model selection based on a genetic optimization framework using
three feature selection methods including steepest ascent, recur-
sive feature elimination technique, and the radius margin bound
minimization method. They used two criteria, the simple support
vector count and the radius margin bound, to identify an optimum
SVM-based classification system for hyperspectral remote sens-
ing data. The genetically optimized SVM using the support vec-
tor count as a criterion resulted in the best performance for both
simulated and real-world AVIRIS hyperspectral data. Mathur and
Foody (2008a) evaluated the performance of SVMs in non-binary
classification tasks. Their results indicated their proposed one shot
SVM classifier outperformed the binary-based multiple classifiers
in terms of obtained accuracy but also initial parameterization.

SVMs have also been used for feature selection. Pal (2006) in-
vestigatedmethods for feature selection based on SVMs. Citing the
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unreasonably large computational requirements as a major dis-
advantage of exhaustive search methods in practical applications,
the researchers justified the use of a non-exhaustive search pro-
cedure in selecting features with high discriminating power from
large search spaces. SVM-based methods combined with GA were
comparedwith the random forest feature selectionmethod in land
cover classification problems with hyperspectral data and small
benefits were identified. Zhang and Ma (2009) addressed the is-
sue of feature selection in SVM approaches. They implemented a
modified recursive SVM approach to classify hyperspectral AVIRIS
data. The reduced dimensionality returned slightly better results,
however their method has higher computational demands com-
pared with others. On the same subject Archibald and Fann (2007)
provided an interesting integration of feature selection within the
SVM classification approach. They achieved comparable accuracy
while significantly reducing the computational load.

Some studies improved the performance of SVM-based classi-
fication through algorithm and/or data fusion. Zhang et al. (2006)
proposed a pixel shape index describing the contextual informa-
tion of nearby pixels and evaluated its usability for land cover clas-
sification using QuickBird data based on SVMs. The pixel shape
indices were combined with transformed spectral bands such as
principal component analysis or independent component analysis.
They found that integration of spectral and shape features as well
as the transformed spectral components in an SVM were able to
improve classification accuracy. Waske and Benediktsson (2007)
classified multi-sensor (SAR, Landsat TM, and SPOT) and multi-
temporal data through data fusion based on SVMs. Their method
was based on the decision fusion of multiple SVMs that were in-
dividually trained on the different data sources. Their approach
outperformed the other methods including maximum likelihood,
decision trees, and a typical SVM. Mitra et al. (2004) proposed
an active learning-based approach to reduce the selected support
vectors. Their semi-supervised method gradually creates clusters
based on interactive user input. Their method yielded better re-
sults than a typical SVM, however the authors caution on the al-
gorithm’s sensitivity on user-provided erroneous labeling. Zhang
and Ma (2008) proposed an SVM variant, the Potential SVM as
an alternative for multispectral image classification. The Potential
SVM is an attractive variant due to its ability to handle non-Mercer
kernels and itsmathematical formulation that addresses SVM scal-
ability issues. Tests on very high (0.1 m) and medium (30 m) reso-
lution indicated equal or better accuracy than the traditional SVM,
while offering faster simulation times due to support vector reduc-
tion. A fusion approach to classification using extended morpho-
logical profileswas proposed in Fauvel et al. (2008). They evaluated
the approach using high spatial/spectral resolution ROSIS data in
urban areas based on SVM classification. Ensemble methods for
multiple SVM integration were evaluated by Pal (2008). Two pop-
ular integration techniques such as boosting (alternating observa-
tion weight) and bagging (alternating observations) were tested
using Landsat ETM+ data for an agricultural classification. The
findings suggest that an optimized ensemble method could lead
to improved results, though further testing is suggested as oth-
ers have found contradictory results. Chen et al. (2009) proposed
an improved classification method by stacking multiple hierar-
chical SVM classifiers. The method also incorporates discrimina-
tion information of two feature spaces (i.e., magnitude and shape).
Experiments showed that themethodwith the generalization abil-
ity and the use of multiple feature spaces was effective for hyper-
spectral image classification. Chen et al. (2008) investigated the
integration of SVMs with pairwise decision trees on hyperspec-
tral data. The one-against-one SVM adaptation provided similar
results to their proposed method, which was attributed to the hi-
erarchical structure of the decision tree-based method. Demir and
Ertürk (2007) implemented a relevance vector machine (RVM) ap-
proach, which was originally proposed by Tipping (2000, 2001),
for vegetation mapping using hyperspectral imagery. Obtained re-
sults indicated a significantly lower usage of classification vec-
tors, however a lower accuracy rate was obtained compared to
the typical SVM approach. The authors suggest their method as a
viable solution for real time classification due to the highly effi-
cient simulation times. Tuia et al. (2009) combined morphological
filters and SVMs to conduct land use classification using high
spatial resolution QuickBird panchromatic images. They tested
multiple morphology-based features and found that simple mor-
phological features generated with opening and closing operators
resulted in the best performance. Muñoz-Marí et al. (2007) pro-
vided an interesting comparison of available one-class classifiers
for both single and multiple class remote sensing problems. They
also investigated a one-class classifier called support vector do-
main description (SVDD) that is particularly attractive in the pres-
ence of incomplete training data. Tan et al. (2007) proposed a new
technique combining entropy decomposition and SVM for classifi-
cation. The approach was tested using multi-temporal SAR images
for rice monitoring. Their approach was especially useful when re-
trieving polarimetric information for each class resulting in good
separation between classes. Tarabalka et al. (2009) proposed a new
classification scheme emphasizing both spectral and spatial char-
acteristics of hyperspectral images. Their method combined the
pixel-wise SVM classification results and the segmentation map
based on partitional clustering using the majority voting strat-
egy. The approach was specifically useful when large spatial struc-
tureswere included in data orwhendifferent classes haddissimilar
spectral responses and a comparable number of pixels.

Although SVMs are typically employed for supervised classifica-
tion tasks, they have also been used for unsupervised classification
in combination with other techniques. For example, Bovolo et al.
(2008) combined an SVMand a selective Bayesian thresholding ap-
proach for unsupervised change detection. They used a selective
Bayesian thresholding to delineate pseudo-training samples and
conducted binary change detection (i.e., change vs. no change) us-
ing the samples based on an SVM approach. Their method outper-
formed the change vector analysis (CVA)-based method with the
expectation-maximization algorithm, but required much longer
computational time due to themodel-selection strategy to identify
an optimum structure of their model. Mukhopadhyay and Maulik
(2009) integrated a multi-objective fuzzy clustering scheme with
an SVM for unsupervised classification. Their method identified
high-confidence points from certain clusters to train the SVM
classifier. The method was tested using several satellite images
(i.e., SPOT, Landsat TM, and IRS) and concluded that their method
wasmore effective when compared to other methods such as neu-
ral networks, k-nearest neighbor, and fuzzy c-means.

4.2. Regression

In addition to classification tasks, SVMs have been advanced to
solve regression problems, where in essence a continuous predic-
tion output is expected. A multiple estimator system for biophysi-
cal parameter estimation from remote sensing data was proposed
by Bruzzone and Melgani (2005). They particularly focused on
incorporation of SVMs into the system and combination with mul-
tilayer perceptron (MLP) neural networks. They simulated differ-
ent operational conditionswith SVM andMLP and pointed out that
their system increased the robustness of the estimation process; it
provided accuracy very close to that of the best estimator included
in the ensemble based on the experiment of chlorophyll concen-
tration estimation usingMERIS data. Camps-Valls et al. (2006a) in-
vestigated a RVM-based approach, a variant of SVMs, in order to
lessen the uncertainty inherent in handling satellite-derived and
in-situ measurements of oceanic chlorophyll concentration. RVM
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incorporatedprior knowledge of the problemandproved to beuse-
ful in quantifying chlorophyll concentrations based on ocean sur-
face reflectance. The technique was reported to be less sensitive to
parameter selection; it also provided a considerable high accuracy
despite sparsity in the solution space. The authors recommended
use of RVMs in other applications that involve estimation of bio-
physical parameters using remotely sensed data because of its ro-
bustness to even small amount of training data and low sensitivity
to free parameter setting. Camps-Valls et al. (2006b) further inves-
tigated an SVM variant providing a more robust regression model
for ocean chlorophyll concentration that proved successful, espe-
cially with limited training samples.

A synthetic algorithm of wavelets and SVMs was developed
to predict evapotranspiration by Kaheil et al. (2008). A range
of remote sensing-derived input variables such as MODIS LAI,
MODIS emissivity, and spectral data of Landsat TM and ASTER
were fed into the algorithm to produce a spatial distribution of
evapotranspiration at the finest spatial resolution of the input
data. Moser and Serpico (2009) proposed an automatic parameter
optimization method for SVM regression of land and sea surface
temperatures. They tested their method using AVHRR and MSG
satellite images with synchronous in situ measurements and
compared with typical grid-search based optimization methods
such as cross-validation and hold-out. The proposed method
resulted in similar accuracy with the other methods, but much
more efficient than them, particularly when a high number of
training samples was available.

Regression SVM has also been used for data generation and
fusion. Zheng et al. (2008) proposed a multiscale mapped least-
squares SVM (LS-SVM) to sharpen multispectral bands using a
higher resolution panchromatic band. QuickBird data were used
in the experiments and multiscale Gaussian radial basis function
kernelswere incorporated. Theirmethodwas comparedwith other
fusion algorithms such as discrete wavelet transform, curvelet
transform, atrous wavelet transform, extended fast IHS and found
that both their method and the atrous wavelet transform resulted
in the best performance. Shi et al. (2009) also used an LS-
SVM approach to generate a digital surface model (DSM) from
Light Detection And Ranging (LiDAR) data. Assessed visually and
quantitatively against the radial basis function (fastRBF) and
triangulation technique, LS-SVMwas found to be more effective in
terms of noise reduction, computational efficiency and accuracy in
DSM generation. This reformulation of the standard SVM based on
regression models bears similarity with regularization networks
and Gaussian processes. LS-SVM incorporates pixel neighborhood
and topographic analyses. As such, basic principles of differential
geometry play a key role in generation of gradient and curvature
equations, and in other such related tasks. Readers interested in
SVM-based regression models could find useful information in
Smola and Schölkopf (2004).

5. Application-oriented SVM papers

This sectionpresents paperswhere the incorporated SVMswere
not highly customized; instead the focus was their evaluation
under a given task. Where applicable, results from works that
contrasted SVMs with other methods are mentioned.

5.1. Biophysical tasks

SVMs have been used in remote sensing-based estimation
and monitoring of biophysical parameters such as chlorophyll
concentration, gross primary product, and evapotranspiration. For
example, Kwiatkowska and Fargion (2003) employed SVMs to
cross-calibrate the global chlorophyll concentration from different
satellite sensors (i.e., SeaWiFS and MODIS). The goal was to
extrapolate this cross-calibration knowledge on to other data in
a different spatio-temporal domain and to identify representative
products for the global chlorophyll concentration. They revealed
there were significant discrepancies between the different sensor
products; there is a high dependency on sensor calibrations and
operational characteristics. Bazi and Melgani (2007) estimated
chlorophyll concentrations in coastal waters based on a particle
swarmoptimization and SVMtechniques usingMERIS and SeaBAM
data. They found that their method was more effective than
the typical SVM and less sensitive to training sample size. Sun
et al. (2009) investigated in situ hyperspectral measurements to
estimate chlorophyll concentration in Lake Taihu using SVMs. They
first identified the best three-wavelength factor using an iterative
optimization and used them as inputs to an SVM to estimate
chlorophyll concentration. Their approach proved more accurate
than the typical linear regression models.

Knudby et al. (2010) studied reef fish richness, diversity and
biomass using Ikonos images and predictive modeling. SVMs
were compared with five other methods and performed almost
equally to the highest ranked ensemble algorithms. Clevers et al.
(2007) tested an SVM-based band shaving technique to reduce
dimensionality in hyperspectral datasets. The application domain
was grassland biomass estimation and three bands were identified
as sufficient for field studies. Durbha et al. (2007) assessed leaf
area index extraction for Multiangle Imaging SpectroRadiometer
(MISR) satellite data. They proposed an adjusted support vector
regression method which included parameter regularization.

An SVM-based model was used to calculate global ocean pri-
mary productivity (Tang et al., 2008); it was found to be more
accurate than the vertically generalized production (VGPM) ap-
proach due its ability to identify the nonlinear relationship be-
tween the ocean’s primary productivity and other parameters. The
problem was particularly difficult because of the sparse nature
of the data. SVMs performed better than the traditional VGPM
making them appealing for undersampled applications such as
oceanographic studies. Yang et al. (2007) modeled continental
gross primary product usingMODIS and other sources; SVMswere
the underlying algorithmic methodology.

Xie et al. (2008) implemented SVR to calculate the moisture
transport in oceanic environments using MISR and they found SVR
outperforming linear regression and backpropagation neural net-
works. Yang et al. (2006) estimated evapotranspiration by combin-
ingMODIS and AmeriFlux data using SVMs at the continental scale.
SVMs outperformed neural networks and multiple regression.

5.2. Land cover land use tasks

5.2.1. Vegetation/agriculture
In an early work, Gualtieri and Cromp (1998) evaluated SVM

performance on vegetation classification. Hyperspectral AVIRIS
imagery was used and results suggested SVM superiority over
prior classifiers developed on the same dataset. Keramitsoglou
et al. (2006) focused on vegetation mapping using Ikonos imagery.
They contrasted SVMs with Kernel-based spatial Re-Classification
(KRC) and RBF neural networks and found that even though SVMs
showed slightly less robustness in the classification results over
the RBF, their training time was considerably lower suggesting
improved applicability. KRC also performed well but not as high
as the SVM and RBF methods. Knorn et al. (2009) evaluated
binary forest classification using SVMs in a spatial sequence of
Landsat scenes. The major goal was to assess chain classification
accuracy, which proved accurate even for lengthy sequences
(e.g., six images) as long as image overlapping portions represented
well the different features on the ground.

Huang et al. (2008b) performed SVM-based classification
to assess in forest classification accuracy the influence of the
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slope/aspect of the terrain, solar elevation and azimuth and the
relative position of the trees. A 3.6% gain in overall classification
accuracy was realized after topographic correction. Lardeux et al.
(2009) used SVMs to classify dense tropical vegetation with SAR
data. SVMs resulted in about 20% higher classification accuracy
than the Wishart classification approach. They pointed out that
SVMs can perform much better than the typical Wishart approach
when radar data do not follow the Wishart distribution. SVMs
were also evaluated against decision tree classifiers in a study
that involvedmapping of dynamic semi-natural habitat systems —
technically known as fenlands (Boyd et al., 2006). In this problem,
SVMs were implemented as a binary classifier, to classify the data
into fen and ‘other’, while the ‘other’ class contained samples of
several ground features. The performance of SVMs was slightly
higher than that of the decision tree classifier.

Looking into forest species classification, Dalponte et al. (2008)
used SVMs and data fusion of hyperspectral (AISA) and LiDAR data.
SVMs outperformed Gaussian maximum likelihood classification
and k-NN technique. They pointed out that the incorporation of
LiDAR variables generally improved the classification performance
and the first return data was the highest contributing factor.
Heikkinen et al. (2010) applied a simulated optical radiationmodel
to evaluate the tree species classification using an airborne four
band sensor system. They employed SVMs with different kernel
functions and found that the four bands were not sufficient
to get successful classification results; the Mahalanobis kernel
provided the best accuracy. Dalponte et al. (2009), in their
study on hyperspectral image acquisition and analysis, focused
on the choice of spectral resolution and associated method of
classification. The study goal was to classify complex forest
scenarios. Simulated data (consisting of degraded band sizes from
4.6 to 36.8 nm) was used to analyze the role of spectral resolution
on classification accuracy in an investigation to determine the
trade-off between spectral and spatial resolution. SVM-based
classification resulted in higher accuracies than all other classifiers
for all spectral bands simulation. The authors attributed this to
the effectiveness of SVMs in managing the complex hyperspectral
classification. Another interesting conclusion was that different
classifiers exhibited variable behavior with respect to spectral
resolution.

With a focus on forest degradation, Cao et al. (2009a) proposed
a burn index usingMODIS data. An SVMmethodwas implemented
as part of an iterative classifier targeting burn scar mapping.
The results were accurate when compared with Landsat-derived
reference data, however themethod is also constrained by hotspot
identification accuracy and the presence of clouds. Liu et al.
(2006) investigated the use of high resolution (GSD 1 m), four
band aerial photography for forest disease monitoring. Their
findings indicated that a spatial–temporal contextual approach
improved the initial classification results obtained with an SVM
method. Using images captured by Landsat TM/ETM+ between
1988 and 2007, Kuemmerle et al. (2009) applied an SVM
classifier to detect illegal logging in the Ukrainian Carpathians.
The classification problem focused onmapping forest cover change
in the subregions. Although no comparative assessments were
carried out, SVM proved a very useful method in delineating
forest/non-forest cover maps for all the stated time periods.
Another study by Huang et al. (2008a) used Landsat TM and
Landsat ETM+ images with a focus on developing an automated
solution to forest cover change detection. The classification took
place using SVMs and an extensive evaluation over multiple sites
indicated an accuracy of approximately 90%.

Su and Huang (2009) conducted a study in southern New
Mexico to evaluate the effect of different linkage techniques
on classification accuracy for semiarid vegetation mapping. Four
different linkage techniques were tested to calculate distances
between clusters in an attempt to create a hierarchical structure
of the training dataset and reduce its size. Results indicated
that a reduced dataset of approximately 20% of the original
size could provide comparable classification accuracy. Su et al.
(2009) discussed further the application of SVMs on MISR imagery
to detect semi-arid vegetation areas, where SVMs performed
significantly better than MLC.

Undertaking a crop classification task, Wilson et al. (2004)
investigated salt marsh and crop plants that have been exposed
to heavy metal or petroleum toxicity with control treatments
using in situ spectroradiometer measurements. They used two
classification methods, SVMs and logistic discrimination based
on partial least squares compression, and found that the SVM-
basedmethodwas superior. SVMswere also implemented for crop
classification using HyMap hyperspectral imagery in Camps-Valls
et al. (2004). SVMs outperformed typical neural networks in terms
of accuracy, simplicity, and robustness. They also found that SVMs
were not as sensitive to training sample size, and SVMs were able
to successfully detect noisy bands. Hyperspectral image data of a
cornfield, acquired through airborne mission (Compact Airborne
Spectrographic Imager) was used in conjunction with the SVM
method in automatic detection of weeds and nitrogen in the field
(Karimi et al., 2006). The discriminant features were based on the
general remote sensing principle: corn exhibits different spectral
responses depending on the type or method of weed control used
and nitrogen application rates. Waske and van der Linden (2008)
segmented multi-sensor data (SAR and TM) at multi-levels and
pre-classified each individual level of segmentation using SVM
for crop classification. The pre-classification results were then
fused to create a final classification output with an SVM and
random forests as decision rules. They pointed out that it wasmore
appropriate to define the kernel functions for each data source
and level separately; their multiple classifier system improved the
performance compared to a single classifier approach since the
individual errors of multiple data sources at different aggregation
scales were diverse and uncorrelated.

5.2.2. Impervious surfaces/Urban areas
Huang and Zhang (2009) targeted road extraction from Ikonos

imagery. The underlying idea was to integrate spectral and shape
characteristics at multiple scales. In every scale an SVM method
was implemented and later results from each scale were fused
leading to improved centerline extraction. Another road extraction
work using Ikonos imagery was published by Song and Civco
(2004). SVMmethodswere developed to create a binary road layer,
that was further processed with shape-assisted and vectorization
procedures. The SVM method yielded a lower classification error
compared to theGaussianmaximum likelihood approach, a finding
which the investigators attributed to the assumption that class
signatures (feature groups) follow a normal distribution may
not always be appropriate. Inglada (2007) implemented SVMs
to classify man-made features (e.g., bridges, roads, roundabouts)
from 2.5 m SPOT 5 imagery. Classifier robustness and resilience
to variability in illumination and changes in spectral bands was
achieved by incorporating invariant geometric features. The results
were reasonable (∼80% accuracy) considering the complexity of
the underlying problem. SVMs were also used to classify bridges
from Ikonos high-resolution panchromatic image data. Luo et al.
(2007) used a simple yet effective contextual idea: bridges, in
general, are adjacent to water and water is usually darker than
other objects. Additional steps followed from this assumption.
Gauss Markov Random Field SVM, an SVM adjustment that
incorporates texture properties, was used to enhance classification
performance of the traditional SVM. Higher overall accuracy and
kappa values were recorded.
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ASTER imagerywas used as input to an SVM-facilitated process-
ing technique in an investigation to determine SVM’s suitability for
mapping urban areas (Zhu and Blumberg, 2002). Different results
were obtained depending on image resolution and on SVM ker-
nel choices, namely the polynomial kernel and radial basis func-
tion (RBF). The RBF-based SVM yielded higher performance with
respect to convergence speed; better classification precision on
the sample data was achieved using an SVM based on the poly-
nomial kernel. Esch et al. (2009) combined single date Landsat im-
ages to derive useful information about industrial, residential and
transportation-related areas in Germany. SVMs were found to be
effective in automatic estimation of impervious surfaces. The au-
thors conclude that automatic extraction of urban areas is a diffi-
cult problem owing to the wide range of surface materials, and the
heterogeneity of the classes. Brown et al. (1999) evaluated SVMs
with linear spectral mixture models (LSMM) for land use subpixel
analysis. Their analysis on Landsat data for binary urban classifi-
cation revealed under certain circumstances the LSMM is identical
to linear SVMs.Walton (2008) compared urban subpixel classifica-
tion performance from random forests, rule-based regression and
SVMs using a Landsat image. Results indicated that the rule-based
regression using Cubist provided improved accuracy and training
time. Watanachaturaporn et al. (2008) found that SVM methods
outperformed backpropagation and radial basis function neural
networks, maximum likelihood and decision trees. Imagery from
Indian’s Linear Imaging Self-scanning Sensor (LISS) III was used
(23.5 m pixel size, 4 bands) for an urban-driven classification.

The effects of off-nadir collection and vegetation cover on urban
classification were investigated using hyperspectral, 4 m GSD
aerial images (Linden and Hostert, 2009). SVMs were employed
for the classification process but were not compared with other
methods as itwas outside the scope of their study. Confrontedwith
the common challenge of selecting an appropriate set of parameter
values, Cao et al. (2009b) used SVMs to overcome the setbacks of
empirical trial and error methods in extracting urban areas from
available samples of Defense Meteorological Satellite Program —
Optical LineScan (DMSP-OLS) and SPOT-derived NDVI data. The
study employed Chinese city datasets (apparently because of the
rapid urbanization of the study area) and the problemwas reduced
to a non-threshold binary classification. Being non-parametric,
SVMs proved to be a better choice for constructing a region-
growing algorithm that semi-automatically discriminated urban
pixels from any other type of background data. Themain attraction
was the ability of SVMs to achieve higher accuracy using a small
number of training samples.

Nemmour and Chibani (2006) studied urban change detection
using Landsat scenes and found SVM methods outperformed
backpropagation neural networks. Interestingly, they found that
user-defined SVM parameters did not have a significant influence
in the SVM superiority. Another urban change detection study
used multi-source data from Landsat TM/ETM+, European Remote
Sensing Satellite (ERS) 1 and 2, and Advanced Synthetic Aperture
Radar (ASAR) onboard the Environmental Satellite (ENVI-SAT) to
mapurban footprints in 1990, 2000 and2006 (Griffiths et al., 2010).
The classification method employed used SVMs and the authors
developed an SVM-based forward feature selection procedure to
rank input variable contribution. Licciardi et al. (2009) presented
the five awarded algorithms useful for the classification of high
resolution hyperspectral data over urban areas at the 2008 Data
Fusion Contest. They found that SVMs were extremely useful
for classification of hyperspectral data and decision fusion using
multiple algorithms would be a way to go for future research
regarding remote sensing classification.
5.2.3. General land cover land use tasks
Starting with high resolution imagery, Li et al. (2010) proposed

an SVM-based classifier using QuickBird data. A scene segmenta-
tion algorithm was integrated with the SVM object classifier lead-
ing to better performance. It is also noted that the SVM classifier
is highly dependent on the segmentation process, a typical draw-
back of object-based classifiers. Linear support vector machines
were reported to be useful in classification of hyperspectral remote
sensing datawhose elements had been extracted using a technique
called kernel principal component analysis (KPCA) (Fauvel et al.,
2009). Although only the basic SVM was employed in the set of
experiments, the improved feature provided a significant clue on
the effectiveness of SVMs especiallywhen applied on reliably clean
datasets.Warner andNerry (2009) performed a study to determine
the effectiveness of thermal infrared data in land cover classifica-
tion. An SVM classifier turned out to be an effectivemethod at han-
dling the complex distributions of the heterogeneous land cover
classes that characterized the study area (Strasbourg, France). In
their conclusion, the authors suggest that the inclusion of a single
broad thermal band increased classification accuracy by as much
as 20% for simulated Ikonos bands and provided a 4% improvement
when hyperspectral VNIR and SWIR data were used.

In yet another remote sensing application, Huang et al.
(2008c) presented an algorithmic fusion methodology to improve
processing of very high-resolution (VHR) satellite imagery using
a wavelet transformation. In justification of their undertaking,
scientists cited that VHR images are characterized by complex
multi-scale spectral and spatial information, therefore rendering
the traditional fixed, single-band, single-window approach less
efficient. The more relevant multi-scale spectral-spatial features
were classified using support vector machines. Mladinich (2010)
assessed three commercial software packages for object-based
binary classification (disturbed vs. non-disturbed areas) over
high resolution imagery (1 m). The ENVI software package was
one of the three tools, and it incorporated an SVM algorithm
adjusted from the library for support vector machines (LIBSVM).
Results across the three tools were comparable, with Definiens
classification showing higher consistency. In a bid to compare
SVMs against maximum likelihood and backpropagation artificial
neural networks, Pal and Mather (2005) experimented on Landsat
7 ETM+ andhyperspectral data. Results suggested SVMsuperiority
as input dimensionality increased and as dataset size decreased.

Moving towards medium resolution imagery (15–30 m pixel
size), in one of the earlier investigations Huang et al. (2002)
provided an accuracy evaluation of SVMs versus three other
classifiers, namely a MLC, a three-layer (input, hidden and output)
backpropagation neural network classifier (NN), and a decision
tree classifier (DTC). Variations of SVM classification results
with different kernel configurations were also compared. The
results showed that SVMs had the highest accuracy, followed
by DTC and then MLC. The authors attributed the SVM high
classification accuracy to its ability to locate an optimal separating
hyperplane. It was also stated thatwhile the SVMperformancewas
influenced by choice of parameter sets, the results of NN and DTC
classification, too, were affected by the classifier configurations.
For example, NN behavior is affected by the network’s structure
and random initializations and DTC is affected by the degree of
pruning. Dixon and Candade (2008) performed an algorithmic
comparison between a MLC, a backpropagation NN and an SVM-
based classifier. A statistical assessment on a Landsat scene showed
clear deficiencies for the MLC method, however results were
similar for NN and SVM classifiers. The authors noted the training
speed as an advantage for the SVM method, while admitting that
the relatively low dimensionality did not allow them to fully
explore their investigation.
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Another study to compare SVMs and neural network classifiers
using Landsat imagery was undertaken by Candade (2004). A
major conclusion drawn was that a small number of training
samples is sufficient to find the support vectors for near-optimal
SVM learning. In the land use application domain using a Landsat
scene, the study uncovered that SVM performed better than the
backpropagation neural network not only in terms of classification
accuracy but also when training times were compared. Three
different SVM kernels (the polynomial, radial basis function and
linear kernels) were analyzed for their performance. Overfitting
and local minima were cited as the underlying cause of the
relatively poor performance of neural networks on small training
samples. Classification of Landsat 5 TM imagery was assessed
from Tenerife (Canary Islands). This is an inherently difficult
practical problem for ground truth data collection posed by the
complex topographic relief. Keuchel et al. (2003) compared the
classification accuracy of SVMs, maximum likelihood and iterated
conditional modes (ICM). SVM and ICM methods outperformed
maximum likelihood, however the authors suggest caution should
be exercised in parameter (SVM) and iteration number (ICM)
assignments. Kavzoglu and Colkesen (2009) contrasted SVMs with
radial basis and polynomial functions and MLC using Landsat
ETM+ and ASTER imagery. In both image types the superiority of
SVMs was underlined.

Melgani and Bruzzone (2004) classified AVIRIS hyperspectral
data using SVMs and compared the results with those using radial
basis function neural networks and the K -nearest neighbor classi-
fier. They found SVMs outperformed the other methods and con-
cluded SVMs are a valid and effective alternative to conventional
pattern recognition approaches to hyperspectral remote sensing
data. In a study involving land cover update analysis conducted
by Marcal et al. (2005) Advanced Space-borne Thermal Emission
and Reflectance Radiometer (ASTER) imagery from Vale de Sousa
region (northwest of Portugal) was used to compare the effec-
tiveness of various classification methods including the SVMs, k-
nearest neighbor (k-NN), logistic discrimination (LD) and training
data-driven fuzzy classifiers. The SVM and LD classifiers produced
higher overall accuracy than k-NN and the fuzzy classifiers. Ku-
mar et al. (2007) in recognition of the fact that the proportion of
mixed pixels in remote sensing images increases as spatial reso-
lution decreases, proposed a method to deal with data fuzziness.
The approach, called full fuzzy method, was tested on a land cover
mapping problem in India using the LISS-III sensor. The full fuzzy
scheme involved SVM-based sub-pixel analysis at all three differ-
ent stages. Performance variation with different distance metrics
(e.g., Mahalanobis and Euclidean norm) was investigated. SVMs
with the Euclidean norm gave the highest accuracy, outperform-
ing a corresponding variant of k-means clustering algorithm.

At coarser spatial resolutions a study was undertaken to evalu-
ate the discriminatory power of two vegetation indices (the global
vegetation index and terrestrial chlorophyll index) obtained from
MERIS for general land covermapping (Dash et al., 2007). Although
amoderate level of accuracywas achieved using discriminant anal-
ysis method, a repetition of the experiment using an SVM tech-
nique revealed that the latter methodology resulted in a 6% gain in
overall accuracy. Carrão et al. (2008) investigated the incorporation
of multi-temporal MODIS data for a general 500 m LCLU classifica-
tion with an SVMmethod as the underlying classifier.

5.3. Other tasks

Remote sensing data from the Himalayas (Nepal) were used
to study soil erosion processes in tectonically active orogens (An-
dermann and Gloaguen, 2009). This research employed SVMs to
provide a classification into land use, erosion and geomorphologi-
cal processes. Although the maximum likelihood classifier yielded
higher classification accuracy, the authors point out that SVM re-
sults could be improved by selecting suitable values of the user-
chosen SVM parameters. Zebedin et al. (2006) implemented SVM
methods as part of a complex three dimensional reconstruction
task using aerial, multi-spectral, high resolution data. Using the
freely available NOAA/AVHRR satellite image data Gautam et al.
(2008) tackled the problem of creating an automatic detector of
coal field fire spots. The SVMmethod was used successfully to fur-
ther refine detection results by removing points falsely highlighted
by the threshold-based methodology in the regions deemed sus-
pect. Rock glacier detection was undertaken using Landsat and
SRTM terrain data (Brenning, 2009). Eleven different classifiers
were tested and the SVM-based method did not rank highly when
compared with the other methods.

SVMs have also been used for pure pixels (endmembers) iden-
tification. Brown et al. (2000) compared a linear SVM with linear
spectral mixture models to identify pure pixels using Landsat TM
data. They found that the SVM framework is more appropriate for
nonlinear and/or empirical mixture modeling because SVMs can
handle spectral confusion of pure pixels appropriately. Filippi and
Archibald (2009) investigated SVMs to extract endmembers from
hyperspectral data and pointed out that SVM-based endmember
extraction has advantages in terms of efficiency and accuracy and
is not sensitive to noise.

An integrative approach to information mining from large
image datasets was proposed by Li and Narayanan (2004) based
on SVMs. This framework was aimed at enabling users to make
complex queries that would extend information search criteria
beyond image metadata and actually access image content, a
process called content based image retrieval. The proposed system
architecture provided three components, namely, the image
processing module, database module and graphical user interface.
The backend image processing intelligence incorporated an SVM
method to facilitate land cover mapping from a set of Landsat
TM images in eastern Nebraska. An identified challenge was
the integration methodology that would yield optimal results.
Melgani (2006) proposed two methods to reconstruct cloud-
contaminated remote sensing data using a sequence of multi-
temporal multispectral images. The first method was based on the
expectation-maximization algorithm to implement the contextual
prediction process. The second method used a single non-linear
predictor based on SVMs. Both methods outperformed the other
methods based on compositing algorithms for cloud removal, and
the first method was slightly better than the second method.
Finally, Mazzoni et al. (2007) described one of the few SVM-based
operational remote sensing classifiers usingMISR imagery. There is
also an interesting reference into an SVM-based classifier running
onboard NASA’s EO-1 spacecraft, as part of the Autonomous
Sciencecraft Experiment (Mazzoni et al., 2005a,b) to automatically
detect degraded images (e.g., from clouds) and avoid further
processing and transmission on the satellite’s platform.

SVMs have also been used in landmine detection. Potin et al.
(2006) utilized ground-penetrating radar data (GPSARs) to detect
buried landmines. They developed an abrupt change detection
algorithm based on SVM, which was effective in reducing the
clutter noise to improve the landmine detection. Jin and Zhou
(2007) introduced a fuzzy hypersphere SVM (FHSSVM) based
on the reduced features using the sequential forward floating
selectionmethod. They tested the FHSSVM for detecting landmines
using rail GPSAR and found their method significantly improved
the performance of landmine detection in different scenarios.

6. Discussion and concluding remarks

This review discussed important contributions of SVM-based
works in remote sensing. In order to summarize efficiently the
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Fig. 4. Textual summary of this review.

content we resorted to a textual summary of frequently appearing
single terms in this document. Fig. 4 displays such a visual
representation, where higher frequency results in a larger font
size. Looking beyond expected terms such as SVM, classification
and remote sensing we also see the trends of recently published
works (2008, 2009). In addition, Landsat is the prevailing sensor,
while forest and land use applications show a significant presence.
From the algorithmic perspective there is a significant discussion
on the kernel and feature selection and their consequences to
accuracy. Even though the focus is on classification tasks, there are
worth-mentioning regression applications. Finally, the majority of
comparative methods are neural networks, followed by maximum
likelihood and decision trees.

Most of the findings show that there is empirical evidence to
support the theoretical formulation and motivation behind SVMs.
The most important characteristic is SVM’s ability to generalize
well from a limited amount and/or quality of training data. Com-
pared to alternative methods such as backpropagation neural net-
works, SVMs can yield comparable accuracy using a much smaller
training sample size. This is in line with the ‘‘support vector’’ con-
cept that relies only on a few data points to define the classifier’s
hyperplane. This property has been exploited and has proved to
be very useful in many of the applications we have seen thus far,
mainly because acquisition of ground truth for remote sensing data
is generally an expensive process.

SVMs offer additional benefits in contrast to alternative clas-
sification models, such as neural networks. They are resilient to
getting trapped in local minima because of the convexity of the
cost function which enables the classifier to consistently identify
the optimal solution. In other words, SVM deals with quadratic
problems hence it always gets to the global minimum. An added
advantage is that there is no need for repeating classifier train-
ing using different random initializations or architectures. Fur-
thermore, being non-parametric, SVMs do not assume a known
statistical distribution of the data to be classified. This is particu-
larly useful because the data acquired from remotely sensed im-
agery usually have unknown distributions. This allows SVMs to
outperform techniques based on maximum likelihood classifica-
tion because normality does not always give a correct assumption
of the actual pixels distribution in each class (Su et al., 2009).

On the other hand, the majority of the studies uncovered
common limitations to SVMmethodologies, for example selection
of SVM key parameters such as the kernel functions. To elaborate
further, choosing a small value for the kernel width parameter
(i.e. the kernel footprint in that multi-dimensional space) may
lead to overfitting, while large kernel width values may lead to
oversmoothing. This problem is not restricted to SVM methods,
rather it is a general drawback of kernel-based approaches
(e.g., radial basis function neural networks). Choice of the
parameter value (usually denoted by C), which controls the trade-
off between maximizing the margin and minimizing the training
error, is also an important consideration in SVM application.
There exist no established heuristics for selection of these SVM
parameters which frequently leads to a trial-and-error approach.

It has also been reported that the ‘one-against the rest’ strategy
for SVM multi-class classification can be problematic as it may re-
sult in unclassified instances of data and therefore lower classifica-
tion accuracies (Pal andMather, 2005). Moreover, SVM approaches
frequently map input data to higher dimensional spaces in order
to discern patterns. As dimensionality increases in additional to
potential separability of patterns SVMs exhibit typical dimension-
ality issues such as outlier behavior and increased computational
demands. This is a critical drawback especially for hyperspectral
analysis where the dimensionality of the original data is high and
kernel mapping is more vulnerable to dimensionality problems.

Moreover, SVMs are not optimized to deal with the inherent
problem of noisy data; outlier effects are commonly encountered
in remotely sensed data. Measurement errors due to limited
precision of image acquisition instruments, and atmospheric and
topographic distortions are some of the causes of such impurities.
The quality of both training and test patterns are important in
construction (training) and evaluation of automatic classification,
recognition and detection systems. The performance of an SVM
classifier can dramatically decrease with a relatively small number
of mislabeled examples. Perhaps, more investigations into the
potential of some of the relatively untapped lower level noise
reduction techniques such as morphological image processing
could provide a remedy to the problem of denoising. Citing one of
the developments aimed at addressing this problem, Huang et al.
(2008b) proposed a revised radiometric correction algorithm to
counter the undesirable effects of atmospheric and topographic
effect on data. Inglada (2007), supported by empirical evidence,
similarly argued that higher number of geometric image features
enhancesmulti-way characterization of objects that naturally have
many different geometric properties. Also, pointed out by Dash
et al. (2007), the choice of dataset source could help in remedying
this hindrance by allowing the reduction in the size of the training
set required.

There is significant room for extension of SVMs to address
current pitfalls. For example, Foody (2008) assessed a relevance
vector machine approach as a way to address the need to define
the parameter C. RVMs are considered as a Bayesian treatment
alternative to SVMs and have several advantages including
probabilistic predictions, automatic estimation of parameters,
and the arbitrary kernel functions. The authors argued that the
new method leads to reduced sensitivity to the hyperparameter
settings, thereby making the use of non-Mercer kernels possible.
Furthermore, RVMs allow for fuzzy (or sub-pixel) classification of
data making it possible to have a probabilistic output.

Typical SVM comparative assessment has not been as wide-
reaching. Of particular interest would be comparison/fusion with
algorithms such as self-organizing maps (Kohonen, 1997) that
address efficiently high dimensionality problems and have already
found fruitful ground in remote sensing (e.g., Hong et al., 2006;
Goncalves et al., 2008). In addition, integrationwithmethodologies
that deal more naturally with multi-class problems without the
SVM complexity may further advance SVM understanding, for
example a learning vector quantization system (Schneider et al.,
2009).

In a nutshell, we can conclude that SVM classifiers, character-
ized by self-adaptability, swift learning pace and limited require-
ments on training size have proven a fairly reliable methodology
in intelligent processing of data acquired through remote sensing.
Past applications of the method on both real-world data and simu-
lated environments have shown that SVMs exhibit superiority over
most of the alternative algorithms — a big motivation and promise
for future advances.
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