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Abstract

Since 2000, the southwestern Brazilian Amazon has undergone a rapid transformation from natural vegetation and pastures to row-crop
agricultural with the potential to affect regional biogeochemistry. The goals of this research are to assess wavelet algorithms applied to MODIS
time series to determine expansion of row-crops and intensification of the number of crops grown. MODIS provides data from February 2000 to
present, a period of agricultural expansion and intensification in the southwestern Brazilian Amazon. We have selected a study area near
Comodoro, Mato Grosso because of the rapid growth of row-crop agriculture and availability of ground truth data of agricultural land-use history.
We used a 90% power wavelet transform to create a wavelet-smoothed time series for five years of MODIS EVI data. From this wavelet-smoothed
time series we determine characteristic phenology of single and double crops. We estimate that over 3200 km2 were converted from native
vegetation and pasture to row-crop agriculture from 2000 to 2005 in our study area encompassing 40,000 km2. We observe an increase of
2000 km2 of agricultural intensification, where areas of single crops were converted to double crops during the study period.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The southwestern Brazilian Amazon is one of the world's
fastest growing agricultural frontiers. Historically, the clearing of
forest and savanna ecosystems to create cattle pastures has been
the primary land transformation (Skole & Tucker, 1993). This
land-use pattern has recently changed. Today, pastures and areas
of natural vegetation are being converted to large-scale croplands
to grow cash crops, row crops including soybean, maize, and dry-
land rice (Instituto Brasileiro de Geografia e Estatistica, 2006;
Morton et al., 2006). From 1990 to 2000, soybean cover in
the southwestern Brazilian Amazon doubled while production
has nearly quadrupled due to farm mechanization (CONAB,
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2004).Amajor frontier of row crops is in the state ofMatoGrosso,
home of some of the largest contiguous row-crop plantations in
the world. Here, the area planted in soybean has increased on
average 19.4% annually since 1999. By 2004 over 5 million
hectares, or about 6% of Mato Grosso, was soybean plantations
(CONAB, 2004).

Regional shifts in land-cover and land-use have numerous
consequences relevant to both environment and agriculture,
including changes in carbon and nitrogen storage, trace gas
emissions, quality of surface water and biodiversity (Luizão
et al., 1989; Melillo et al., 1996, 2001; Myers et al., 2000; Neill
et al., 1997, 2001; Steudler et al., 1996). Determining the
physical and temporal patterns of agricultural extensitificaiton,
or expansion, and intensification is the first step in understand-
ing their implications, for example, long-term crop production,
and environmental, agricultural and economic sustainability.
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Since the early 1970s, remote sensing studies have tracked
the land-cover and land-use changes in the Brazilian Amazon,
initially using Landsat data to identify areas of deforestation
(Skole & Tucker, 1993). The iconic images of development
in the state of Rondonia, off of highway BR364, showed
the dramatic impact of deforestation. Recently, the Brazilian
Instituto Nacional de Pesquisas Espaciais (INPE; National
Institute for Space Research) has used Landsat sensors for
monitoring deforestation and detecting fires for the purpose
of enforcing environmental regulations (Instituto Nacional de
Pesquisas Espaciais, 2006). As conversion from natural vege-
tation and pasture to row crops has become increasingly wide-
spread, the focus has shifted to documentation of the land cover
changes in type localities. For example, Brown et al. (2005)
illustrated the large-scale development of soybean agriculture
with temporal “snap-shots” of Vilhena, Rondônia with Landsat
data in 1996 and 2001. Morton et al. (2006) document wide-
spread, regional changes in land cover. This new focus on
cropland detection is particularly important due to the large
spatial scale of individual farms (i.e. a single farm of row-crop
agriculture typically occupies more than 2000 ha) and regional
agricultural intensification (Mueller, 2003).

Remotely-sensed green leaf phenology is one metric for
distinguishing the type of land-cover and land-use change and is
suitable for agricultural applications. Croplands present a more
complex phenology than natural land cover due to their many
peaks resulting from multiple crops planted sequentially within
a growing season. Additionally, the uniform cover of green
leaves in an agricultural field creates very high observed green-
ness, especially as compared to the bare soils left after harvest.
This large dynamic range of cropland green vegetation through
time depends highly on natural factors (e.g. magnitude and
temporal variability of precipitation in the region), as well as,
management decisions (e.g. time of planting, crop variety).

Phenology studies often utilize a curve-fitting algorithm for
the observed data sets. A curve-fit simplifies parameterization
necessary for identification of metrics such as start of season.
Previous studies (e.g. Bradley et al., 2007; Zhang et al., 2003)
have identified land cover based on specific properties of the
observed green leaf phenology, such as start of season, dry
season minimums, and amplitude of maximums. The simplest
method for creating a smoothed time series is to use a multi-
point smoothing function which may not remove high fre-
quency noise. Other curve-fitting methods, (e.g. Bradley et al.,
2007) rely on a harmonic curve-fit to the annual average phe-
nology in order to characterize inter-annual variability of a time
series. A sigmod curve-fitting algorithm can be applied to a time
series of a single year (Fisher et al., 2006; Zhang et al., 2003)
but utilizes a priori knowledge of the system's seasonality in
order to detect the phenological peaks (i.e. the algorithm must
be informed with expectation for when to find the phenological
peak) (Fisher et al., 2006; Jönsson & Eklundh, 2004; Zhang
et al., 2003).

All of these methods have proven powerful in the systems
they have been tested in but will fail in the case of row-crop
agriculture in Mato Grosso for three reasons: 1) they fail to
remove high frequency noise caused by the long rainy season. A
multi-point smoothing function maintains sensitivity to high
frequency noise observed during the rainy season which poses
problems when trying to detect the maximums defining the
cropping system. Using such a smoothing procedure would
require a finely-tuned crop detection algorithm that would have
to be adjusted for the strong precipitation gradients in the
region. 2) They cannot capture the inherent variability in the
system. Using an average annual phenology to identify land
cover (Bradley et al., 2007) does not work because it does
not examine each year separately, a problem since observed
annual phenology is not a function of the previous year. In this
human environment, the change in phenology from year to year
(e.g. when converting from natural vegetation to cropland or
intensifying from single crops to double crops) can be tremen-
dous, rendering the average annual phenology of the time series
meaningless. The traditional Fourier transform expects period-
icity whereas the change in crop behavior from single to double
cropping systems in addition to management coupled with
climate makes the time-series signal non-stationary, which is
better handled by the wavelet transform (Sakamoto et al., 2005).
3) The stochastic nature of rainfall and the influence of human
management affect the timing and spatial patterns of phenology
peaks that make it difficult to precisely predict the timing. This
system fails the criteria of a priori knowledge regarding the
timing of phenology peaks necessary for some curve-fitting algo-
rithms, such as the sigmod (Fisher et al., 2006; Zhang et al., 2003).

We look to the wavelet-based curve-fitting methodology
(Wavelet based Filter for determining Crop Phenology, WFCP)
presented by Sakamoto et al. (2005) in order to remove high
frequency noise while remaining sensitive to annual changes
in phenology. This is a necessary step in accepting WFCP as
a generalized methodology. The true utility of such a method
comes in being able to apply it to various study areas without
sacrificing performance or requiring many changes. Our case
study presents a robust test for the wavelet methodology—an
area with high variability in phenology patterns with additional
noise cause by the tropical rainy season. We are interested in
the application of the WFCP in the southwestern Brazilian
Amazon because of its curve-fitting capabilities for cropland
phenology, as well as, the potential for it to be rapid and highly
automated.

We implement a wavelet transform for time-series analysis to
study these highly dynamic systems. Wavelet analysis provides an
efficientmethod for extracting relevant information from large data
sets such as hyperspectral image cubes, sea surface temperature,
vegetated land-cover and seismological signals (e.g., Gendrin et
al., 2006; Li & Kafatos, 2000; Mallat, 1998; Percival et al., 2004;
Sakamoto et al., 2005, 2006; Torrence & Compo, 1998).

In agricultural applications, a wavelet-smoothed time series
can be used to identify the start of growing season and the time
of harvest with low error (11 to 14 days, respectively; Sakamoto
et al., 2005). Wavelet analysis is capable of handling the range
of agricultural patterns that occur through time as well as the
spatial heterogeneity of fields that result from precipitation and
management decisions because the transform is localized in
time and frequency. Using a wavelet analysis for a study area in
the Amazon is highly desirable because it removes the high
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frequency noise caused by the frequent cloud-cover in a highly
automated way.

MODIS data products offer a great opportunity for
phenology-based land-cover and land-use change studies by
combining characteristics of AVHRR and Landsat, including:
moderate spatial resolution, frequent observations, enhanced
spectral resolution and improved atmospheric calibration
(Justice, 1998; Zhang et al., 2003). MODIS data products
have provided global land-cover mapping annually to document
land-cover change over time (Friedl et al., 2002; Hansen &
DeFries, 2004). These data sets are informative at the global
level, but lack relevant regional-scale details about land-cover
and land-use classes and change. Recent regional-scale
applications of MODIS data to cropland land-use include
spectral unmixing to time series to detect subpixel land-cover in
croplands (Lobell & Asner, 2004). Wardlow et al. (2007)
demonstrate that MODIS vegetation indices in time series are
statistically sufficient for distinguishing crop types across a
broad region, such as the state of Kansas. In the Amazon,
Anderson et al. (2005) have utilized MODIS data sets to
document broad changes in land cover and land use.

Understanding the degree of extensification and intensifica-
tion in croplands from remote sensing provides insight into the
direction and magnitude of impacts on natural and agricultural
environments. In the industrial-scale croplands that are
beginning to dominate portions of the Amazon Basin, patterns
of cropland extensification and intensification have biogeo-
chemical consequences that affect the natural and cropland
sustainability, including soil fertility for decades to come. Our
objective is two-fold: to understand 1) the massive transition
from natural vegetation and pasture to large-scale row crops
and 2) the intensification of cropping systems within existing
croplands using MODIS data sets. The purpose of this study is
to detect cropping patterns for the cerrado region using a
wavelet-smoothed time series. This study evaluates wavelet
tools, as presented by Sakamoto et al. (2005), in a new envi-
ronment and tests the limits of the wavelet model while
modeling crop phenologies from MODIS time-series data
Fig. 1. Overview of methodology, divided into four parts: data proc
during the 2001–2006 growing seasons. We provide analysis
and discussion of the effectiveness of wavelet analysis for the
detection of single and double cropping systems and hereby
demonstrate the utility of wavelet analysis on time-series data
with application to a land-use and land-cover change case study
in the southwestern Brazilian Amazon.

2. Methods and approach

An overview of the methodology used here is presented in
Fig. 1. The general methodology is based on the “Wavelet based
Filter for Crop Phenology” (WFCP, Sakamoto et al., 2005).
There are four main steps: 1) Data processing, 2) Identification
of land use, 3) Field verification and 4) Error Analysis.

2.1. Study area

We selected a region of rapid change in croplands in the state
of Mato Grosso for this study (Upper left corner: 12° 15′ 23.61″
S, 59° 45′ 18.23″ W; Lower right corner: 13° 59′ 27.86″ S,
57°57′ 30.8″W; Figs. 2, 3). The area is 40,100 km2, has annual
rainfall from 1800 to 2200 mm, and a dry season from July–
September and rainy (growing) season from November to April.
The soils are entisols with 15–25% clay. Dominant native
vegetation types range from cerradão (woody savanna) and
cerrado (open savanna), referred to from here forward as
“cerrado”. In this region, land-use transitions have two major
pathways to row crops from cerrado: natural vegetation to
pasture to row crops; and natural vegetation directly to row
crops. Row crops are subject to a variety of management
regimes—types and sequences of crops; types, timing and
amounts of fertilizer and other chemicals; and tillage versus no-
tillage.

2.2. Field data

Field work conducted in July 2005 provided ground-control
points on a fazenda of 41 km2 for which a detailed agricultural
essing, crop detection, field verification data and error analysis.



Fig. 2. Location map of the study area, shown by the gray box, in the southwestern Brazilian Amazon state of Mato Grosso.
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history has been kept through this study period. Using a hand-
held GPS we mapped three management units with different
agricultural histories. The histories include information on the
type of land cover or land use before row-crop agriculture, the
timing of conversion to row-crop agriculture and the cropping
patterns used for each year land use was row-crops. These
histories were provided to us from records kept by the farm
manager. Most of the native vegetation was converted in 2002
or 2003; one unit was previously pasture until conversion in
2002. The crops are generally single crops for the first two to
three growing years and then change to double crops.

2.3. Creating a time series

Remotely-sensed data create a detailed classification of
croplands by detecting important characteristics (parameters) of
land-cover and land-use change from a smoothed Vegetation
Index (VI) time series. For this work, we used MOD09 (V004)
8-day, 500 m surface reflectance composites data (Fig. 3). The
study site was subset from the larger MODIS scene (h12v10).

We derived Enhanced Vegetation Index (EVI) products using
the standard formulation (Huete et al., 2002): EVI was chosen
because it has a greater dynamic range than the more commonly
used NDVI and thus is better suited to capture the dynamic crop
phenology in this region without reaching saturation (Huete
et al., 2002). Combining the EVI images gives us an EVI time
series for each pixel, although the time steps are not equally
spaced. We used the date of observation flag included in the data
product as the day of the year for each observation to create an
unevenly-spaced time series for a given pixel. Using the date of
observation flags more accurately defines the timing and
magnitude of green peaks. The 8-day product without the date
of observation flags assumes evenly spaced observations when,
in fact, observations can be up to 16 days apart or as few as
2 days apart. The accuracy of the shape of the input data affects
the detection of cropping systems. Assuming evenly spaced
data from with the original aggregated MODIS data (as with
the 8-day product without the observation flags) misrepresents
the data.

2.4. Data processing

Data processing for noisy and contaminated pixels consisted
of 2 steps: 1) detecting of cloud-contaminated and extremely
noisy pixels and 2) replacing bad data points through
linear interpolation. Data processing treated each pixel as a
one-dimension time series. For each time step, a point in the
time series was identified as cloud-contaminated when band 3
(459–479 nm) reflectance values exceeded 10% (Sakamoto
et al., 2006) and were subsequently removed. Extremely noisy
data, generally caused by minor cloud contamination, were
identified if they exceeded a 0.15 change threshold in EVI from
the value at the previous time-step and were also removed.

We replaced the missing values through linear interpolation
from observed data points. Since the observation dates varied by
pixel and were unevenly spaced, we produced a daily time-step
EVI time series to avoid an aliasing effect when creating a
wavelet-smoothed time series. Then we resampled the daily
interpolated data set to 7 day intervals to reduce the size of the
data set and the processing time during further analysis.



Fig. 4. EVI time series of representative land cover for 2000–2006 with cloud-
contaminated points removed and filled by linear interpolation. Open cerrado
phenology has a low annual mean EVI and exhibits only minor seasonal
fluctuations. Rainforest phenology has only slight changes in greenness between
the wet and dry seasons. A pasture has higher annual mean and variance than
cerrado, but a lower mean and higher standard deviation than forest. The
time series second from the top shows an area in cerrado from 2000 to mid
2002, followed by a conversion prior to 2003 to cropland phenology. The top
time series shows an area that exhibits single crop phenology in 2001, 2002, and
2003 and double crop patterns in 2004 and 2005.

Fig. 3. False-color infrared MODIS image (Red=859 nm, Green=645 nm,
Blue=555 nm) for the study area on 28 July 2005 (Upper left corner: 12° 15′
23.61″ S, 59° 45′ 18.23″W; Lower right corner: 13° 59′ 27.86″ S, 57°57′ 30.8″
W). Bright red areas represent dense cerradão woodland savanna native
vegetation. Lighter reds to dark greens show the extent of cerrado native
vegetation. Bright turquoise blues show row-crop agriculture, and very bright
white areas are (bare) agricultural fields. Fazenda Santa Lordes is highlighted
with a yellow polygon. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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We first separate croplands from other land covers. Lands
managed in croplands display a distinctly higher annual stan-
dard deviation compared to natural vegetation due to high
vegetation density during the growing season and extremely
low vegetation density following harvest. Woody cerrado land
cover has very little phenological variation and maintains a
mean value of 0.6 EVI, rarely exceeding 0.8 EVI (Fig. 4). The
open cerrado phenology shows some seasonal variation as it
decreases in greenness through the dry season and increases
during the rainy season, with an annual mean of 0.25 EVI and a
maximum around 0.6 EVI (Fig. 4). Both woody and open
cerrado remain above 0.2 EVI through the year. Pasture phe-
nology is similar to the cerrado with a slightly larger dynamic
range and a mean of 0.5 EVI (Fig. 4). Croplands have maximum
EVI values exceeding 0.8 and EVI minimums often reaching
0.1 or lower (Fig. 4).

Because these differences in amplitude of seasonal phenol-
ogy in EVI we can use the standard deviation of an annual EVI
time series to distinguish lands in croplands from native
vegetation (Fig. 5). There is a bimodal distribution in the
histogram of standard deviations for all pixels in the study area,
separating croplands on the right tail (Fig. 5). There is a bio-
modal distribution of the standard deviation for each pixel. For
each year, we used the standard deviation value that separated
the two modes (the histogram minimum) as the detection point
for croplands—all pixels with a standard deviation higher than
this point were classes as croplands. The value of the detection
point, or histogram minimum between modes, is included in
Fig. 5 for each year of analysis. The mean detection point for all
years was at the standard deviation of 0.149.
2.5. Creating a wavelet-smoothed EVI time series

Here we use a discrete wavelet transform. Awavelet function
ϕ(t) is an oscillating function with a finite energy and null mean:
Z þl

�l
/ðtÞdt ¼ 0: ð1Þ

The wavelet transform W(a,b) is defined by Eq. (2):

W ða; bÞi ¼
1ffiffiffi
a

p
Z

/⁎ t � b
a

� �
sðtÞdt ð2Þ

where s(t) is the analyzed input signal and ϕ⁎ is a mother
wavelet, or a wavelet basis function. A number of different
mother wavelets exist, including Daubechies, Derivative of a
Gaussian (DOG) and Coiflet (Torrence & Compo, 1998). In this
equation, the wavelet width is determined by the scaling pa-
rameter a while its center is determined by the parameter b. The
variable t represents the time-step in the one-dimensional time
series over which the integration is performed. The wavelet
transform has the advantage of retaining information related to
the width (scale) and the location (time) of the features present



Table 1
The effects of wavelet power on accuracy are reported using overall accuracy
and Khat by comparing wavelet-detected cropping patterns to reference patterns
generated by the user from the input EVI time series

Wavelet power (%) Overall Accuracy Khat

70 81.0% 70.3%
80 83.4% 74.2%
85 90.0% 84.1%
90 87.2% 80.4%
90 (0.4 threshold) 88.5% 92.1%
95 (0.4 threshold) 44.8% 25.6%

Overall accuracy is the percent of points accurately identified in a class out of the
total number of points sampled. Khat values incorporate misclassifications while
assessing classification accuracy.

Fig. 5. This histogram show how the high standard deviation separates areas of row-crop agriculture from other land cover classes through the entire study scene. Row-
crop agriculture was identified as areas that have an annual standard deviation greater than the local minimum (∼0.15) identified specifically for that year. The actual
standard deviation used for each year is printed in the legend.
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in s(t). This formulation (Eq. (3)) can be used to reconstruct a
signal (Gendrin et al., 2006).

The wavelet-created time series W is a summation of wave-
lets over a number of different widths,

W ¼
Xx

i¼1

W ða; bÞi ð3Þ

where W(a, b)i is the wavelet transform created in Eq. (1).
Wavelet transforms of decreasing width are summed from i to x,
where x is the number wavelet transforms necessary to achieve
the user defined number of coefficients retained from the input
data. The width of a wavelet transform has half the width of the
previous wavelet. It is the sum of the wavelets (W in Eq. (3)) that
is referred from here on as the wavelet-smoothed time series.

The wavelet filtering begins by applying a smoothing func-
tion on the one-dimensional time series that is evenly-spaced, to
avoid aliasing effects, after cloud-removal and interpolation of
missing values. First, a discrete wavelet transform removes the
residual high frequency noise. The smoothed EVI time series is
then reconstructed with an inverse discrete wavelet transform.

Applying the wavelet to an EVI time series requires selecting
parameters of mother wavelet, order, and power that define
the wavelet behavior. We used the Coiflet mother wavelet
with order 4 because the wavelet shape is as similar as possible
to the peaks in agricultural phenology we are detecting. (See
Sakamoto et al., 2005 for performance comparison of mother
wavelets). Order is a measure of the wavelet's smoothness,
where a higher order produces a smoother wavelet (Burke,
1994).

The wavelet requires a power threshold that corresponds to
the number of coefficients determining how much of the input
EVI time series is retained during the wavelet transform. A
higher power or a greater number of coefficients retains more of
the original data by forming a narrower wavelet that includes
more fine-scale features but may also retain more noise. A lower
power, or fewer coefficients, retains less high frequency data by
applying a wider wavelet. A low power wavelet may capture
trends through the entire time series but may loose phenological
detail during a single year.

We conducted error analysis cropping patterns detected with
the 70%, 80%, 85%, 90% (both 0.3 and 0.4 EVI detection
thresholds; see Section 2.6 for further discussion of this
threshold) and 95% (0.4 threshold) power wavelets. A random
point generator selected 122 verification points within the row-
crop agricultural zone. Reference data on cropping patterns for a
given year in a given pixel were generated from the input EVI
time series with bad pixels removed. These reference data are
used to verify the cropping patterns detected from each wavelet-
smoothed time series and the results tabulated to calculate
overall accuracy and Khat. Each point has five years worth of
data and each year was treated individually, essentially mul-
tiplying the number of verification points by the number of
years, giving a total of 610 verification points.



Fig. 6. Comparison of 70% power (9 coefficients), 80% power (15 coefficients),
85% power (19 coefficients) and 90% power (27 coefficients) wavelet-smoothed
time series shows how wavelet power determines the amount of detail retained.
Circles represent the EVI time series with cloud-contaminated values removed.
Using a higher power may fit maxima in the data better but can also create
false peaks, indicated here with an arrow. False peaks are removed from crop
detection by an EVI threshold of 0.4.

Table 2
Total area in row-crop agriculture⁎ is reported here in square kilometers by harvest
year

Year Area (km2)

2001 6255
2002 6799
2003 7543
2004 8532
2005 9535

⁎ The area of row-crop agriculture was measured by the number or pixels
having one or more crops in a year of the 90% wavelet-smoothed time series.
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This error analysis shows high overall accuracies and Khat

values for all wavelet powers except the 95% power wavelet
(Table 1). From these results we conclude the 90% power
wavelet-smoothed time series best captures cropping patterns
and will be the focus of our further analysis. We employed
the 90% power wavelet (27 coefficients) which minimized
RMS error and had the lowest omission and commission
errors in detecting cropping patterns. Qualitatively, we observed
thousands of pixels where the strong overall performance of the
90% wavelet was apparent when compared to the other wavelet
powers. Fig. 6 provides one such example. In areas of single
crops, the 90% power wavelet captures the overall data trend
well, getting closest to the high observed EVI values and the
low values while reducing false detections of peaks. The agri-
cultural system gets more complex where there are double
crops. Resonance in the wavelet may create false peaks but they
do not go above our threshold of 0.4 EVI. Throughout the time
series, RMS error is low, on the order of magnitude of 0.1 for
the 90% power wavelet-smoothed time series.

The power threshold is a variant on the method of Sakamoto
et al. (2005) where multiple frequency thresholds defined the
length of plausible growing seasons to remove noise with
the wavelet. We chose to use the power variable to remove high
frequency noise as it required no assumption of length of
growing season. This gives more flexibility in fitting both very
narrow peaks, as is often the case in both wide peaks found in
single crops and very narrow peaks found in double cropping
systems.

Application of the wavelet filter can create distortion around
the edges of the EVI time series (Sakamoto et al., 2005). To
avoid this problem, we augmented the input EVI time series to
allow for spin-up, or conditioning of the wavelet. Conditioning
the wavelet is a necessary step shown by Sakamoto et al. (2005).
For our application, we augmented the one-dimensional EVI
time series by replicating the first and last year worth of data ten
times at the beginning and end, respectively, of the time series.
After applying the wavelet transform, the extra years of data
were removed from the wavelet-smoothed time series.
2.6. Phenology and land cover/land use

The cropping patterns, or the numbers of crops grown each
year, were detected from the wavelet-smoothed EVI time series.
Each crop is characterized by one maximum in the wavelet-
smoothed EVI time series. To determine if a cropland pixel had
a single or double cropping pattern, we detected the number of
local maximums in one growing year of the wavelet-smoothed
EVI time series. We defined a local maximum as having a
higher EVI than the two points before and two points after that
point. The wavelet-smoothed EVI time series divided into five
growing years from August through July for 2000–2005 and are
identified by their harvest year: 2001, 2002, 2003, 2004, and
2005.

Wavelets are very sensitive to small maximums in portions
of the time series where EVI range is low. The wavelet response
to these small local maximums slightly amplifies small real
peaks, thereby creating false peaks in phenology. From farm
histories, we know that the EVI for crops generally exceeds 0.4.
We removed false detections by using a threshold of 0.4 EVI for
the 90% power wavelet to minimize false detections to remove
these minor false peaks from being detected as phenological
peaks of cropland. In some areas we detect two or three real
phenological maximums in the EVI time series. In such cases,
the first maximum is minor and is likely caused by the early
green-up of volunteer crops, weeds or other green cover at the
beginning of the rainy season before crops are planted. The
second and third maximums, where present, correspond to
single and double crops. The early weedy growth or volunteer
crops may be distinguished from crops as they do not exceed the
0.4 EVI threshold that prevents us from detecting early green-
ups as crops. Utilizing this threshold works with the assumption
that every area of row crops has a strong crop phenology
(i.e. peaks above 0.4 EVI) but it may exclude very small, real,
phenological maximums such as the case of a failing crop that
did not exceed the threshold.

With these detection criteria, we can identify the cropping
patterns and change in cropping patterns that characterize the
intensification and extensification of cropland, as first shown by
Sakamoto et al. (2006). For verification of the cropping
patterns, we used the observed EVI time series with bad pixels
removed. A random point generator selected 122 verification
points within the cropland areas. For each point, there are
five growing seasons (August–July) in the time series. Each
growing season was treated individually, essentially multiplying



Fig. 7. The 90% power wavelet-smoothed time series results for detecting maximums representative of single and double crops are presented here. Cropping patterns in
the study region show an increasing area is cultivated in double crops (black) instead of single crops (gray). The increase in double cropping (black) is notably centered in
existing agricultural zones. Extent of row-crop agriculture over time is a result of the standard deviation threshold described in Fig. 3. The extent of row-crop agriculture
(shown in black and gray) is observed to be spreading. Change is particularly notable on the edge of the cropland region, such as the areas circled in dotted lines.

Table 4
Randomly generated points throughout the study area were used for error
analysis of the land-use classifications: not row crops (Not RC), single cropping
patterns (Single) and double cropping patterns (Double). The wavelet-detected
results are compared to the reference data, in this case crop patterns detected by
the user from the non-smoothed MODIS time series. Error matrix (A) shows the
number of points correctly classified as well as the distribution of misclassified
points. The producer's accuracy and user's accuracy (B) is low for Not RC
Agriculture and Double crops but is rather high for Single crops
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the number of verification points to give a total of 610 veri-
fication points. We compared cropping pattern detected from
the 90% wavelet-smoothed time series to the original data and,
for each point, identified and tabulated misclassifications.

Further, comparison of our wavelet-smoothed time series to
agricultural history for Fazenda St. Lordes allows us to assess
the detection of cropping patterns. There are multiple differ-
ent land-use histories corresponding to the management units
within the fazenda. The agricultural history collected from farm
records during a field visit in July 2005 includes the time of
conversion as well as sequence and cropping patterns in sub-
sequent years for each management units. We examine how
well the process of cleaning the EVI time series and performing
the wavelet-transform retains the character of the processes
occurring on the ground by comparing the detected cropping
patterns to the farm records.

2.7. Error analysis

We performed statistical analysis of the goodness of the
curve fitting through residuals and Root Mean Square (RMS)
error. We calculated the RMS error of the residual (difference
between the raw EVI times series and the wavelet-smoothed
time series). The RMS error gives a sense of the magnitude of
error with the curve fit.

We analyzed error in the land-cover and land-use classes
by comparing cropping patterns detected from the wavelet-
smoothed time series to observed cropping patterns in the
input data. By compiling an error matrix for the classes we
could calculate overall accuracy, producer's accuracy and user's
Table 3
This table presents randomly selected unclassified pixels tabulated by their
reference categories ⁎

⁎ Except where noted, the wavelet-smoothed time series were analyzed with a
0.3 EVI detection threshold.
accuracy as well as a Khat value from KAPPA analysis (see
Jensen, 1996).

To perform the statistical error assessments, we divided our
data into four classes. The classes, based on data values, are:
not cropland, single cropping system (one maximum), double
cropping system (two maximums) and unclassified (more than
two maximums detected). As a given pixel may change classes
from one year to the next, we considered a pixel's class for one
growing year a test point. We calculated omission and com-
mission errors using two different sets of reference data, the
raw EVI time series and spatially and temporally explicit farm
history data. Overall accuracy is the total number of test points
correctly classed by the total number of test pixels used. Omis-
sion error or producer's accuracy is the total number of correct
pixels in a remotely-sensed class divided by the total number of
pixels in that class from the reference data. Commission error,
or user's accuracy, is the total number of correct pixels in a
remotely-sensed class divided by the total number of pixels



Table 5
The overall accuracy of our algorithmwas assessed by comparing our automated
crop detection techniques preformed on the wavelet-smoothed EVI time series
to the input EVI time-series data (non-smoothed MODIS cropping patterns
detected by the user or MODIS) and the farm history from Fazenda Santa Lordes

Reference data Overall Accuracy Khat

MODIS 88.5% 92.1%
Fazenda 94.0% 85.7%

Overall accuracy is the percent of points accurately identified in a class out of the
total number of points sampled. Khat values are also high for all wavelet powers.
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in that remotely-sensed class. The Khat statistic comes from
KAPPA analysis for discrete multivariate accuracy assessment.
Khat incorporates information from the misclassifications
recorded in the error matrix and gives a slightly different
accuracy assessment than overall accuracy does. Khat would
equal zero if the classifications results were completely random.
(Jensen, 1996).

For the raw EVI reference test case, we calculated overall
accuracy by comparing the user-detected reference classes to
the automated detection of classes from the wavelet-smoothed
time series. We used one hundred test points per class. The test
points were evenly distributed by year (20 test pixels per year
per class) for the not cropland and unclassified classes since
there was negligible change in the size of these classes over
time. We weighted test points for single and double crop classes
by the relative abundance in that year. We randomly located the
test points for each year and class using a random sample. We
then compared the wavelet-smoothed time-series crop detection
results to the raw EVI input data (reference test information)
that was subjected to the same criteria to create four classes. For
the random test points across the entire scene, we use omission
and commission errors to understand our accuracy within the
classes as well as overall accuracy and the Khat value.

We also used reference data (known cropping patterns) for
Fazenda Santa Lordes to calculate omission and commission
errors over the farm. We verify our results to an independent
data source. One limitation to this method is the size of the
fazenda. While this is a large fazenda, occupying 25 km2, we
are limited to a relatively small sample size (100 pixels) for
statistical analysis.
Fig. 8. A field site at Fazenda Santa. Lordes is represented in this time series. The EV
pixels is plotted with small circles. The solid line shows the 90% power wavelet-smoo
the middle of 2003. In 2004, a single rice crop was grown. In 2005, two soybean c
Extensification and intensification are two measures of the
extent of row crop agriculture. Extensification, or the increase in
total row-crop agricultural area, is measured as the annual
increase from one growing season to the next. Each year the
area of extensification is calculated as the areas detected as row
crops that were not previously detected. Intensification of row
crops describes the change from a single to double cropping
pattern from one year to the next. The concepts and metrics of
extensification and intensification allow us to explain the
patterns of agricultural development.

3. Results

3.1. Agricultural extensification

Cropland in the study area increased from 6255 km2 in the
2001 growing season to 9535 km2 in the 2005 growing season,
as calculated from cropland detection based on annual standard
deviation (Table 2). This represents a 34% increase in row-crop
agriculture to cover a total area of 24% of the study area.
Increases in land cover of row crops were largely at the edges of
existing croplands (Fig. 7).

3.2. Detection of cropping patterns

Statistical analysis of detection errors shows overall good
results from the wavelet-smoothed time series. The error matrix
shows that majority of pixels considered unclassified (more
than two crops detected) were actually false-detections of
double crops (Table 3). For the purpose of tabulating single and
double cropping patterns, we considered double crops to be
all pixels with two or more maximums, although this may
introduce more error. From the error matrix results we can asses
our accuracy (Table 4A). The omission and commission errors
(Table 4B) are derived from the error matrix for each clas-
sification (Not row crops, ‘Not RC’, includes native vegetation
and pastures; Single cropping patterns; and double cropping
patterns). All omission errors are less than 10%, except for
Single crops, which have a producer's accuracy of 77.0%.
User's accuracy is above 84.0% for all classes analyzed
(Table 4B). The wavelet-smoothed time series gives us an
I daily time series (2000–2006) after processing for clouds and extremely noisy
thed time series. Land cover is converted from cerrado to row-crop agriculture in
rops were grown.



Table 6
An error matrix shows the agreement and disagreement between reference data
(Fazenda Santa Lordes farm history) and the 90% wavelet-detected cropping
patterns (A). The producer's accuracy and user's accuracy (B) are shown for each
land-use classification

Table 7
The cropping patterns for each year are presented here

Area (km2) Area (km2) by cropping pattern

Single Double

Year 2001 3124 3131
2002 3251 3548
2003 4063 3480
2004 2790 5742
2005 3643 5892

These are the results from the 90% power wavelet-smoothed time series using a
0.4 EVI crop detection threshold, as it performswith the lowestmisclassifications
(Table 5). The intensification of double crops after 2003 is particularly notable.
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overall accuracy of 88.5% for the entire study region and the
corresponding Khat value is 92.1% (Table 5).

The wavelet transform captures land cover and land use at a
site on Fazenda Santa Lordes where cerrado was converted to
row crops in 2003, with the first crop grown in the 2003–2004
season (Fig. 8). From farm history, we know the first year of
cropping was a single soybean crop in 2003–2004 and a double
crop in 2004–2005. Statistical error analysis for wavelet-
derived classes compared with land-use records for Fazenda
Santa Lordes shows high accuracy (Table 6). Producer's ac-
curacy is high (low omission errors) the classifications of not
row crops (100.0%) and single crops (81.8%) but low (higher
omission errors) for double crops (71.4%). User's accuracy is
Fig. 9. The 90% power wavelet with a 0.4 EVI threshold for detecting maxima preform
the area in single and double cropping patterns by year. The area in croplands incr
particularly notable.
high (low commission error) for all classes: not row crops is
94.7%; single crop accuracy is 90.0% and double crops
accuracy is 100.0% (greater than 99.99%). The commission
and omission errors may not be representative of the entire
scene as there were only 5 pixels in this category. The Khat value
is 85.7% and the overall accuracy is 94% for land-use clas-
sifications on the fazenda (Table 5).

Single and double cropping patterns show a dynamic
relationship (Fig. 9). Both cropping patterns have a net increase
(Table 7). Single crops increase from 3124 to 3643 km2 (a 14%
increase) and double crops increase from 2283 to 4443 km2

(a 49% increase) during the study period (Fig. 9). We see a
decrease in single crops between the 2003 and 2004 growing
years while double crops continue to increase. The increase in
single crops from 2002 to 2003 may represent the extensifica-
tion of croplands into areas that were previously native vege-
tation. After the first growing year with a single crop many of
these areas may have been converted to a double crop, creating
a dynamic relationship between the cropping patterns. Agricul-
tural intensification, or increase in the number of crops grown
per area, follows a pattern similar to agricultural extensification,
ed with this lowest misclassifications (Table 2). These results were used to track
eases through the time series. The intensification of double crops after 2003 is
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radiating outwards from the older mechanized agricultural areas
to the periphery with time (Fig. 7).

4. Discussion

A major frontier croplands is found in the state of Mato
Grosso, Brazil where natural ecosystems of Amazon rainforest
and cerrado (savanna) are giving way to some of the largest
contiguous row-crop plantations in the world. Agricultural
census provides detailed information on cultivated area and
crop yields, but is not spatially explicit beyond the level of
municipio nor does it tell us the sequence and duration of
crops. Census data is compiled annually, but does not elucidate
the number of crops grown per parcel, or other land-use
practices that impact local biogeochemistry. Remote sensing
tools allow us to detect agricultural phenology and derive
parameters from which we can construct timeline of land-use
and land-management on a per pixel basis. These results have
many possible future applications such as for understanding
changes in carbon and nitrogen cycling, important from both
agricultural and environmental sustainability perspectives, or
for estimating crop production rates for economic analysis.

Our application of the wavelet transform to an EVI time
series (WFCP) captures crop phenological behavior with low
error. This was a test of the WFCP methodology under new
environmental conditions, namely climate which creates high
frequency noise from clouds, and different agricultural phe-
nology than the areas the model was created and validated
(Sakamoto et al., 2005, 2006). Occasionally, the wavelet trans-
form exaggerates small phenology peaks from weedy growth
or creates a false peak due to wavelet resonance. Small peaks
such as these should be classified with double crops. Although
the classification of false maximums or weedy growth as
double crops is troublesome from a curve-fitting perspective, it
is acceptable for the purposes of detecting cropping patterns.
Using the 90% power wavelet, many of these false maximums
actually fall below the detection threshold for maximums of
0.4 EVI and are not counted, contributing to our high overall
accuracy.

We have observed distinct spatial patterns in the wavelet-
smoothed time-series results. New areas of croplands are nucle-
ated around existing areas of croplands (Fig. 7). Small areas of
cerrado between large areas of croplands are often filled in with
croplands. We observe areas of single crops becoming areas of
double crops over time, as seen in Fig. 7. This intensification
appears spatially constrained to the center of the zones of
agriculture and likely reflects the evolution of farming practices
with cropland age. Our knowledge of agricultural practices
supports this—often, in the first years of cultivation, a single
soybean crop is grown. After two to three years, double crop-
ping practices emerge, where there may be two soybean crops
grown, soybean and secondary cash crop such as corn, or
soybean and a soil-conditioning crop such as millet. Increases in
crops in the 2002–2004 time period may be related to economic
factors, such as the high global market price (Morton et al.,
2006). These results show an increase of crops grown per area
across the entire study area, either as the development of new
croplands or as the intensification of existing lands from a single
crop system to a double crop system.

5. Conclusions

The goal of this study was to apply time-series analysis to
detect rapid changes in land-cover and land-use choices (single
and double cropping patterns). The challenge of this study was
to detect crop patterns within croplands. We have tested the
wavelet transform to filter noisy EVI time-series data. First, we
detect the areas of row crops by applying an annual standard
deviation threshold to discriminate row crops from other land-
cover types. This threshold was selected annually from the
local minimum in a bimodal histogram of standard deviation.
Identifying areas of row crops on a year-to-year basis allows us
to analyze cropping patterns for a pixel only after it has been
converted to row crops, thereby reducing processing time. After
selecting areas in row crops, we then created wavelet-smoothed
time series with the 90% power wavelet. Local maximums, or
phenological peaks, were counted as a crop if the time series
exceeded 0.4 EVI; this threshold was a means of removing false
peaks sometimes created in the wavelet-smoothed time series.

We selected this study area to test this model in an area of
rapid development of row crops. During the five-year study
period, we found an increase in croplands of 3281 km2, an area
larger than the state of Rhode Island. Intensification of row
crops is also evident, with increases in row crops coming first
in single crops and, subsequently, in double crops, such as in
2003 and 2004. We expected this pattern where there is an
extensification in row crops that would typically be grown in a
single crop pattern for the first growing season. In subsequent
years agricultural intensification, or a shift from growing one
crop to two crops, could explain the increase in double crops.
Spatially, the extensification of row crops is on the edges of
existing areas of agriculture and intensification occurs within
the existing areas of croplands.

These results show that there is a large increase in cropland
in our study area and it is important to understand how this
drastic change in land cover will (and does) impact carbon and
nitrogen cycling. Distinguishing crop types, such as soybean
and corn, is important as different crops have different im-
plications for carbon and nitrogen cycling. Soybean plants fix
nitrogen, but most of the fixed nitrogen leaves the system at
harvest. Without proper management, over time, the loss of
carbon and nitrogen decreases the soil fertility and may have
other implications for land-use sustainability and management.
Secondary crops, such as corn, may require large inputs of
nitrogen fertilizers that increase nitrous oxide emissions.
Addition of nitrogen fertilizers also impact local water quality.
Knowing the number and type of crops being used allows us
to proceed with spatially explicit models of biogeochemical
changes associated with this agricultural development and
intensification.

In this study we demonstrate the stability of the wavelet
approach over many years of an EVI time series. Thereby we
can apply the WFCP methodology to a wider study region to
study regional development patterns of row crops. One future
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study includes parameterizing the wavelet-smoothed time series
to identify crop types. We foresee the ability to use other types
of time series in this wavelet method of analysis (WFCP), such
as fractions of green vegetation from Spectral Mixture Analysis.
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