1 6. Industrial Applications of Molecular Biotechnology 6. Industrial Applications of Molecular Biotechnology Bi7430 Molecular Biotechnology Definition of white biotechnology Enzymes and applications Sustainable development Enzyme sources Industrial production of proteins Enzyme and cells immobilisation Examples of biocatalytic applications Outline White (industrial) biotechnology biotechnology incorporated into production processes and products that involve chemical reactions - biocatalysis uses enzymes and micro-organisms to make products and services in a wide range of industrial sectors fine chemica ls and pharmac eu ti c a ls materia ls and polym ers paper, pulp and texti l es food and feed detergen ts sustainable and environmentally-friendly industry using biomass rather than traditional petrochemicals provide energy efficiency, increased productivity and better safety and environmental characteristics 2 natural catalysts (biocatalyst) catalyse chemical reactions in living systems o x i d o r e d u c t a s e s - o x i d a t i o n / r e d u c t i o n t r a n s f e r a s e s - t ra n s f e r o f f u n c t i o n a l g r o u p s h y d r o l a s e s – h y d r o l y t i c c l e a va g e l y a s e s - c l e a va g e o f C- C , C- N a n d C- O b o n d s i s o m e r a s e s - ra c e m i z a t i o n , e p i m e r i z a t i o n l i g a s e s - f o r m a t i o n o f C- C , C- N a n d C- O b o n d s Enzymes Enzyme applications c el l u l as es l i gn i n as e l i pas es r es t r i c t as es D N A l i gas es pol ym er as es am yl as es pr ot eas es c el l u l as es ph yt as es l i pas es ph os ph at as es per oxi d as es l i pas es n i t r i l as es pept i das es am i das es al dol as es as par agi n as e D N as e u r ok i n as es pr ot eas es deh al ogen as e s O PH , BC h E per oxi d as es am yl as e c el l u l as es c at al as e Sustainable solution i n o v a t i v e a n d c o m p e t i t i v e p r o d u c t s a n d p r o c e s s e s m e e t i n g c r i t e r i a o f s u s t a i n a b i l i t y t r a n s f e r o f b i o l o g i c a l s o l u t i o n s t o m o d e r n t e c h n o l o g i e s c r e a t e t h e f u t u r e i n b a l a n c e b e t w e e n e c o n o m y, c l e a n e r e n v i r o n m e n t a n d b e t t e r l i v e s “ … d e v e l o p m e n t t h a t m e e t s t h e n e e d s o f t h e p r e s e n t w i t h o u t c o m p r o m i s i n g t h e a b i l i t y o f f u t u r e g e n e r a t i o n s t o m e e t t h e i r o w n n e e d s ” ( W C E D , 1 9 8 7 ) r e d u c e e n v i r o n m e n t a l i m p a c t r e d u c e c o n s u m p t i o n o f r e s o u r c e s ( r a w m a t e r i a l s , e n e r g y, a i r , w a t e r ) u s e o f r e n e w a b l e r a w m a t e r i a l s r e d u c e w a s t e p r o d u c t i o n m a x i m i z e w a s t e r e c y c l i n g 3 Example of sustainable technology Bi oc a t a l ys i s ( + 3 0 °C ) 1 0 0 0 t pe ni c i l l i n G 4 5 t a mmoni a 1 0 , 0 0 0 m3 w a t e r 1 t ENZ YM E ( 1 $ / k g 6 - A PA ) C he mi c a l pr oc e s s ( - 4 0 °C ) 1 0 0 0 t pe ni c i l l i n G 1 6 0 t a mmoni a 3 0 0 t di me t hyl c hl or os i l a ne 8 0 0 t N , N - di me t hyl a ni l i ne 6 0 0 t phos ph o pe nt a c hl or i de 4 , 2 0 0 m3 di c hl or ome t ha ne 4 , 2 0 0 m3 n - but a nol h y d r o l y s i s o f p e n i c i l l i n G ADVANTAG ES high catalyt ic efficiency broad substrat e specifity high degree of selectivity compatibility of each other reusability sustainablity pr odu c ed f r om bi om as s eas i l y bi ode gr a d a bl e n on - t oxi c , n on - f l am abl e n o r eqi r em en t of l ar ge qu an t i t y of t oxi c m et al s an d s ol ven t s l es s bypr o du c t s an d w as t es opar at e at m i l d c on di t i on s LIMITATIONS cofactor requirem en t prone to inhibitions highest activity in water generaly less stable insuffic i ent selectivity often expensive allergies Enzyme-based technology Enzyme sources ANIMAL AND PLANT TISSUES c o n t e n t o f t e n u p t o 1 % e n z y m e o f t i s s u e w e i g h t t h o u s a n d s y e a r s o l d d e v e l o p e d e m p i r i c a l l y p a n c r e a s ( e a r l i e r t r e a t m e n t o f h i d e s ) , c a l f s t o m a c h ( c h e e s e - m a k i n g ) p a p a ya , p i n e a p p l e ( t e n d e r i z a t i o n o f m e a t ) , s o d o m a pp l e l e a v e s ( m i l k c l o t t i n g ) r i s k o f c o n t a m i n a t i o n w i t h p r i o n s a n d v i r u s e s h a r m f u l l t o h u m a n s l e s s c o m p e t e t i v e c o m p a r e d t o f e r m e n t a t i o n o f m i c r o o r g a n i s m 4 Enzyme sources WILD-TYPE MICROORGANISMS e n z y m e s f r o m m i c r o o r g a n i s m s l o n g b e e n s a f e l y u s e d in f o o d i n d u s t r y f o o d p r o c e s s i n g e n z y m e s - r e g u l a t i o n s t r i c t f o r u s i n g n o n - r e c o m b i n a n t e n z y m es m i c r o o r g a n i s m s u s e d f o r s c r e e n i n g f o r „ n e w “ c a t a l y t i c e n z y m e s s c r e e n f o r e n z y m e s a c t i v e a t d e s i r e d p r o c e s s c o n d i t i o n s ( e . g ., p H , t e m p e ra t u r e ) RECOMBINANT MICROORGANISMS w h e n y i e l d i n w i l d t y p e o r g a n i s m i s l o w o r d e s i r e d e n z y m e i s n o t i n c l a s s I o r g a n i s m b a c t e r i a , f u n g i a n d y e a s t s ( e . g ., E . c o l i , B a c i l l u s , A s p e r g i l l u s , S a c c h a r o m y c e s) m o s t t e c h n i c a l e n z y m e s p r o d u c e d u s i n g r e c o m b i n a n t t e c h n o l o g y Industrial production of enzymes FERMENTATION non-recombinan t and recombina nt organisms steady and safe (class I or GRAS) organisms up-scale and optimis a ti on h i g h c e l l d e n s i t y f e r m e n t a t i o n ( 5 0 g c e l l d r y w e i g h t p e r l i t e r ) u p p e r l i m i t o f p r o t e i n c o n c e n t r a t i o n ( 1 0 g . L - 1 ; 4 0 % o f t o t a l c e l l p r o t e i n ) Downstream process SEPARATION AND HOMOGENISATION dependen t on applicatio n and required purity t e c h n i c a l e n z y m e - l o w t o m o d e ra t e p u r i t y e n z y m e s f o r t h e r a p y a n d d i a g n o s t i c s - h i g h p u r i t y 5 Downstream process SEPARATION AND HOMOGENISATION dependen t on applicatio n and required purity t e c h n i c a l e n z y m e - l o w t o m o d e ra t e p u r i t y e n z y m e s f o r t h e r a p y a n d d i a g n o s t i c s - h i g h p u r i t y m e c h a n i c a l h o m o g e n i z e r s - h i g h p r e s s u r e ( 1 5 0 0 b a r ) f o l l o w e d b y e x p a n s i o n b a l l m i l l s - s m a l l a b r a s i v e p a r t i c l e s u l t r a s o n i c d i s r u p t i o n - c e l l l y s i s w i t h h i g h f r e q u e n c y s o u n d b l e n d e r s - b l a d e s r o t a t e a t s p e e d s o f 6 , 0 0 0 - 5 0 , 0 0 0 r p m f r e e z e f r a c t u r i n g - w a t e r c r y s t a l s a s a b r a s i v e n o n - m e c h a n i c a l c h e m i c a l p e r m e a b i l i z a t i o n ( e . g . , s o l v e n t s , s u r f a c t a n t s , a n t i b i o t i c s ) e n z y m a t i c p e r m e a b i l i z a t i o n ( e . g . , g l y c a n a s e s , p r o t e a s e s , m a n n a s e ) o s m o t i c s h o c k ( e . g . , h i g h s u c r o s e m e d i u m ) Downstream process SEPARATION AND HOMOGENISATION dependen t on applicatio n and required purity t e c h n i c a l e n z y m e - l o w t o m o d e ra t e p u r i t y e n z y m e s f o r t h e r a p y a n d d i a g n o s t i c s - h i g h p u r i t y Downstream process ENZYME PURIFICATION impuritie s (e.g., proteins , DNA and others) further purific a ti on when safety (e.g., recomb inan t DNA, viruses) or functional reasons (impur it i es disturbin g cataly t i c function) basic knowle d ge of protein properti es necesar y m o l e c u l a r w e i g h t ( M W ) i s o e l e c t r i c p o i n t ( p I ) c o f a c t o r s p H ra n g e t e m p e ra t u r e s t a b i l i t y methods of protein purific a t ion p r e c i p i t a t i o n a n d d i f f e r e n t i a l s o l u b i l i z a t i o n ( e . g ., a m m o n i u m s u l f a t e , p H , s o l v e n t s ) m e m b ra n e f i l t ra t i o n c h r o m a t o g ra p h i c m e t h o d s ( s i z e e x c l u s i o n , i o n e x c h a n g e , h y d r o p h o b i c , m e t a l a f f i n i t y, b i o s p e c i f i c ) more steps -> higher purity (multi-s t e p manipula t ion , loss >10% of enzyme) WHAT ARE THE RELEVANT PROTEIN PROPERTIES? 6 Immobilisation methods b i o c a t a l y s t s ( e n z y m e o r c e l l ) l i m i t e d i n m o v i n g d u e t o c h e m i c a l o r p h y s i c a l t r e a t m e n t R E A S O N S r e u s e o f e n z y m e ( r e d u c i n g c o s t ) e a s y p r o d u c t s e p a r a t i o n c o n t i n o u s p r o c e s s i n g s t a b i l i z a t i o n b y i m m o b i l i s a t i o n L I M I TAT I O N S c o s t o f c a r r i e r s a n d i m m o b i l i s a t i o n c h a n g e s i n p r o p e r t i e s ( s e l e c t i v i t y ) m a s s t r a n s f e r l i m i t a t i o n s a c t i v i t y l o s s d u r i n g i m m o b i l i s a t i o n Immobilisation of enzyme p o l y a c r y l a t e A m b e r l i t e ®p o r o u s s i l i c a C e l l u l o s e Immobilisation of cell A l g i n a t e b e a d s 7 Whole cell vs. isolated enzyme advantages al l ow m or e en zym es c of ac t or r egen er at i on c h eap disadvantages s i de- r eac t i on s f r om ot h er en zym es l ow t ol er an c e t o or gan i c s ol ven t s l ow pr odu c t i vi t y advantages s m al l er r eac t or s l es s s i de r eac t i on s h i gh er pr odu c t i v i t y disadvantages m or e exp en s i v e addi t i on of c of ac t or s l es s s t abl e ou t s i de c el l Examples of whole cell biocatalysis synthesis of agrochemical intermediates by microbial hydroxylat ion of heteroatom ic s (Lonza) mandelic acid - urinar y antisept ic, skin care cosmetics (du Pont, Nitto Chemicals, etc.) large-sc ale production of commodity chemical - acrylamide (Mitsubishi, Nitto Chemicals) Alcaligenes faecalis Achromobacter xylosoxidans Rhodococcus rhodochrous J1 Examples of enzyme biocatalysis large scale production of Aspartame, low-calor ie sweetner (DSM, NutraSweet) synthesis of atorvast at in, Lipitor ® , intermed i at e (Pfizer - sales since 1996 exceed US$ 125 billion) synthesis of high fructose syrup from corn starch (10 million tons per year)