1 7. Molecular Biotechnology in Agriculture7. Molecular Biotechnology in Agriculture Bi7430 Molecular Biotechnology Definition of green biotechnology Genetic engineering of plants Genetic engineering of animals Biopharming GMO benefits and controversies Outline Green (agricultural) biotechnology green biotechnology applied to agricultural processes environmentally-friendly solutions as alternative to traditional agriculture, horticulture, and animal breeding processes modification of plants and animals increasing value in agriculture traditiona l agricultu r e – selectiv e crossbreed in g and hybridi za t ion modern molecular biotechno lo g y – transgenes is (rDNA) transgenic organism - altered by addition of exogenous DNA transgene – DNA that is introduced 2 > 150 different plant species in 50 countries worlwide DNA sequence of A. thaliana (2000), rice (2005), cotton (2006), corn (2009), potato (2011), tomato (2012) … transgenic plants engineered to overcome biotic and abiotic stress • p e s t i c i d e s ( h e r b i c i d e s ) • p e s t s a n d d i s e a s e s ( i n s e c t s , v i r u s e s , b a c t e r i a , f u n gi ) • e n v i r o n m e n t a l s t r e s s ( s a l t , c o l d a n d d r o u g h t ) improved crop quality • i m p r o v e d n u t r i t i o n a l q u a l i t y • e n h a n c e t a s t e , a p p e a ra n c e a n d f ra g ra n c e • i n c r e a s e s h e l f- l i f e biopharming • p l a n t s a s b i o r e a c t o r s f o r p r o d u c t i o n o f u s e f u l c o m po u n d s ( e . g ., t h e ra p e u t i c s , va c c i n e s , a n t i b o d i e s ) phytoremed ia t ion Genetic engineering of plants plant transgenesis procedure 1 . c o n s t r u c t i o n o f v e c t o r / p l a s m i d ( r e s t r i c t i o n d i g e s t s , l i g a t i o n ) 2 . p r o p a g a t i o n i n E . c o l i 3 . t r a n s f o r m a t i o n 4 . c u l t u r e a n d s e l e c t i o n totipotency - entire plant generat e d from a single, non-reproduc t iv e cell Genetic engineering of plants DIRECT METHODS protoplast polyethylene gl yco l (PEG) method • f i r s t t e c h n i q u e f o r p l a n t t ra n s g e n e s i s • P E G i n d u c e s r e v e r s i b l e p e r m e a b i l i z a t i o n o f t h e p l a s ma m e m b ra n e protoplast electroporat ion • i n t e n s i v e e l e c t r i c a l f i e l d l e a d s t o p o r e s o n p l a s m a me m b ra n e silicon carbide fibers • f i b e r s p u n c h h o l e s t h r o u g h p l a n t c e l l s d u r i n g v o r t e x i n g protoplast microinjection Methods of plant transformation 3 DIRECT METHODS particle bombardm en t • m o s t c o m m o n t e c h n i q u e f o r d i r e c t t ra n s f o r m a t i o n • „ p a r t i c l e g u n ” o r „ g e n e g u n ” • D N A p r e c i p i t a t e d o n t o t u n g s t e n o r g o l d p a r t i c l e s • p a r t i c l e s s h o t i n t o t h e p l a n t t i s s u e / c e l l s Methods of plant transformation INDIRECT METHODS (VECTORED) Agrobacter iu m- me di a te d transforma t ion • A . t u m e f a c i e n s p l a n t p a t h o g e n i c b a c t e r i a c a u s e s C r o w n g a l l ( t u m o r s ) • t u m o r i n d u c i n g ( T i ) p l a s m i d • T - D N A t ra n s f e r e d a n d i n t e g ra t e d i n t o p l a n t c e l l Methods of plant transformation transformation frequency is low (less than 3%) without selective advantage transformed cells overgrown by non-transformed selection markers antibiot i cs resistence ( Ka n a m y c i n , G e n e t i c i n ) herbicid es resistenase ( P h o s p h i n o t h r i c i n ) reporter genes GUS (β-glucuron id as e ) GFP (green flourescent protein) LUC (luciferas e) Markers and selection 4 pest and disease resistence toxin gene from Bacillus thuringiensi s B t - c o r n r e s i s t a n t t o e u r o p e a n c o r n b o r e r B t - c o t t o n r e s i s t a n t t o c o t t o n b o l l w o r m B t - p e a n u t r e s i s t a n t t o c o r n s t a l k b o r e r Papaya ringspot virus resistenc e i n s e r t i n g g e n e f r o m p a t h o g e n i n t o c r o p a f f o r d s t h e c r o p p l a n t r e s i s t a n c e Application of transgenic plants herbicide resistence herbicid e target modific at i on herbicid e target overprodu ct i on herbicid e detoxifi c at i on (enzymat ic ) EXAMPLES: s u l f o n y l u r e a r e s i s t a n c e b l o c k i n g t h e e n z y m e f o r s y n t h e s i s Va l , L e u , i s o L e u m u t a t e d g e n e t ra n s f e r e d f r o m r e s i s t e n t t a b a c o b r o m o x y n i l r e s i s t a n c e t ra n s g e n e e n c o d i n g e n z y m e b r o m o x y n i l n i t r i l a s e g l y p h o s i n a t e r e s i s t e n c e b a c t e r i a l t ra n s g e n e p r o t e i n i n a c t i va t i n g h e r b i c i d e Application of transgenic plants improved crop quality higher nutrition value g o l d e n r i c e ( b e t a – c a r o t e n e g e n e s ) o 1 2 0 m i l l i o n c h i l d r e n s u f f e r s f r o m v i t a m i n A d e f i c i e n cy o h e a l t h y v i s i o n a n d p r e v e n t s n i g h t b l i n d n e s s b l a c k t o m a t o e ( a n t h o c ya n i n a n t i o x i d a n t g e n e ) o p r e v e n t h e a r t d i s e a s e , d i a b e t e s a n d c a n c e r improve shelf life o d e l a y e d f r u i t r i p p e n i n g ( F l a v r S a v r t o m a t o e ) a n t i s e n s e g e n e b l o c k i n g p e c t i n a s e improved appearance o d e l p h i n i d i n g e n e f r o m p a n s y c l o n e d t o r o s e biopharming Application of transgenic plants 5 selective breeding t i m e c o n s u m i n g a n d c o s t l y l i m i t e d n u m b e r o f p r o p e r t i e s a va i l a b l e d i f f i c u l t t o i n t r o d u c e n e w g e n e t i c t ra i t s t o e s t a b l i s h e d l i n e transgenic animals fast generat ion lines carrying desired properties i n c r e a s e d g r o w t h i n c r e a s e d m u s c l e m a s s i m p r o v e d d i s e a s e r e s i s t a n c e i m p r o v e d n u t r i t i o n a l q u a l i t y i n c r e a s e d w o o l q u a l i t y model animals for human disease research biopharming - production of useful molecules biosensors for environmenta l polution Genetic engineering of animals direct microinjection (pronucleus method) injection of desired DNA to male pronucleus most popular, commerci a l availa b l e success range from 10 to 30% transfer of large genes possible, no theoretic a l limit for gene construct size random insertion of the transgen Methods to produce GE animals retrovirus mediated gene transfer retrovirus es used as vectors (gene therapy) virus gene is replace d by transgene replica t ion defectiv e virus infect host cells (e.g., ES cells, embryo cells) efficient mechanism of transgen integrat i on transfer of genes < 8 kb possible random insertion of the transgen Methods to produce GE animals 6 embryonic stem cell method transfection of gene construct into in vitro culture of embryonic stem (ES) cells ES recombinan t cells incorpora t e d into embryo at blastocys t stage targete d insertion or knockout of gene(s) prior to microinj ec t ion ES cell lines not availa b l e in farm animals has revolution iz e d genetics, develop m ent , immunology and cancer research in mice Methods to produce GE animals disease-resistant livestock i n v i v o i m m u n i z a t i o n : o v e r e x p r e s s g e n e s e n c o d i n g m o n o c l o n a l a n t i b o d i e s e l i m i n a t e p r o d u c t i o n o f h o s t c e l l c o m p o n e n t s t h a t in t e ra c t w i t h i n f e c t i o u s a g e n t improving milk quality i n c r e a s e c a s e i n c o n t e n t s l e t t o i n c r e a s e c h e e s e p r o d u c t i o n d e c r e a s e l a c t o s e c o n t e n t b y o v e r e x p r e s s l a c t a s e a b o l i s h l a c t o g l o b u l i n e x p r e s s i o n ( f o r m i l k a l l e r g i c c o n s um e r ) improving animal production traits t r a n s g e n i c f i s h : e n h a n c e d g r o w t h 3 - 5 t i m e s ( g r o w t h h o r m o n e ) t r a n s g e n i c p i g : p r o d u c t i o n o f o m e g a - 3 - f a t t y a c i d s ( r o u n d w a r m g e n e ) t r a n s g e n i c p o l t r y : l o w e r c h o l e s t e r o l a n d f a t i n e g g s biopharming Application of transgenic animals use of plants or animals for the production of useful molecules industrial products proteins (enzymes) fats and oils polymers and waxes pharmaceuticals recombinan t human proteins therapeut i c proteins and pharmaceut i c a ls vaccines and antibodi es Biopharming 7 INDUSTRIAL PRODUCTS FROM PLANTS cheap and easy to produce free of animal viruses risk of food supply contamination environmental contamination EXAMPLES (transgeni c corn, Sigma): avidin o m e d i c a l d i a g n o s t i c s β-glycuronidas e o v i s u a l m a r k e r i n r e s e a r c h l a b s trypsin o t ra d i t i o n a l l y i s o l a t e d f r o m b o v i n e p a n c r e a s o f i r s t l a r g e s c a l e t ra n s g e n i c p l a n t p r o d u c t o w o r l d w i d e m a r k e t = U S $1 2 0 m i l l i o n Biopharming EDIBLE VACCINES FROM PLANTS no purification required no hazards associated with injections may be grown locally, where needed most no transportation costs no need for refrigeration or special storage EXAMPLES: HIV-suppre ss ing protein in spinach rabies virus G protein in tomato human vaccine for hepatitis B in potato Biopharming PLANT-MADE ANTIBODIES plantibodies - monoclonal antibodies produced in plants free from potential contamination of mammalian viruses plants used include tobacco, corn, potatoes, soya and rice EXAMPLES: cancer, herpes simplex virus, respira to r y syncytia l virus PLANT-MADE PHARMACEUTICALS therapeutic proteins and intermediates EXAMPLES: proteins to treat CF, HIV, hypertension , hepatitis B Biopharming 8 PRODUCTION OF PHARMACEUTICALS IN MILK easy to purify - few other proteins in milk dairy cattle produce 10,000 liters of milk/year (35 g protein/liter) only few transgenic cows can meet worldwide demand risk of food supply contamination EXAMPLES: COW: human serum albumin, human lactoferrin SHEEP: alpha-1-an ti t ry psi n GOAT: human antithrombi n III (FDA approved), tissue plasminogen activato r, malaria antigen PRODUCTION OF MATERIALS IN MILK BioSteel from spider silk (Nexia Biotech) Biopharming CROPS enhanced taste and quality, reduced maturation time increased nutrients, yields, and stress toleranc e improved resistance to disease, pests, and herbicid es ANIMALS better yields of meat, eggs, and milk improved animal health, resistance, productiv it y, and feed efficienc y ENVIRONMENT more efficient processing conservat ion of soil, water, and energy better natural waste managem ent SOCIETY increased food security for growing populations GMO benefits SAFETY human health : allerg ens, antibiot i c resistance, unknown effects environment: unintended transfer through cross-poll in a t ion, unknown effects on other organisms, loss of biodiv ers it y ACCESS AND INTELLECTUAL PROPERTY dominati on of world food production by few companies increasing dependenc e on industria l iz e d nations by develo p ing countries ETHICS violat ion of natural organism´s intrinsic values tamperin g with nature by mixing genes among species objecti ons to consuming animal genes in plants and vice versa stress for animals GMO controversies 9 GMO future GMO crop first commercia l i z e d in 1996 17.3 million farmers grew biotech crops on 170 million hectares 90% of new users are small resource-po or farmers in develo pin g countries EU-funded risk research on GMOs over the past two decades unable to detect any risks that have not yet been known from conventiona l agricultur e* * EU Commission (2012): A Decade of EU-funded GMO Impacts Research.