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Synthetic biologists combine modular biological ‘‘parts’’ to create higher-order devices. Metabolic

engineers construct biological ‘‘pipes’’ by optimizing the microbial conversion of basic substrates to

desired compounds. Many scientists work at the intersection of these two philosophies, employing

synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do

more than simply improve product yields; they can expand the array of products that are tractable to

produce biologically. In this review, we explore the application of synthetic biology techniques to next-

generation metabolic engineering challenges, as well as the emerging engineering principles for

biological design.

& 2011 Elsevier Inc. All rights reserved.

1. Introduction

Engineering cellular metabolism requires an understanding of

the metabolic reactions involved as well as the regulatory

elements that affect metabolic throughput. Our ability as engi-

neers to modulate metabolic pathways has been augmented in

recent years by the influx of methods and biological devices from

the field of synthetic biology (Fig. 1).

A primary goal of synthetic biology is to develop engineering

principles for biology—to translate a quantitative understanding

of biological systems into a methodology for building living

devices out of standardized biological parts. The advent of cost

effective DNA sequencing and de-novo synthesis has resulted in a

tremendous increase in the number of potential biological parts

available to synthetic biologists (Boyle and Silver, 2009). The

development of assembly standards and open databases has

facilitated the development and sharing of these parts (Anderson

et al., 2010; Knight, 2003; Phillips and Silver, 2006) (http://

partsregistry.org/). The panoply of synthetic biological devices

developed over the last decade has demonstrated that quantitative

control over biological systems is possible in many contexts

(Agapakis and Silver, 2009; Arkin and Fletcher, 2006; Boyle and

Silver, 2009; Drubin et al., 2007; Endy, 2005; Haynes and Silver,

2009; Tyo et al., 2007).

Many synthetic biology endeavors also fall under the umbrella

of metabolic engineering. Maximizing the production of a desired

metabolite from a given feedstock mandates a quantitative

evaluation and adjustment of cellular metabolism. To achieve

this, synthetic biologists and metabolic engineers have sought

fundamental engineering principles for biology. These principles

have been inspired by traditional engineering disciplines as well

as the unique properties of biological systems. In this review, we

will explore both rational and evolutionary approaches to

improving metabolic pathways.

2. Transcriptional and translational pathway control

A central challenge for every metabolic engineering project is

to maximize product yields through pathway optimization

(Keasling, 2010). Natural metabolic pathways are controlled by

myriad regulatory systems, for example transcription factors and

promoters that can be repurposed by synthetic biologists to

modulate pathway components. Ideally, a quantitative under-

standing of the transcription, translation, interactions, and

kinetics of a metabolic pathway as well as how that pathway

interfaces with the host cell’s metabolism enables the metabolic

engineer to tune pathway components to maximize product

yields. In practice, our ability to tune pathways has improved as

the fundamental principles of metabolism and biological regula-

tion continue to be discovered.

Many synthetic regulatory devices to date have leveraged

elements of biology’s ‘‘central dogma’’—transcription, translation,

as well as RNA processing—to modulate device behavior (Boyle

and Silver, 2009). In the context of metabolic engineering,

modifications to biological regulation are intended to maximize

metabolic flux to the desired product. In most cases, this is

accomplished via adjustments in enzyme expression levels, along
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with the elimination of competing pathways via gene knockout

(Stephanopoulos, 1999).

The structure and function of evolved metabolic networks

suggests that this process of pathway optimization requires an

understanding of how control is distributed across the entire

pathway (Dekel and Alon, 2005; Fell, 1997; Zaslaver et al., 2004).

In essence, pathway optimization is a multivariate problem, with

no single ‘‘rate limiting step’’ to target. Furthermore, simple

overexpression of pathway enzymes is often detrimental to

product yields, through both the depletion of essential cellular

reserves and the buildup of toxic metabolic intermediates (Alper

et al., 2005; Jones et al., 2000; Raab et al., 2005). Efforts to model

synthetic biological circuits have also revealed that desired device

behavior is highly dependent on the concentration of the device

components within cells (Ajo-Franklin et al., 2007; Anderson

et al., 2007; Elowitz and Leibler, 2000). As a consequence,

methods for the control of protein expression levels are essential

to metabolic engineering and synthetic biology in general.

2.1. The rational approach

Ideally, a quantitative understanding of the pathway to be

engineered can allow metabolic engineers to determine optimal

expression level of pathway elements a priori. Synthetic biologists

have found that tight control of protein concentrations is required

to achieve robust behavior of genetic circuits (Ajo-Franklin et al.,

2007; Anderson et al., 2007; Boyle and Silver, 2009). Forward

engineering of metabolic pathways can be facilitated by a variety

of standardized and characterized control elements available to

the metabolic engineering community.

For decades, promoter elements have been used to modify

gene expression (Reznikoff et al., 1969). In recent years, a number

of groups have assembled and characterized promoter libraries

for common industrial hosts, such as Escherichia coli, Saccharo-

myces cerevisiae, and Pichia pastoris (Alper et al., 2005; Cox et al.,

2007; Davis et al., 2010; Hartner et al., 2008; Nevoigt et al., 2006).

In each case, native promoters were mutated or recombined to

generate a group of promoters of varying strengths. Work has

begun to develop standard metrics for promoter characterization,

but remains dependent on high-throughput screening of promo-

ter libraries rather than in silico prediction (Bayer, 2010; Kelly

et al., 2009). This issue is compounded by the contextual varia-

bility of expression levels in response to environmental factors

such as temperature or carbon source (Kelly et al., 2009).

Ribosome Binding Sites (RBS) mediate translation initiation,

with variation in RBS sequence directly affecting translation

efficiency. Thermodynamic models of translation initiation have

been generated that now allow a priori design of RBS appropriate

for a desired expression level. The RBS Calculator (http://salis.psu.

edu/software/) generates a customized RBS for a given gene based

on the desired translation initiation rate, gene sequence, and host

organism. The RBS Calculator was successfully utilized to predict

RBS combinations that would permit the desired operation of a

synthetic AND gate (Salis et al., 2009), a device that is highly

dependent on the expression levels of the inputs to produce AND

gate output (Anderson et al., 2007).

Modification of RNA degradation rates can also control steady-

state expression levels. In S. cerevisiae, the Rnt1p RNAse recog-

nizes and cleaves a specific class of RNA hairpin (Lamontagne

et al., 2003). When Rnt1p target hairpins are placed in the

untranslated region (UTR) of an mRNA transcript, Rnt1p degrada-

tion lowers the effective expression level of the target gene. A

library of variable Rnt1p target hairpins has been constructed that

permits quantitative control of S. cerevisiae gene expression

(Babiskin and Smolke, 2011). A subset of this library was inserted

into the 30 UTR of GFP, mCherry, and squalene synthase (ERG9).

Fig. 1. Parts and pipes for the optimization of metabolic pathways. (A) Synthetic biologists use a variety of parts to adjust the functioning of metabolic pathways.

Transcription machinery, enzyme promoters, ribosome binding sites (RBS), and translational machinery can be modified to adjust the concentration of an enzyme. RNA

devices can modulate mRNA degradation and translation efficiency. Pathway enzymes can be assembled on scaffolds to optimize the spatial organization of a pathway.

Genome editing approaches can be used to adjust host metabolism to improve flux through the target pathway. (B) A ‘‘pipe’’ of key pathway enzymes can be tuned to

increase product titers. In this conceptual example, enzyme flux is represented by the size of the gray arrows. Metabolite concentrations are represented by the size of the

circles between enzymes. In this example, increasing the concentration of the second and third enzymes in the pathway increases the titer of the product. Note that

decreasing the concentration of intermediate metabolites can be beneficial; this is often the case when intermediates are harmful to the host cell. Increasing enzymes does

not always improve product titers and can in fact be detrimental. In this review, we present synthetic biological parts that enable optimization of metabolic pipes.
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The strong rank order correlation of expression level between the

GFP and mCherry variants (r¼0.848) and between the GFP and

ERG9 variants (r¼0.844) indicates that Rnt1p elements are

largely modular (Babiskin and Smolke, 2011).

Constitutive promoters and RNA elements are useful for

maintaining a steady-state expression level. In a non-steady-state

environment, cells maintain homeostasis by reacting to environ-

mental changes; endogenous metabolic pathways dynamically

respond to changes in intracellular metabolite concentrations.

Regulated gene expression (Beckwith, 1967; Jacob and Monod,

1961), RNA riboswitches (Mandal and Breaker, 2004), and allos-

teric control of enzyme activity (Monod et al., 1963) provide this

control over a wide range of contexts and timescales. Designing

similar dynamics into engineered pathways could improve the

performance of engineered strains at industrial scales, where

reactor conditions are not always uniform (Holtz and Keasling,

2010).

Modular RNA elements can be designed to provide a dynamic

response to intracellular metabolite levels. Riboswitches are

natural RNA elements that undergo a conformational change in

response to a small-molecule ligand. When riboswitches are part

of an mRNA molecule, this conformational change modulates the

translation of the mRNA sequence. (Nahvi et al., 2002; Stoddard

and Batey, 2006). Many riboswitches have been discovered in

untranslated regions of mRNAs encoding for metabolic enzymes,

offering a post-transcriptional layer of control over enzyme levels.

The potential for RNA-based multisite pathway modulation is

exemplified in the 11 known S-adenosylmethionine (SAM)

dependent riboswitches of Bacillus subtilis. In B. subtilis, much of

the methionine biosynthesis pathway is regulated by SAM

dependent riboswitches. These riboswitches function primarily

through SAM-dependent conformational changes that trigger

premature transcriptional termination, although a smaller subset

disrupts translation initiation instead. Remarkably, each of the 11

riboswitches is independently tuned to a different SAM concen-

tration. Furthermore, the termination efficiency of each SAM

riboswitch in both the ligand bound and unbound conformations

are different for each gene (Tomsic et al., 2008). Augmenting

engineered metabolic pathways with small-molecule responsive

RNA regulators could offer similarly distributed control (Beisel

and Smolke, 2009).

A variety of synthetic RNA regulators have been designed to

control gene expression. Synthetic RNA regulators can interact in

cis with mRNA via aptamer domains to respond to small mole-

cules (Bayer and Smolke, 2005; Win and Smolke, 2008), or make

use of trans-acting RNA elements expressed off of an inducible

promoter (Callura et al., 2010; Isaacs et al., 2004). Robust methods

have been developed for the selection of RNA aptamer domains

(Gilbert and Batey, 2005), and modular RNA elements can be

combined to generate higher-order behaviors. For example, pairs

of RNA aptamer domains alternately promoting or inhibiting

translation of a transcript can serve as ‘‘bandpass filters,’’ permit-

ting mRNA translation between the range of concentrations set by

the aptamer domains (Win and Smolke, 2008) (Fig. 2). Combining

promoters and RBS tuned for steady-state performance with

dynamically regulated RNA regulators may improve the robust-

ness of engineered pathways.

2.2. The rationally irrational approach

Synthetic biologists strive to make biology ‘‘engineerable‘‘—to

discover modular biological elements that can be predictably

assembled and designed to function robustly. Efforts to produce

and characterize libraries of standardized parts have made pro-

gress towards this goal, yet the complexity of biological systems

has kept biological engineering firmly in the trial and error stage.

Even synthetic devices with well-defined parameters for desired

behavior require exhaustive characterization of the biological

components to achieve functionality (Ajo-Franklin et al., 2007;

Anderson et al., 2007). However, trial and error through the

process of evolution has generated the biological diversity that

synthetic biologists seek to redesign. In addition to traditional

engineering principles, engineers of biological systems have

access to the tools of selection and evolution; these tools can be

leveraged to discover improvements to metabolic pathways. The

ability to use these ‘‘rationally irrational’’ approaches is a core

advantage to engineering biological systems.

Early metabolic engineering efforts relied on genomic mutagen-

esis to generate strains with desired properties (Stephanopoulos,

1999). If the phenotype of interest is accessible via a single

mutation, mutagenesis is an acceptable approach. If the desired

phenotype requires multiple mutations, however, the combinator-

ial expansion of the library size required to identify that phenotype

makes untargeted mutagenesis practically infeasible (Dietrich et al.,

2010b). Generating variation in a targeted subset of the genome

enriches the resulting library for mutants with relevant phenotypes

(Carr and Church, 2009).

Mutagenesis of the cellular transcriptional machinery can be

used to adjust gene expression levels. In engineered cells, endo-

genous regulation often interferes with the functioning of hetero-

logous pathways. Global Transcription Machinery Engineering

(gTME) is an approach that modifies relative transcription rates

across all genes simultaneously by selectively mutagenizing genes

involved in the initiation of transcription. For example, mutagen-

esis of the S. cerevisiae TATA-binding protein SPT15 and selection

for improved ethanol tolerance yielded a mutant with a 20%

higher biomass yield than the parent strain (Alper et al., 2006).

GTME in E. coli, targeting the primary sigma factor s70, saw similar

gains when applied to ethanol tolerance as well as 50% gains when

applied to lycopene production (Alper and Stephanopoulos, 2007).

Fig. 2. An RNA-regulated bandpass filter. Two modular RNA regulators added to

the 30 untranslated region of an mRNA can be used to control mRNA translation in

response to the concentration of a small molecule. Each regulator contains a self-

cleaving ribozyme, coupled to an RNA aptamer domain. The activator gate

ribozyme is repressed by the inducer, while the inverter gate ribozyme is activated

by the same inducer. If the inducer concentration is between the ligand-binding

thresholds of the two gates, both ribozymes are inactive and translation of the

transcript is permitted (Win and Smolke, 2008).
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A more targeted approach to pathway adjustment is to

selectively alter the regulation of pathway genes. Introducing

RNAse cleavage sites or hairpin structures that alter mRNA

stability into intergenic regions can result in different translation

rates for two ORFs on the same mRNA (Smolke et al., 2000).

Tunable Intergenic Regions (TIGR) are synthetic RNA constructs

that include two hairpins joined by a RNAse cleavage site, and can

be used to connect co-transcribed ORFs. Libraries of TIGR ele-

ments with a wide variety hairpin structures can be inserted

between two co-transcribed genes to screen for optimal transla-

tion ratios (Pfleger et al., 2006).

TIGR elements have been used to improve the production of

mevalonate in E. coli (Pfleger et al., 2006). This pathway requires

the expression of acetoacetyl-CoA thiolase (AtoB), as well as the

heterologous expression of hydroxy-methylglutaryl-CoA synthase

(HMGS) and hydroxy-methylglutaryl-CoA reductase (HMGR).

Inserting a library of TIGR elements into the AtoB-HMGS-HMGR

operon identified a combination that increased mevalonate titers

seven-fold over the initial AtoB-HMGS-HMGR operon. Each of the

four best mevalonate producers identified in the screen lowered

the expression levels of HMGS and HMGR relative to AtoB (Pfleger

et al., 2006). HMG-CoA, the product of HMGS, was later shown to

be cytotoxic to E. coli (Kizer et al., 2008); the best operons

identified in the TIGR-mevalonate screen maintained or lowered

HMG-CoA concentrations 11 h post-induction versus the parent

strain (Pfleger et al., 2006).

New mutagenesis strategies are enabling iterative and simulta-

neous mutation of gene regulatory elements. Multiplex Automated

Genome Engineering (MAGE) is a high throughput technique for the

directed evolution of microbial genomes (Wang et al., 2009). MAGE

combines both rational design and directed evolution approaches;

specific genomic targets are selected for mutagenesis. For each

genomic target, pools of degenerate oligonucleotides that retain

homology to the target sequence are electroporated into the cells to

be engineered. Multiple pools of oligonucleotides can be combined

in a single electroporation step, allowing multiple genomic loci to

be modified simultaneously. Iterative rounds of electroporation and

growth generate a mixed population of cells with a variety of

mutations at loci of interest (Fig. 3).

The utility of MAGE in improving pathway flux was evaluated

in the context of engineered lycopene production in E. coli.

Twenty endogenous genes known to affect lycopene yields were

targeted with alternative RBS oligos. Simultaneously, four genes

known to direct flux to competing pathways were targeted with

oligos harboring nonsense mutations. Over 35 MAGE cycles,

approximately 15 billion genetic variants were generated. Screen-

ing colonies based on the red pigmentation of lycopene identified

a variant that produced fivefold more lycopene than the parent

strain (Wang et al., 2009).

Combinatorial approaches are powerful tools for pathway optimi-

zation because they can adjust multiple gene levels simultaneously.

Iterative pathway improvement, in which a single gene level is

adjusted at a time, can fail to identify global maxima accessible by

simultaneous perturbation (Alper and Stephanopoulos, 2007). Both

gene knockout and upregulation studies have shown that mutations

often interact in a cooperative and non-linear manner with regards to

metabolite production (Kennedy et al., 2009). As a further complica-

tion, many modern metabolic engineering efforts involve the hetero-

logous expression of enzymes from several different species in an

unoptimized host (Agapakis et al., 2010; Bayer et al., 2009; Martin

et al., 2003; Ro et al., 2006). Engineering these chimeric pathways to

interface with host metabolism demands many factors be adjusted

simultaneously.

Generating genomic or pathway-specific variation in gene

regulation is only the first step in pathway optimization. Each

approach outlined in this section was paired with a screening or

selection strategy to identify improved product yields. Pathways

that are not observable via high-throughput assays are less

amenable to screening approaches. Selection strategies that con-

nect pathway output to cell viability are designed ad hoc, and

success is not guaranteed (Dietrich et al., 2010a). The lack of

generalized methods for pathway screening and selection cur-

rently limits the broad application of combinatorial pathway

optimization methods.

3. Spatial pathway control

The spatial organization of cellular components is tightly con-

trolled in all organisms, including prokaryotes. For example, many

cyanobacteria target photosystems and electron transport machinery

to a highly ordered thylakoid membrane (Nelson and Yocum, 2006),

while maintaining carbon fixation enzymes in separate protein-

bound compartments positioned along the cell axis (Savage et al.,

2010) (Fig. 4C and D). Co-localization of pathway enzymes to the

same subcellular organelle or compartment can increase the local

concentration of pathway intermediates and exclude competing

cytosolic pathways. Multienzyme complexes often arrange enzymes

in defined stoichiometric ratios to improve enzyme saturation (Zhou

et al., 2001). Direct linkage of enzyme active sites via substrate

tunnels has also been observed in nature, such as in the synthesis of

tryptophan (Hyde et al., 1988). The success of spatial pathway control

in nature has led synthetic biologists to develop methods for

adjusting the physical arrangement of metabolic pathways.

3.1. Scaffolds

Co-localization of related enzymes via direct linkage or scaf-

fold proteins is an evolutionary development that has inspired

new approaches to metabolic engineering. Polyketide synthases

are modular enzymes that pass the growing polyketide chain

from one enzymatic module to the next, much like an assembly

line (Menzella et al., 2005). Cellulosomes are massive bacterial

Grow cells to 

mid-log phase,

induce β protein

Add oligonucleotides 

and electroporate

Recover cells in 

new media

Fig. 3. The Multiplex Automated Genome Engineering (MAGE) cycle. MAGE

incorporates oligonucleotides into E. coli by electroporation, with the l-Red b

protein integrating the oligonucleotides into the genome. Oligonucleotides can be

synthesized to introduce mutations at precise genomic loci. Iterated rounds of

MAGE introduce increasing amounts of diversity at these loci, although many cells

are killed at the electroporation step (Wang et al., 2009).
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complexes that arrange enzymes on scaffolds on the cell surface.

The highly ordered arrangement of cellulosome enzymes facil-

itates the breakdown of plant cellulose, and work to heterolo-

gously express cellulosome assemblies has demonstrated that

scaffolding increases enzyme activity in a cooperative manner

(Gilbert, 2007; Mitsuzawa et al., 2009; Moraı̈s et al., 2010a,

2010b; Tsai et al., 2009).

Synthetic scaffolds have been constructed to improve the

production of mevalonate (Dueber et al., 2009). As with the

application of TIGR elements to the mevalonate pathway, the

enzymes AtoB, HMGS, and HMGR were co-expressed in E. coli.

Attachment of these enzymes to a scaffold protein was achieved

by fusing the enzymes to the metazoan protein–protein interac-

tion ligands GBD, SH3, and PDZ, respectively. Co-expressing a

synthetic scaffold protein with cognate binding domains for the

protein tags permitted all three enzymes to co-localize on the

scaffold (Fig. 4A). Varying the number and order of binding sites

for each tag allowed the enzyme stoichiometry on the scaffold to

be tuned, as well as the relative positioning of each enzyme

(Dueber et al., 2009).

Attaching the mevalonate pathway to the scaffold resulted in a

striking 77-fold improvement in mevalonate yield over the

unscaffolded pathway (Dueber et al., 2009). The scaffolding

system appears to be generalizable to other metabolic pathways,

as demonstrated by the use of the same scaffolding system for the

production of glucaric acid in E. coli. Once again, the scaffold

boosted product titers, with adjustments to scaffold binding site

ratios increasing titers fivefold over the parent strain (Dueber

et al., 2009; Moon et al., 2010).

The GBD/SH3/PDZ scaffolding system has been extended to a

heterologous hydrogen production pathway (Agapakis et al.,

2010). Pyruvate:ferredoxin oxidoreductase (PFOR) from Desulfo-

vibrio africanus and ferredoxin and an [FeFe]-hydrogenase from

Clostridium acetobutylicum were heterologously coexpressed with

a scaffold. Unlike the mevalonate or glucaric acid pathways, the

key intermediate for hydrogen production is not a small molecule.

Instead, PFOR reduces the ferredoxin protein, which delivers the

electrons to the hydrogenase. Despite this important difference,

placing pathway components on a synthetic scaffold also resulted

in increased product yields. The length of the linker between each

component and the scaffold-binding ligand, the distance between

binding sites on the scaffold, and the ratio and order of ligand

binding sites all affected pathway yields. The study saw a

threefold increase in hydrogen production with the best scaffold

configuration over an unscaffolded parent strain. This work, along

with evidence from natural and engineered signaling pathways

(Bashor et al., 2008), demonstrate the utility of scaffolding in

improving the specificity of protein–protein interactions.

Structural RNA and DNA devices are powerful alternatives to

protein structures for spatially arranging biological parts. Tools

for predicting secondary structures from the primary nucleic acid

sequence are becoming sufficiently robust to enable the design of

new RNA and DNA structures ab initio (Andronescu et al., 2004;

Douglas et al., 2009). The field of DNA nanotechnology has

demonstrated the versatility of DNA as a structural molecule

(Aldaye et al., 2008; Shih and Lin, 2010), and RNA-based designs

are beginning to be constructed in much the same manner

(Chworos et al., 2004; Guo, 2010).

Functional in vivo RNA architectures were recently developed

to scaffold a metabolic pathway. These RNA assemblies were used

to coordinate the PFOR/ferredoxin/hydrogenase system in E. coli.

Hydrogenase and ferredoxin proteins linked to PP7 and MS2

aptamer proteins were spatially organized onto an extended

RNA scaffold bearing the corresponding RNA aptamers (Fig. 4B).

As with the GBD/SH3/PDZ scaffold, hydrogen production bene-

fited from scaffolding: the RNA scaffold increased hydrogen yield

by 48-fold over the unscaffolded system (Delebecque et al., 2011).

Since a vast array of multidimensional structures has already

been designed with nucleic acids (Aldaye et al., 2008; Shih and

Lin, 2010), there is great potential in the exploration of complex

geometries for spatial optimization of metabolic pathways.

The exact mechanism behind yield improvements seen with

scaffolds in various applications remains unclear (DeLisa and

Conrado, 2009). Protein intermediates such as ferredoxin, which

diffuse more slowly than small molecules, are likely to benefit

from the local increase in concentration afforded by tethering to

the scaffold (Agapakis et al., 2010; Cironi et al., 2008). For

pathways with small molecule intermediates, it is more difficult

S. chlorophenolicum

R. metallidurans

Hg(II) Hg(0)

PCP

degradation
products

PDZSH3GBD

HM
G
S

AtoB

HM
G
R

PP7MS2

Fd
H
2 ase

5'

3'

Fig. 4. Spatial optimization in natural and synthetic pathways across multiple scales. (A) At the protein scale, synthetic scaffolds can be used to bind mevalonate pathway

enzymes in close proximity to each other. The scaffold contains binding domains for the GBD, SH3, and PDZ protein tags (Dueber et al., 2009). (B) Synthetic scaffolds also

work for electron-transfer proteins, such as ferredoxin (Fd) and an [FeFe]-hydrogenase (H2ase). In this example, an RNA scaffold was used to coordinate hydrogen

production. RNA aptamers specific for the MS2 and PP7 protein tags allow control over enzyme binding. A 50 extension (shown in green) allows attachment of this RNA

building block onto extended scaffold architectures (Delebecque et al., 2011). (C) The carboxysome coordinates enzymes at a larger subcellular scale. RuBisCO (green) is

tightly packed inside the icosahedral carboxysome shell (yellow). Carbonic anhydrase (not shown) provides RuBisCO with gaseous CO2 inside the carboxysome (Savage

et al., 2010). Carboxysome image used with permission from Bruno Afonso and David Savage. (D) At the cellular scale, carboxysomes in S. elongatus are evenly spaced

across the length of the cell (Savage et al., 2010). (E) At the multicellular scale, microbial consortia can be assembled via microfluidic devices. Fibers of the PCP-degrading S.

chlorophenolicum can be protected from Hg inhibition when coated with the Hg-reducing R. metallidurans (Kim et al., 2011).
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to prove that the local concentration of metabolic intermediates is

increased near the scaffold. In the case of the mevalonate, the

results are certainly indicative of increased pathway flux, as

buildup of HMG-CoA is toxic to E. coli (Dueber et al., 2009).

Importantly, synthetic scaffolds offer an elegant mechanism for

balancing pathway flux through the precise adjustment of

enzyme stoichiometries.

3.2. Subcellular compartments

Membrane- and protein-bound compartments encapsulate

metabolic processes in prokaryotes and eukaryotes. Active trans-

port or selective diffusion can boost substrate concentrations as

well as protect a pathway from competing reactions. Compart-

ments often host metabolic reactions that are harmful to the rest

of the cell, or are thermodynamically infeasible in the cytoplasm

(Chance et al., 1979; Feldman and Sigman, 1983; Page et al., 1998).

Many prokaryotes target critical metabolic reactions to pro-

tein-bound microcompartments. Perhaps the most well-studied of

these compartments is the bacterial carboxysome, a structure that

contains the key carbon fixation enzymes ribulose-1.5-bispho-

sphate carboxylase-oxygenase (RuBisCO) and carbonic anhydrase

(Fig. 4C). The carboxysome is an evolutionary adaptation for a

difficult metabolic task: to promote the fixation of gaseous carbon

dioxide by RuBisCOwhile preventing oxygen from interfering with

the reaction. The intricate organization of carboxysomes within

Synechococcus elongatus suggests that the spatial positioning of

carbon fixation is vital, even at the micron scale (Savage et al.,

2010). Given the need for carbon-neutral or carbon-negative fuel

sources (Savage et al., 2008), the bacterial carbon fixation machin-

ery is a likely target for metabolic engineering.

Recent work has raised the possibility of repurposing prokar-

yotic microcompartments for metabolic engineering. The propa-

nediol utilization (pdu) machinery of several bacterial species is

enclosed in a proteinaceous shell much like a carboxysome

(Parsons et al., 2008; Yeates et al., 2011). The pdu ‘‘metabolo-

some’’ of Citrobacter freundii was shown to confer the ability to

metabolize propanediol when expressed heterologously in E. coli.

Furthermore, electron micrographs appear to show successful

assembly of the pdu shell proteins to form microcompartments

in E. coli (Parsons et al., 2008). Intriguingly, there is evidence that

the N-terminal domains of non-shell pdu proteins can be appro-

priated to target heterologous proteins to the metabolosome

interior (Fan et al., 2010; Parsons et al., 2010). The pairing of

microcompartment shells with novel biosynthetic pathways may

expand the reach of bacterial metabolic engineering.

In eukaryotes, methods have been developed for the targeting

of heterologous proteins to many membrane-bound organelles

(Hood and Silver, 1999; Léon et al., 2006; Soll and Schleiff, 2004;

Truscott et al., 2003). Efforts to synthesize methyl halides in S.

cerevisiae have demonstrated the utility of localizing exogenous

enzymes in appropriate subcellular environments. Researchers

noted that the primary substrates of methyl halide transferases

(MHT), SAM, and halide ions are sequestered in the yeast vacuole.

Targeting the MHT from Batis maritima to the vacuole increased

yields of methyl iodide by nearly 50 mg/L-h over targeting the

identical MHT to the cytosol (Bayer et al., 2009). The benefits of

compartmentalization are likely to be even greater for the

heterologous expression of biosynthetic pathways that require

an organelle, such as penicillin synthesis (Gidijala et al., 2009;

Meijer et al., 2010).

3.3. Microbial consortia

The natural world has demonstrated that consortia and com-

munities of organisms are capable of performing metabolic

conversions that are difficult or thermodynamically unfavorable

to do in a single cell (Wintermute and Silver, 2010a). From an

engineering perspective, co-culture offers many of the same

advantages as subcellular compartmentalization: incompatible

metabolic reactions can be conducted in separate organelles or

cells. The bovine rumen, which is itself compartmentalized,

harbors a rich assortment of microorganisms that together

metabolize cellulose (Annison and Bryden, 1998; Hungate,

1947; McAllister et al., 1994). Even communities of soil bacteria

appear to be highly ordered (Young and Crawford, 2004). The

success of microbial cooperation in the natural world has inspired

efforts to engineer synthetic microbial consortia (Brenner et al.,

2007, 2008; Eiteman et al., 2008; Kim et al., 2008; Shou et al.,

2007; Wintermute and Silver, 2010b).

In recent years, efforts to model and construct stable engi-

neered co-cultures have intensified in the systems and synthetic

biology communities. Synthetic consortia have been established

through the exchange of signaling molecules governing quorum-

sensing circuits (Brenner et al., 2007) as well as the exchange of

essential metabolites among complementary auxotrophs (Shou

et al., 2007; Wintermute and Silver, 2010b). Constraint-based

modeling frameworks familiar to metabolic engineers have been

adapted to multi-organism systems, facilitating the development

of compatible synthetic consortia (Klitgord and Segr�e, 2010;

Wintermute and Silver, 2010b).

As with proteins, the spatial arrangement of microbial con-

sortia can be optimized for greater product yields. In a unique

approach, wild-type Sphingobium chlorophenolicum and Ralstonia

metallidurans were used as modular parts to assemble a structure

capable of degrading pentachlorophenol (PCP) in the presence of

Hg(II) (Kim et al., 2011) (Fig. 4E). PCP and Hg(II) are particularly

harsh industrial pollutants that are often produced together.

While S. chlorophenolicum is capable of degrading PCP, it is

inhibited by Hg(II). R. metallidurans, a mercuric ion reducer, can

reduce Hg(II) to Hg(0). Microfluidic laminar flow devices were

used to assemble fibers of S. chlorophenolicum wrapped in a

protective shell of R. metallidurans. The hybrid fibers were capable

of fully degrading 120 mM PCP in the presence of micromolar

Hg(II). A well-mixed solution of both species was essentially

incapable of PCP degradation.

Synthetic microbial consortia consisting of wild-type organ-

isms may be well suited for bioremediation and other ecologically

sensitive applications. Wild-type organisms are not subject to

laws and regulations concerning the deployment of genetically

modified organisms into the environment. Ideally, spatially opti-

mized consortia assembled of species native to polluted areas

could be administered to accelerate the bioremediation process.

The possibility of engineered microbes simultaneously obsoles-

cing harsh industrial processes while cleaning up existing indus-

trial pollution is an attractive vision for the future.

4. Modeling and measuring the metabolic network

In many ways, metabolites are the ‘‘dark matter’’ of the

cell—their existence, intracellular concentrations, and fluxes are

difficult to derive from genomic information and difficult to

experimentally measure (Blow, 2008). Combining tools for char-

acterizing the status of the metabolome with robust metabolic

models is a foundational mission for systems and synthetic

biology.

Genome-scale constraint-based models of cellular metabolism

have been invaluable tools for in silico screening of mutant

backgrounds suitable for metabolic engineering. These models

incorporate the stoichiometry of all known metabolic reactions in

a cell subject to linear or quadratic constraints, such as mass
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balance, media composition, and thermodynamic limits on flux

direction (Schellenberger et al., 2011; Segr�e et al., 2002; Varma

and Palsson, 1994). The result is a steady-state approximation of

metabolic fluxes. Metabolic reactions can be added and removed

to model heterologous gene expression and gene knockouts,

respectively. Models of this type have successfully been employed

to identify genetic modifications to improve product yields (Bro

et al., 2006; Brochado et al., 2010; Burgard et al., 2003; Kennedy

et al., 2009; Pharkya et al., 2004).

In order to model the entire metabolic network, constraint-

based models eschew kinetic parameters and do not predict

metabolite concentrations (Varma and Palsson, 1994). More

quantitative approaches such as Metabolic Control Analysis are

also more dependent on experimentally determined parameters;

errors in parameter estimation become increasingly problematic

as the model size increases (Schuster, 1999). Thus, constraint-

based models are preferable for the forward engineering of the

metabolic network, while detailed kinetic models of select path-

ways are beneficial for pathway tuning. As with all biological

modeling, experimental analysis is crucial for evaluating the

predictive value of metabolic models in a given context.

Multiple studies have attempted to reconcile transcriptome

data with proteomic or metabolomic measurements in engi-

neered cells (Bradley et al., 2009; Fendt et al., 2010; Ishii et al.,

2007; Moxley et al., 2009). The integration of -omics level data

with network-scale metabolic models benefits both a priori

prediction as well as post hoc evaluation of metabolic engineering.

In particular, developing quantitative models for the relationship

between transcript levels and metabolite pools and fluxes would

allow metabolomic data to be inferred from the vast number of

microarray datasets that are already available (Yizhak et al.,

2010). The chemically uniform nature of mRNA transcripts allows

the reliable collection of total mRNA in a single extraction

condition. Due to the chemical diversity of small molecules

within cells, extraction conditions limit the extent of the meta-

bolome that is observed (Yanes et al., 2011).

Coordination between gene expression and metabolite con-

centrations appears to be dependent on the type of perturbation.

Comparison of the transcriptome and metabolome in E. coli over a

range of growth rates revealed that enzyme transcript and protein

levels increased with increasing growth rates while metabolite

pools remained steady (Ishii et al., 2007). It was also noted that

gene deletions that reverse the flux direction of the pentose

phosphate pathway did not significantly alter enzyme levels or

metabolite pool sizes. In addition, it was observed that metabolic

enzymes do not appreciably up-regulate to compensate for

enzyme knockouts (Ishii et al., 2007). Another study comparing

the transcriptome and metabolome of S. cerevisiae during carbon

and nitrogen starvation observed coordinated changes in expres-

sion and metabolite levels. In this study, a network model

identified novel coordinated gene-metabolite pairs in this dataset

(Bradley et al., 2009).

Further work is required to identify contexts in which tran-

script levels correlate to metabolite concentrations. Comparison

of the above studies suggests a differential metabolic response to

enzyme knockouts versus shifting media conditions (Bradley

et al., 2009; Ishii et al., 2007); this could be a consequence of

evolutionary selection for robustness against condition changes

(Cornelius et al., 2011; Segr�e et al., 2002). Alternatively, E. coli and

S. cerevisiae may simply respond differently to metabolic pertur-

bations. A significant confounding issue is that major metabolic

flux alterations can occur without major shifts in enzyme or

metabolite concentrations (Fell, 1997; Ishii et al., 2007).

Two recent studies measured transcriptomic and metabolomic

shifts in S. cerevisiae in response to the deletion of global

regulatory genes rather than enzymes (Fendt et al., 2010;

Moxley et al., 2009). Following the deletion of the Gcn4p, a global

stress response regulator, it was observed that flux control was

highest among metabolites that were involved in many enzy-

matic reactions (Moxley et al., 2009). This raises the possibility of

utilizing network topology to inform metabolic engineering. In

the case of central carbon metabolism, deletion of the glycolysis-

activating transcription factor Gcr2p showed a negative correla-

tion between enzyme levels and associated metabolite levels

(Fendt et al., 2010). This could be indicative of a buffering

phenomenon, in which changes in metabolite pools counteract

enzyme concentration changes to maintain a steady pathway flux.

A grand unifying theory of metabolism has not yet arisen from

these meta-omics studies. It is possible that a truly general

relationship between gene expression and metabolic concentra-

tions does not exist but several important observations about

their correlation have been made. Overall, it appears that evolved

metabolic networks are quite robust in response to genetic and

environmental perturbations. This is corroborated by many of the

metabolic engineering efforts that we have reviewed, in which

multiple perturbations were required to improve product yields.

This could also explain why conservative modeling frameworks

such as Minimization of Metabolic Adjustment (MOMA) are often

more accurate than models that assume that mutant flux is

optimized for maximum growth. Instead, MOMA-derived solu-

tions assume that mutant fluxes are regulated by the cell to

approximate the wild-type flux distribution (Segr�e et al., 2002).

Integrative data from –omics scale datasets may help to identify

genes that disrupt the resistance to perturbations in pathways of

interest.

5. Conclusions

As a practical application of synthetic biology, metabolic

engineering has field-tested emerging biological design princi-

ples. Through these efforts, it has become increasingly apparent

that rational design approaches are limited by our understanding

of biological systems. The complexity of living cells far surpasses

the complexity of human-made devices. The tremendous

improvement in DNA sequencing and assembly techniques is

now bringing about an era in which cells themselves can be man-

made devices (Benders et al., 2010; Gibson et al., 2010; Lartigue

et al., 2009), but our ability to modify cells has outpaced our

ability to predict how those modifications will function. Fortu-

nately, the ability of living systems to self-replicate has led animal

and plant breeders, geneticists, molecular biologists, metabolic

engineers, and now synthetic biologists to utilize selective pres-

sure in their research.

Incorporating irrational design into synthetic biology does not

require an abandonment of forward engineering approaches.

Instead, the emerging engineering design cycle of synthetic

biology and metabolic engineering appears to include both in

silico modeling and prediction as well as directed evolution and

screening. Similarly, experimental analysis remains invaluable for

hypothesis generation as well as confirmation. In our own work,

we utilized FBA to predict knockout combinations in S. cerevisiae

likely to increase production of formic acid. Our initial strain

produced formic acid as predicted, but at modest levels. Expres-

sion analysis and metabolic phenotyping allowed us to identify

further genetic interventions that boosted formic acid titers

(Kennedy et al., 2009). In the case of the mevalonate-based

isoprenoid pathway, transcriptomic and metabolomic methods

revealed that the cytotoxicity of HMG-CoA was causing stress

responses that negatively impacted isoprenoid titers (Kizer et al.,

2008; Martin et al., 2003). Based on these experiments, research-

ers were able to counteract the effect by varying pathway
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expression levels (Pfleger et al., 2006), by the addition of palmitic

acid (Kizer et al., 2008), and by the use of engineered scaffolds

(Dueber et al., 2009). Undoubtedly genome-scale optimization

approaches such as gTME and MAGE can identify further regula-

tory adjustments that have not been predicted.

The ability to synthesize any DNA sequence has increased the

reach of metabolic engineering. Modern metabolic engineering

efforts often assemble parts from disparate species into novel

pathways. Recent work to produce fatty acids in E. coli utilized

heterologous genes from S. cerevisiae,M. musculus, A. calcoaceticus,

A. baylyi ADP1, Z. mobilis ZM4, C. stercorarium, B. ovatus, U.

california, C. hookeriania, and A. thaliana, sampling multiple

expression level combinations (Steen et al., 2010). Low-cost

synthesis will undoubtedly drive more ‘‘synthetic metagenomics’’

studies, in which libraries of homologous enzymes are synthe-

sized and evaluated (Bayer et al., 2009). Demands for renewable

energy have led synthetic biologists to construct more spatially

complex pathways, such as the expression of the electron transfer

apparatus in E. coli (Jensen et al., 2010). Exploring all relevant

expression level variants and spatial arrangements becomes

increasingly difficult in these complex pathways.

The engineering of complex pathways can be divided into two

stages: a proof of concept stage where novel enzyme combina-

tions are determined to produce a desired product, and an

optimization stage where regulatory adjustments are made to

improve product yields. As engineered biosynthetic pathways

become more complex, they also become more difficult to tune.

New biofabrication facilities such as the BIOFAB (http://www.

biofab.org/) seek to abstract pathway optimization from pathway

design by developing rapid prototyping services. The BIOFAB is

intended to provide new libraries of characterized regulatory

elements, as well as facilitate prototyping of collaborator’s syn-

thetic devices via high-throughput cloning and testing (Bayer,

2010). Applying forward engineering and directed evolution

approaches in a high-throughput manner will generate parts

and data that will improve our ability to rationally engineer cells.

The growth of synthetic biology has often been compared to

the personal computer revolution of the late twentieth century.

The home personal computer was made possible by the avail-

ability of high-quality off-the-shelf electronic components that

could be assembled by technically inclined enthusiasts. Molecular

biologists have generated a vast assortment of biological parts,

but inadequate characterization has limited their general useful-

ness. In many ways, the current stage of synthetic biology is more

analogous to the early days of heavier-than-air flight. Despite our

current sophistication regarding the computational design of

aircraft, flight principles were first elucidated through exhaustive

wind tunnel experiments and test flights (Carlson, 2010). Simi-

larly, the successes and failures of synthetic biology continue to

reveal biological design principles.
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