

"Populační ekologie živočichů"

Stano Pekár

Spatial ecology - describes changes in spatial pattern over time
processes - colonisation / immigration and local extinction / emigration

 local populations are subject to continuous colonisation and extinction

wildlife populations are fragmented

Metapopulation - a population consisting of many local populations (sub-populations) connected by migrating individuals with discrete breeding opportunities (not patchy populations)

Distribution of individuals

- population density changes also in space
- for migratory animals (salmon) seasonal movement is the dominant cause of population change
- movement of individuals between patches can be density-dependent
- distribution of individuals have three basic models:

most populations in nature are aggregated (clumped)

Regular distribution

described by hypothetical uniform distribution

$$P(x) = \frac{1}{n}$$

n.. is number of samples*x*.. is category of counts (0, 1, 2, 3, 4, ...)

- all categories have similar probability
- mean: $\mu = \frac{1}{2}(n+1)$

• variance:
$$\sigma^2 = \frac{1}{12}(n^2 - 1)$$

for regular distribution:

$$\mu > \sigma^2$$

Random distribution

described by hypothetical Poisson distribution

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

- μ .. is expected value of individuals x.. is category of counts (0, 1, 2, 3, 4, ...)
 - probability of x individuals at a given area usually decreases with x
- observed and expected frequencies are compared using χ^2 statistics

for random distribution:

$$\mu = \sigma^2$$

Aggregated distribution

described by hypothetical negative binomial distribution

$$P(x) = \left(1 - \frac{\mu}{k}\right)^{-k} \frac{(k+x-1)!}{x!(k-1)!} \left(\frac{\mu}{\mu+k}\right)^{x}$$

- μ .. is expected value of individuals x.. is category of counts (0, 1, 2, 3, 4, ...)
- k... degree of clumping, the smaller $k (\rightarrow 0)$ the greater degree of clumping
- approximate value of k:

$$\mu < \sigma^2$$

Coefficient of dispersion (CD)

CD < 1 ... uniform distribution CD = 1 ... random distribution CD > 1 ... aggregated distribution

$$CD = \frac{s^2}{\overline{x}}$$

$$k \approx \frac{\mu^2}{\sigma^2 - \mu}$$

Dispersal

- **Geographic range** radius of space containing 95% of individuals
- expansion increase in geographic range
- individual makes blind random walk
- random walk of a population undergoes diffusion in space
- diffusion model in 2dimensional space:

$$\frac{\partial N}{\partial t} = D\left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2}\right)$$

- radial distance moved in a random walk is related to \sqrt{time}

- area occupied (radius²) is related to *time*

Spread of muskart in Europe

Elton 1958

Pure dispersal

Diffusion model
solved to
2dimensional
Gaussian distribution

- assuming all individuals are dispersers
- range expanses linearly with time
- no reproduction

 N_0 - initial density ρ .. radial distance from point of release (range) D - diffusion coefficient (distance²/time)

Dispersal + population growth

Skellam's model
Includes diffusion and exponential population growth

r.. intrinsic rate of increase

 $N(\rho,t) = \frac{N_0}{4\pi Dt} \exp\left(rt - \frac{\rho^2}{4Dt}\right)$

c - expansion rate [distance/time]

$$c = 2\sqrt{rD}$$

Skellam 1951

Metapopulation ecology

• Levins (1969) distinguished between dynamics of a single population and a set of local populations which interact via individuals moving among populations

Hanski (1997) developed the theory - suggested core-satellite model

the degree of isolation may vary depending on the distance among patches

• unlike growth models that focus on population size, metapopulation models concern persistence of a population - ignore fate of a single subpopulation and focus on fraction of sub-population sites occupied

Levin's model

- assumptions
- sub-populations are identical in size, distance, resources, etc.
- extinction and colonisation are independent of p
- many patches are available
- natality and mortality is ignored

p .. proportion of patches occupied

m .. colonisation (immigration) rate - proportion of open sites colonised per unit time

e .. extinction (emigration) rate - proportion of sites that become unoccupied per unit time

$$\frac{dp}{dt} = mp(1-p) - ep$$

Levin (1969)

• equilibrium is found for dp/dt = 0

$$p^* = \frac{m-e}{m} = 1 - \frac{e}{m}$$

- sub-populations will persist $(p^* > 0)$ only if colonisation is larger than extinction (m > e)

- all patches can be occupied only if e = 0

