
Stano Pekár“Populační ekologie živočichů“

�
dN

= Nr
dt



+ +   .. mutualism (plants and pollinators)

0 +   .. commensalism(saprophytism, parasitism, phoresis)

- +   .. predation (herbivory, parasitism), mimicry

- 0 .. amensalism(allelopathy)

- - .. competition

Increase Neutral Decrease
Increase + +
Neutral 0 + 0 0

Decrease + - - 0 - -

Effect of species 1 on fitness of species 2
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�Niche breadth
Levin’s index (D): 
- pk .. proportion of individuals in class k
- does not include resource availability
Smith’s index (FT): 
- qk .. proportion of available individuals in class k
- 0 < D, FT < 1

�Niche overlap
Pianka’s index (a):
- does not account for resource availability
- 0 < a < 1
Lloyd’s index (L):
- 0 < L < ∞
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� based on the logistic differential model

species 1: N1, K1, r1

species 2: N2, K2, r2
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�assumptions:
- all parameters are constant
- individuals of the same species are identical
- environment is homogenous, differentiation of niches is not possible
- only exact compensation is present

� model of Lotka (1925) and Volterra (1926)



� total competitive effect (intra + inter-specific) 
(N1+ αN2)    where α .. coefficient of competition

α = 0 .. no interspecific competition
α < 1 .. species 2 has lower effect on species 1 than species 1 on itself 
α = 0.5 .. one individual of species 1 is equivalent to 0.5 individuals of 
species 2)
α = 1 .. both species has equal effect on the other one
α > 1 .. species 2 has greater effect on species 1 than species 1 on itself

species 1:

species 2:

� if competing species use the same resource then interspecific
competition is equal to intraspecific
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� examination of the model behaviour on a phase plane

� used to describe change in any two variables in coupled differential 
equations by projecting orthogonal vectors

� identification of isoclines: a set of abundances for which the change 
in populations is 0:
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� species 1
r1N1 (1 - [N1 + α12N2] / K1) = 0
r1N1 ([K1 - N1 - α12N2] / K1) = 0

trivial solution if r1, N1, K1 = 0
and  if K1 - N1 - α12N2 = 0
then N1 = K1 - α12N2 

if N1 = 0 then N2 = K1/α12
if N2 = 0 then N1 = K1

� species 2
r2N2 (1 - [N2 + α21N1] / K2) = 0
N2 = K2 - α21N1 

trivial solution if r2, N2, K2 = 0
if N2 = 0 then N1 = K2/α21
if N1 = 0 then N2 = K2

� above isoclinei1 and below i2 competition is weak
� in-between i1 and i2 competition is strong
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1. Species 2 drives species 1 to extinction
� K and α determine the model behaviour
�disregarding initial densities species 2 (stronger competitor) will 
outcompete species 1 (weaker competitor)
� equilibrium (0, K2)

K1 = K2
α12 > α21
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2. Species 1 drives species 2 to extinction

�species 1 (stronger competitor) will outcompete species 2 (weaker 
competitor)
�equilibrium (K1, 0)
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3. Stable coexistence of species
� disregarding initial densities both species will coexist at stable  

equilibrium (where isoclines cross) 
� at at equilibrium population density of both species is reduced
� both species are weak competitors
� equilibrium (K1*, K2*)

K1 = K2 

α12, α21< 1
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�one species will drive other to extinction 
depending on the initial conditions
� coexistence only for a short time
� both species are strong competitors
�equilibrium (K1, 0) or (0, K2) 

4. Competitive exclusion

r1 = r2
K1 = K2 
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�Jacobian matrix of partial derivations

� evaluation of the derivations for densities close to equilibrium
� estimate eigenvalues of the matrix
- if all eigenvalues < 0 .. locally stable

� Lotka-Volterra system is stable for α12α21 < 1
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� when Rhizoperthaand Oryzaephiluswere reared separately both 
species increased to 420-450 individuals (= K)

� when reared together Rhizoperthareached K1 = 360, while 
Oryzaephilus K2 = 150 individuals 

� combination resulted in more efficient conversion of grain (K12 = 510 
individuals)

� three combinations of 
densities converged to the 
same stable equilibrium 

� prediction of 
Lotka-Volterra model is correct
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Crombie (1947)
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� dynamic (multiple) regression is used to estimate parameters from a 
series of abundances
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� solution of the differential model – Ricker’s model:


