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Acarus Cheyletus



�continuous model of Lotka & Volterra (1925-1928) used to explain 
decrease in prey fish and increase in predatory fish after World War I

�assumptions
- continuous predation (high population density)
- populations are well mixed
- closed populations (no immigration or emigration)
- no stochastic events
- predators are specialised on one prey species
- populations are unstructured
- reproduction immediately follows feeding



H .. density of prey P .. density of predators
r .. intrinsic rate of prey population m .. predator mortality rate 

a .. predation rate b .. reproduction rate of predators 

� in the absence of predator, prey grows exponentially →

� in the absence of prey, predator dies exponentially→

� predation rate is linear function 
of the number of prey .. aHP

� each prey contributes identically 
to the growth of predator .. bHP
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�do not converge, has no asymptotic 
stability (trajectories are closed lines) 
→ neutral stability

� unstable system, amplitude of the cycles 
is determined by initial numbers 

Zero isoclines:
� for prey population:

� for predator population:
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� in the absence of the predator prey population reaches 
carrying capacity K

Addition of density-dependence

� for given parameter values:  r = 3, m = 2, a = 0.1, b = 0.3, K = 10
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Zero isoclines:
� for preypopulation:

if H = 0 (trivial solution) or if

� for predatorpopulation: 0.3HP - 2P = 0 

if P = 0 (trivial solution) 
or if 0.3H - 2 = 0 

� gradient of prey isocline is negative
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� has single positive asymptotically stable equilibrium 
defined by crossing of isoclines
�converges to the stable equilibrium



�functional response Type II:

� rate of consumption by all predators:

Addition of functional response of Type II

� for parameters:  rH = 3, a = 0.1, Th = 2, K = 10

prey isocline: predator isocline:
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.. damped oscillations

� predator exploits prey 
close to K
- isocline: H = 9
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� predator exploits 
prey close to K/2 
- isocline: H = 5

� predator exploits 
prey at low density
- isocline: H = 2

Rosenzweig & MacArthur (1963)
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� logistic model with carrying capacity proportional to H 
�k .. carrying capacity of the predator
� rP = bH - m

Addition of predator’s carrying capacity

� for parameters:  rP = 2, k = 0.2

predator isocline:

prey isocline:
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�quick approach to stable equilibrium



Zatypota Theridion



� discrete model of Nicholson & Bailey (1935)
- discrete generations
- 1, .., several, or less than 1 host
- random host search and functional response Type III
- lay eggs in aggregation

Ht = number of hosts in time t
Ha = number of attacked hosts
λ = finite rate of increase of the host

Pt = number of parasitoids
c = conversion rate, no. of parasitoids for 1 host
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� parasitoid searches randomly
� encounters (x) are random (Poisson distribution)

p0 = proportion of not encountered, µ .. mean number of encounters

Et = total number of encounters
a = searching efficiency (proportion of hosts encountered)

Et = a Ht Pt

� proportion of encounters (1 or more times): p = (1–p0)

Incorporation of random search

x = 0, 1, 2, ...
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� highly unstable model for all parameter values:
- equilibrium is possible but the slightest disturbance leads to divergent 
oscillations (extinction of parasitoid)
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� exponential growth of hosts is replaced by logistic equation

H* .. new host carrying capacity
� depends on parasitoids’ efficiency
- when a is low then q → 1
- when a is high then q → 0

� density-dependence have 
stabilising effect for moderate r and q

Stability boundaries

Addition of density-dependence

Beddington et al. (1975)
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Addition of the refuge
� if hosts are distributed non-randomly in the space

Fixed number in refuge: H0 hosts are always protected

� have strong stabilising effect 
even for large r

Hassell & May (1973)
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� distribution of encounters is not random but aggregated (negative 
binomial distribution)
- proportion of hosts not encountered  (p0):  

where k = degree of aggregation

� very stable model system if k ≤ 1

Stability boundaries: 
a) k=∝, b) k=2, c) k=1, d) k=0

Addition of aggregated distribution

Hassell (1978)
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