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Biogeography

“attempts to explain why species and higher taxa are
distributed as they are, and why the diversity and taxonomic
composition of the biota vary from one region to another”

Philip Sclater
- (1829-1913)
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Historical biogeography

Reconstruct the origins, dispersal, and extinctions of taxa
Primarily focused on evolution, dispersal and vicariance

Ecological biogeography

Primarily focused on present distributions, species responses to
biotic environment and interactions with other organisms

Paleoecology

Combines historical and ecological biogeography, investigating the
relationships between communities (abundance, distribution, and
diversity of species) and abiotic conditions
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Conservation biogeography

Work on the protection and restoration of natural environments

b . = _ “ Special feature:
D!vel:s'ty.and ~ The application of
_ Distributions

predictive modeling of
species distribution to
biodiversity conservation

Special issue
Diversity and distributions
13 (3) 2006
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Recent tools in biogeography
Computational power (computers)
Geographic Information Systems

Geostatistics

@ - @
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Mapping Species
Distributions

Satiy wlerence and Predition
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Ecological Niches and

Geographic Distributions

2011
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Species distribution models (ecological niche models)
are used for:

Predicting species occurrences and estimating ranges
Modeling ecological spatial responses
Reconstructing past distributions

Biogeography of genetic and physiological data
Assessing responses to climate changes

Establishing diversity patterns (endemicity, richness)

and much more...
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Google+

€

% / & NatureServe: Predict x \ ' Pfirodovédecka faku Vegetation Science ¢ x ' [ Borja Jiménez-Alfarc x

C A [ www.natureserve.org/prodServices/predictiveDistModeling.jsp

NatureServe

N
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Projects ) Visit Local Programs Products & Services Support Us -

Products & Services
NatureServe Web Services

NatureServe Vista
Software

Biotics 4 Software

Conservation Planning
Services

Confronting Climate
Change

Forest Program
Ecosystem Mapping

Predictive Distribution
Modeling

Expert Consultation

Information Technology &
Tools

Learn More

§ Products & Services

¢ Learn more on how
NatureServe has used

Predictive Distribution Modeling PDM to map species in
Latin America

Predictive Distribution Modeling (PDM) is an innovative GIS-based o For more information

method used to produce predictive maps of where elements (i.e., on PDM, download

species, ecological community type) are likely to occur and likely the white paper

not to occur. The probability of occurrence is quantified and is “Element Distribution

directly related to underlying environmental variables and the E"‘Pogslifgé QBP)rimer :
locations of known occurrences. There are several advantages to pi
using PDM (also known as "element distribution modeling") for » Download fact sheet

inventory and conservation planning: &%;DM' (PDF, 675

» Maps of documented occurrences ("dot maps") convey no
information on likelihood of element occurrence in areas
that have not been surveyed. Range maps from field guides and similar treatments are
too coarse to inform on-the-ground action or study.

¢ Good predictive distribution maps make field inventories more efficient and effective.
They show where to commit limited inventory resources for the highest likelihood of
documenting a target element.

¢ Predictive distribution maps are crucial to state comprehensive wildlife conservation

mbrabaminm anAd Athar aAaancr mlannina AffArEA (A ~ 11ICEC DAamianal and Caramt Niana
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Three main steps:

1. compile spatial data associated with the target element
and environmental data for the area of interest

2. build a statistical model based on the association of the
element to environmental variables at sites of known
occurrence

3. Map the model via GIS across the area of interest

Field records and maps of environment Map of probability species is present
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Distribution Modeling

Specialist’s Environmental Data
Knowledge

Species-
Environment
Relationship

M<—-—-——-0COMmMO
M<—-—-=-OCOZ -

Environmental Spatial
Data Model

Specialist
l Review

Range Prediction
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Mapping Species
Distributions

Franklin
2009

Sample
design

Species
occurrence
: data

calibration

Candidale variables

Scale

Environmental
data

validation

Modeling
framework

Map of
predicted
occurrence

Fig. 1.2, Dhagram showing the components of species distribution modeling,

Biogeographical and ecological theory and concepts frame the problem, and

identify the characteristics of the species and environmental data required to
calibrate an appropriate empirical 51206 and apply it to produce a map of predicted

SPECIES OCCUTTENCE OF suitable habitat.
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Model building process (from Guisan and Zimmerman 2000)
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Distribution modeling (per se) is EASY
Just some technical skills are required
Anyone can compute it with user-friendly software

EASY

DIFFICULT

Applying distribution modeling is more TRICKY
You need a good purpose to do it
(research question, conservation goal)

You must know how to do it properly
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About this course:

Part 1 — Mapping

Dealing with occurrence data

Environmental variables
Spatial terms and PRACTICE with GIS

Part 2 — Modeling

Background theory (niche concept)
Modeling methods
Maximum Entropy and PRACTICE with MaxEnt

Part 3 — Mapping and Modeling

Model implementation and evaluation
Applications and future challenges
Using your OWN DATA and GROUP PRACTICE
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What is occurrence data?

A record for one species/organism/community in one locality
Presences (and absences) are the MAIN dependent variable for
Species Distribution Modeling (but there are more)

Response surface of Cercocarpus ledifolius Abundance of Carex curvula Simulated presence: Picea engelmannii Simulated grassland communities
X Method:
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Guisan & Zimmerman (2000)
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Where to obtain occurrence data?

Two main options:

1. Desing your own field sampling
Pro: you have control on your data
Con: many times you have not time or money

2. Using existing data (e.g. biodiversity databases)
Pro: huge amount of data around the world
Con: uncertainties on sampling, accuracy, etc.
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1. Sampling design

Probabilistic design is required to quantify the species responses
along gradients, in order to consider the edges of
environmental distribution

1¢ e essese @ 14

observation

observation

gmcﬁen‘t' gr'ndicnf.'
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Geographic distribution of a species

Species are often distributed in a patchy manner at the
scale of the landscape (non-random structure of L).

latitude
[ ]
L |
[ ]

longitude
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Distribution in the environmental space

I'f we translate this distribution into env. space, then
the distribution often looks quite different

temperature
L ]
L ]

moisture



OCCURRENCE DATA

Distribution in the environmental space is different!

Our goal is then to quantify the density distribution or

the likelthood to find a species in the environm. space

92"
AY

\\

\

temperature

moisture
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There is no universal design for all questions, but...

Simple random design is used for relatively homogeneous spaces
(when the probabilities of occurrences are equal) but it is not

a good option if you have to sample organisms which are rare
or disjuntly distributed

Regular, systematic, clustered or stratified designs are prefered to

sample occurrence data if the organism is clearly influenced by
geographial, environmental or topotraphical gradients

Even better can be mixed designs, e.g random stratified sampling
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You “should” avoid bias survey sampling
-> Geographic bias: along roads, near the cities,...
-> Taxonomic bias: wrong identification of species

E.g.: identification of bias in biological collections of Lupinus hspanicus
(Parra-Quijano et al.): diferent geographic cover

[ ] Genetic bank

[ ] Both

. Herbarium / literature
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You “should” avoid purposive sampling
-> non-probabilistic, based on aprioristic knowledge
-> usually produces undersampling of the study subject

E.g.: Comparison of sampling survey desings for predicting lichen species in USA

(Edwards et al. 2006)
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A visual example of designed versus purposive sampling
(vegetation plots in Picos de Europa, Spain)

Designed (systematic) Purposive (biased)
(N = 80) (N =100)



OCCURRENCE DATA

More important that the number of observations is the degree to which the
range of the environmental space occupied by the species are covered in the
sample (= COMPLETENESS) and the frequency of events (records of species
presences) from the sample (= PREVALENCE)

Abies alba

LY

I I
This distribution map, showing the natural Cistriduton area of Ables aide was compéed by members of the EUFORGEN Networks

Citation: Dsstrvution map of Siver fir (Abies ada ) EUFORGEN 20089, www.eulcrgen.org.

First pubished online in 2008 -« Updated on 28§ November 2011 Km
L] 250 500 1,000
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How many samples?
Or, a better question,
What is the minimum sample size for my study?

For SDMs, there are some rules:
—> A minimum of 50 observations can be fine
— 20-40 times as many observations as predictors

— For rare species and some algorithms, 20 occurrences can be enough...!
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Very few samples can be valid for rare organisms
... but it depends on the method

7 all species
—t— bicchm
—O— brute
0.55 - o= = digarp
damain
o —— gam
= —e— gom
5 0.6 e k] 11
§ = e m fivas
= TS
e fTIATSINT .
055 - —=—maent | WIiSZ et al. 2008. Effect of sample
emgaw]  sjze on the performance of species
distribution models.
05 , Diversity and Distributions 14: 763

10 a0 100
Sample size
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In summary, the quality of our data for modeling
distributons will depend on many factors:

-> EXTENT of the study area and ACCURACY of occurences
-> The ECOLOGY of the species

-> How we sample the ENVIRONMENTAL SPACE

-> How many PRESENCES and ABSENCES are sampled

-> The PREDICTORS and the modeling METHOD
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2. Using existing data (e.g. biodiversity databases)

-> SDMs are mainly used to map unkwon species
distributions

-> Species mapping has however a long history using known
distributions from many different sources

Main types of sources:

- @Grid-based atlases (compilation of information)

- Natural history collections (museums, botanic gardens)
- Surveys (conservation, vegetation or faunistic surveys)
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Grid-based Atlases
Pro: Cover large territories and represent distribution ranges well
Con: Coarse grain (10 km, 50 km) and small spatial acuracy

. ) -~ _},.!:-‘_
o a‘ . 7 sk
& ' Y
é
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/4 | :
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T twe @ | (20% of European flora)
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Natural history collections

Pro: Large amount of data for all the world
Con: Low spatial resolution and high uncertainty

[ www.gbif.org

Login or Create a new account

‘ Data ~ News - Community ~ About ~
GBIF

Global Biodiversity
Information Facility

417,165,184 1,426,888 11976 578

Sharing biodiversity

Providing evidence for
data for re-use

Collaborating as a
research and decisions

global community

Learn about GBIF
Publish your data through GBIF
Technical infrastructure

Using data through GBIF
Enabling biodiversity science

Supporting global targets

Current Participants
How GBIF is funded
Enhancing capacity

( Search news items and information pages Search Q
N
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Biodiversity Surveys
Pro: Spatial accuracy is heterogeneous, although can be good

Con: Generally biased or purposive samping

Czech national

Phytosociological 2 1o —
I IlﬂII I

Database Il
o Tl |»|un\|||um i
,9‘9',9‘9,9’9'@&‘ o}@'fa‘s\ Q@Oﬁ\ﬁé@@’f’@é@é@@@f

Year
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Problems associated with biodiversity databases

1. Low spatial accuracy: location and coordinates

(if existing) are generally imprecise

2. Unknown sampling design: generally biased or
purposive, but in general not reported

How this affects our data:

Incomplete distributions (bias)
Undersampling

Pseudo-replication

Spatial autocorrelation of samples
Low spatial accuracy of the analyses

e

—

Next week we will
go back to the
spatial issues
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How to solve these limitations?

Georeferenciating: it takes time but it allow us to measure
spatial uncertainty

Resampling: to have some control of the data (e.g.
analyzing subsets separately)

Adaptative sampling: resampling after a first assessment
Evaluating bias: using spatial information

Measuring spatial autocorrelation
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Georeferencing

The main challenge of biological collections is the assignment of geographic
coordinates to millions of historical records (Baker & al., 1998)

Home | Web Application | Standalone App | Collaborative Georeferencing | Developer Resources | Workshops | Support and Contacts

g ,& 7) %
5 » i

v

GEOLocate # s S T

A Platform for Georeferencing Natural History \
Collections Data :

R des
For Users: o]
* Overview { P lg\
* GEOLocate Web Application Bkt oveiien Gadea) ot e i, VL
¢ Collaborative Georeferencing the GEOLocate Project =y L S e e 2
¢ GEOLocate 3 .xx (standalone) d
© Global Expansion
* Education & Outreach

Secanecs
S S E UL L I Oy T e ——— ey T

For Developers:

¢ SOAP Services
¢ JSON/GeoJSON
¢ Embeddable Web Client

Lo
= ——u

Collaborative
Web Application Web Services Desktop Application Georeferencing
Georeference collections data using Integrate georeferencing into your The original standalone desktop Build communities, share data,
o T own databases and applications application. relate records across collections

using GEQLocats webservicss. and improve verification efficiency.
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Spatial autocorrelation

Oversampling of aras produces pseudo-replication and further
overfiting of the models.

What to do?

Sampling (or resampling) according
to spatial criteria

Assessing spatial autocorrelation
(e.g. Moran’s I) after modeling
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In the ecological space, what factors are important
for the distribution of species?

At the macro-distributional scale, ultimate controlling factors have to do with

energy requirements of species.
Energy requirements are, in turn, determined by physiology and morphology

l' I. World Potential

Evapotranspiration


http://ruig.grid.unep.ch/?p=95
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And... what is the primary source of energy for

the Earth?
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Solar energy brings

December 1996 [L& Troposphere Stratosphere [ F

anomaly Trace for Clobal Average
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What factors affect solar radiation and temperature?

o Latitude

Eguator

ilicrosoft llustration
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But the factory of primary production (vegetation)
... also needs WATER

El Nino minus La Nifia Composites
of Global Normaliged Precipitation Anomalies

S,

g

- e

L -
-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2
Global Precipitation Climatology Project (GPCP) 1979-2001
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There are also functional manifestations of the
interplay of all these factors

Gilobal net primary productivity

evapotranspiration
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In sum

There are distal factors that determine directly or indirectly the
distribution of all species (at broad spatial scales):

-> Amount of light
-> Amount of heat
-> Amount of water
-> Topography

NOTE: Energy and water income is dynamic in time. For some
qguestions regarding the eco-geographic distribution of species,
the time dimension is crucial
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Implications

When modelling individual species, more proximal variables
become relevant:

-> Soil types

-> Evapotranspiration

-> Primary productivity

-> Light quality

-> Number of frost days

NOTE: A necessary field of research is needed to achieve a better
understanding of the inclusion of different types of variables in the
modelling process, as well as the effect of redundancy on model quality.
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But EACH organism has its own requirements

E.g.: interactions, parasitisms.......

_Global Change Biology

Global Change Biology (2013), doi: 10.1111/ geb.12226

Finding the appropriate variables to model the
distribution of vector-borne parasites with different
environmental preferences: climate is not enough

ANTON PEREZ-RODRIGUEZ*, SOFIA FERNANDEZ-GONZALEZ*, IVAN DE LA HERA*,{ and
JAVIER PEREZ-TRIS*

*Departamento de Zoologia v Antropologia Fisica, Universidad Complutense de Madrid, Madrid, E-28040, Spain, TDepartamento
de Zoologia y Biologin Celular Animal, Universidad del Pais Vasco (UPV/EHU), Vitorin-Gasteiz, E-01006, Spain

Abstract

Understanding how environmental varation influences the distribution of parasite diversity is critical if we are to
anticipate disease emergence risks associated with global change. However, choosing the relevant variables for mod-
elling current and future parasite distributions may be difficult: candidate predictors are many, and they seldom are
statistically independent. This problem often leads to simplistic models of current and projected future parasite distri-
butions, with climatic variables prioritized over potentially important landscape features or host population attri-
butes. We studied avian blood parasites of the genera Plasmodium, Haemoproteus and Leucocyfozoon (which are viewed

mn smmlasalial sessscsansal s allssscsenat faa BT Th et nee hilaaliaasce Codawda aledcnnwilla ccnscslalilnans TATa s d Thawlial T asal O e aann
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Types of environmental variables

In statistical terms, there are two main variables:

QUANTITATIVE
elevation, temperature, precipitation, etc.

QUALITATIVE (CATEGORICAL)
Soil type, land cover, vegetation

->They will be used differently in the modeling process
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Types of environmental variables

In practice, we should distinguish the most appropiate variables for
our study case, and especially the SCALE

Broad scale studies:
More focused on DIRECT variables, mostly climatic:
Temperature, precipitacion, solar radiation, evapotranspiration

Local scale studies:
More focused on INDIRECT variables, mostly topogaphic:
Elavation, slope aspect, exposition, topograhical indices, etc.
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Indirect Variables

Direct & Resource Variables

Conceptual model of
relationships between
resources, direct and
indirect variables, and their
influence on plant
performance (from Guisan
& Zimmerman 2000)
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WORLDCLIM
Averaged from long-term (30yr) series of Temp and Prec

BIOCLIM: “Bioclimatic variables are derived from the monthly temperature
and rainfall values in order to generate more biologically meaningful
variables. These are often used in ecological niche modeling (e.g., BIOCLIM,
GARP). The bioclimatic variables represent annual trends (e.g., mean annual
temperature, annual precipitation) seasonality (e.g., annual range in
temperature and precipitation) and extreme or limiting environmental factors
(e.g., temperature of the coldest and warmest month, and precipitation of the
wet and dry quarters). A quarter is a period of three months (1/4 of the year)”

X Google | Woldclim V|-"l Buscar '-‘- ¥ Compartir ‘ Mas » Acceder 9, -

w Favoritos ‘ w @ Wiley Online Library Titles...

h2d
- [ @ ¥ Pagina v Seguridad ¥ Herramientas v @v

‘g\ WorldClim - Global Climate Data | Fre... ‘ ‘

WorldClim - Global Climate Data

Free climate data for ecological modeling and GIS

Download Contact form About us
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WORLDCLIM (www.worldclim.org)

BIO1 = Annual Mean Temperature

BI102 = Mean Diurnal Range (Mean of monthly (max temp - min temp))

BI1O3 = Isothermality (P2/P7) (* 100)

B1O4 =T Seasonality (standard deviation *100)

BIO5 = Max T of Warmest Month

BIO6 = Min T of Coldest Month .
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ENVIRONMENTAL VARIABLES

National data at higher resolution (e.g. Spain, 200m x 200m)
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ENVIRONMENTAL VARIABLES

TOPOGRAHY

Potential solar radiation (from the Digital Elevation Model)
Indirect variable reflecting heat acumulation




ENVIRONMENTAL VARIABLES

TOPOGRAHY

Topographic Position Index (from the Digital Elevation Model)
Indirect variable reflecting moisture and wind exposure




ENVIRONMENTAL VARIABLES

MORE VARIABLES (AT DIFFERENT SCALES)

i About - WorldGrids x \ * Pfirodovédecka faku x Vegetation Science ¢ x ' [ Borja Jiménez-Alfarc x
€ > C A [1 wwwworldgrids.org/doku.php

WorldGrids.org
Article  Discussion Read
Worldgrids — a public repository and a WPS for global environmental layers
Created and maintained by: @ T. Hengl and @H.I. Reuter, DISRIC — d Soil Information
Contributions by: @M. Kilibards
Project overview Access WorldGrids WPS from R Recent news
WorldGrids.org hosts 1 km environmental Isyers in s standardized formsat. Find more sbout Linking to the WorldGrids Web Processing Service (WFS) is possible vis the WP § & class i This website is currently under i Itis to be fully by mi
the WorldGrids.org project: implemented in the GSIF 7 package for R. This is based on the pyWPS extension, running U In the meanwhile, read more sbout the project and how you can contribute. Try insta
on an Debisn system with 2GB RAM. For 3 list of examples see this tutorisl: GSIF package and running some simple analysis.
» Basic design of the WorldGrids.org and how to find things;

List of avsilable layers and their properties;
Instructions to submit new dats to WorldGrids.org;
Overview of Publicly svailsble globs| dsts sets;
Install and use pyWFS on your machine;
Download visitor statistics by country (XML &)

overlay — Get values per location;
=ubzet — Subset and download WorldGrids in various GDAL formatsd;
aggregate — Aggregste vslues per zonal grid;

Preview and download maps

Climatic and meteorological images MODIS products Land cover / land use

Soil polygon maps, eco-regions DEM-derived parameters
\> e &
£

News and updates
» July 20

(TH/HIR): sdded ssmple to ISRIC server

g instance for
» June 2012: (HIR/TH): added timeseries data (e.g. MODIS LST) to allow for more applications;

» June 2012: (HIR
« January 2012

developed functionality to allow externsl dsts input 85 an input parameter for wps processes;
{HIR) ArcGIS frontend - implemented in the ArcGIS GSIF toolbox as of January 20

==

..IE.*SLL World Soil Information

wv%'



ENVIRONMENTAL VARIABLES

MORE VARIABLES (AT DIFFERENT SCALES)

PURCPTAN (OMMSSION

N DV' Jeiet Wesearch Centre

Maximum value in period
from: 01 July 2002
to: 10 July 2002

SPOT-VEGETATION

NDVI [-]
M0.00-0.15
0.15-0.25
110.25-0.35
0.35-0.45
. 1045-0.55
M 0.55-0.65
Mo065-0.75
Mo.75-1.00

Snowl/lce
M Clouds
M Missing



ENVIRONMENTAL VARIABLES

MORE VARIABLES (AT DIFFERENT SCALES)

A map of land use in Europe. Yellow: cropland and arable, light green:
grassland and pasture, dark green: forest, light brown: tundra or bogs,
unshaded areas: other (including towns and cities).
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ENVIRONMENTAL VARIABLES

Paleoclimatic models

Last inter-glacial (L1G; ~120,000 - 140,000 years BP)
Mid-Holocene (~6000 BP)
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1| PMIP 2 Project Home Page o~
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W
N Welcome to the PMIP 2 Web Site !

[PMIP 1] -[ You are on the main PMIP 2 site ]1-[PMIP 3]

Home
What's New?
Overview
Events |

Egep:ir!i;:ental Paleoclimate Modelllng

Data
sSynthesis

Database

Synthesis - Page :
Maps Intercomparlson Prolect

Proposed
e ] Phase 1l

1
m

Paleoclimate Modelling Intercomparison Project Phase I




ENVIRONMENTAL VARIABLES

Paleoclimatic models

Last glacial maximum (LGM; ~21,000 years BP)

. : : YTVCRN ADVANCED
SClence AAAS.ORG | FEEDBACK | HELP | LIBRARIANS Sence Magazing

ALERTS ACCESSRIGHTS MYACCOUNT @ SIGNIN

L \FVVXY NEWS SCIENCEJOURNALS CAREERS BLOGS & COMMUNITIES MULTIMEDIA COLLECTIONS JOIN / SUBSCRIBE

SCIC“CC The World's Leading Journal of Original Scientific Research, Global News,. and Commentary.

Science Home  Currentlssue  previous Issues  Science Express  Science Products My Science  About the Journal

Home > Science Magazine > 24 March 2006 > Otto-Bliesner ef al., 311 (5768): 1751-1753

T 1 Science 24 March 2006: i I ADVERTISEMENT
5 = < Prev | Table of Contents | Next >
SUCIR Ve 8l Vol 311 no. 5768 pp. 1751-1753

> Abatract DOI: 10.1126/science.1120808

* Full Text REPORT

TRt ER) Simulating Arctic Climate Warmth and Icefield Retreat in the Last

* Figures Only Featuring
\ g original content
Interglaciation produced by the §
* Supporting Online journal Science

Material Bette L. Otto-Bliesner', Shawn J. Marshall2, Jonathan T. Overpeck2, Gifford H. Miller?, Aixue Hu, CAPE Last and its contributors

: Interglacial Project members
Article Tools ADVERTISEMENT




ENVIRONMENTAL VARIABLES

Climate future projections

@ .: CCAFS Climate | Home :.

|

Spatial Citations Contact

Downscaling

http://www.ccafs-climate.org/spatial_disaggregation/ & Internet | Modo protegido: desac



ASSESSING SPECIES DISTRIBUTIONS

NEXT WEEK

Spatial issues and PRACTICE with GIS (October 18)

Part 2 — Modeling

Background theory (niche concept)
Modeling methods
Maximum Entropy and PRACTICE with MaxEnt

Part 3 — Mapping and Modeling

Model implementation and evaluation
Applications and future challenges
Using your own data and GROUP PRACTICE



