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Part 3:

MAPPING + MODELING
Model evaluation and implementation



MODEL EVALUATION

The question: how to estimate model accuracy?
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Data preparation

Did you think about model evaluation when sampling?

How did you organize your modeling project?

Main atributes: quantity and quality
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Calibration versus Evaluation dataset

From Guisan and 
Zimmerman 2000
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Option A – INDEPENDENT DATA

You should test your model using completely different data

- Using alternative data from different sources

- Or a new sampling design to collect NEW data

- Thus you will have training data for calibration
testing data for evaluation
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Option B – DATA PARTITION

When option A is not posible, a common procedure is to
separate a subset of your own data for validation
(although sampled in a similar way)

- You will have again training data and testing data

- Common procedure is to separate 80% of occurrences for
training and 20% for testing

- For only two predictors, a ratio of 50/50 is recommended
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Option B – DATA PARTITION

With few samples, you can apply general techniques:

K-fold crossvalidation (leave-one out)
(if k = 10) you split the data into 10 subsets, and compute 10 
models using 9 subsets for training and 1 for calibration. You can 
then average the models and the validation statistics

Bootstrap sampling
You can compute multiple models using a random selection of 
occurrences (sampling with replacement) to estimate prediction
accuracy
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For example, in MaxEnt

Random % testing data

External testing data

Number of replicates (k)

Resampling type

A

B
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The properties of model evaluation

Training data

a) Categorical
(1/0)

Model
predictions

b) Probabilistic
(0.01……1) 

Testing data

Categorical (1/0)
(i.e. presences/absences)
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For categorical models:
Threshold-dependent measures (e.g. KAPPA)
(you define a threshold between suitable/unsuitable)

For probabilistic models:
Threshold-independent measures (e.g. AUC)
(you assess the complete range of probabilities)

Measures of accuracy (= model performance)
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Threshold-dependent measures
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Threshold-dependent measures
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Threshold-dependent measures
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Evaluating models

From Franklin 2009
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Evaluating models

Most common measures of accuracy for categorical models:

KAPPA (from 0 to 1)

Pros Widely recognized measure of agreement for categorical data
Cons In some cases is sensitive to prevalence of the data
(better to be used when prevalence is c. 50%)

TRUE STILL STATISTIC (TSS) (from -1 to +1)

Pros An alternative to Kappa, less senstitive to prevalence
Cons Sometimes it can be negatively related to prevalence
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An example of 
using Kappa for

model evaluation
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Threshold-independent measures

Are based on continuous probabilistic outputs

Are independent of the prevalence

Useful for comparing the accuracy of different models
(e.g. with different frequencies and prevalences)

ASCIITo_Smal1
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The ROC plot

(ROC = Receiving Operating Characteristic) 
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1 – Specificity (false positive rate)

Values referred 
to different prob. 
thresholds 
(0, 0.1… 1)
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AUC (Area under the Curve) of the ROC plot
Prob. that a random selection classify > suitability for presence than for absence
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1 – Specificity (false positive rate)

Model performance

(AUC values)

0.9 - 1.0:  very good

0.8 - 0.9: good

0.7 - 0.8: moderate

0.6 - 0.7: low

0.5 - 0.6: very low
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The ROC space

A (good)

P=100 N=100

P=91 TP=63 FP=28

N=109 FN=37 TN=72

B (random)

P=100 N=100

P=154 TP=77 FP=77

N=46 FN=23 TN=23

C C (bad)

P=100 N=100

P=112 TP=24 FP=88

N=88 FN=76 TN=12
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What happens with presence-only methods?

Only presences means only sensitivity
It is necessary to use pseudo-absences or background data

In Maxent:
(1 – specificity) or commission error….
…is substituted by the fraction of the study area predicted 
as presence
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Probably over fitted

Independent testing data

All presences predicted as presence
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AUC is widely used for assesing model performance
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Probability thresholds

Thresholds are necessary for:

- Obtaining categorical models
(presence/absence)

- Comparing model performance
(Kappa, TSS, etc)

- Documenting model outputs
(suitable areas for a species)
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Probability thresholds

Without threshold (from 0 to 1)

Minimum threshold (from 0.17 to 1)

Threshold 0.17 for binary output (0 or 1)
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From Peterson et al. 2011
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From Franklin 2009



MODEL EVALUATION

For example, in MaxEnt


