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Part 3:
MAPPING + MODELING

Applications



APPLICATIONS

A classification of SDM applications
(adapted from Peterson et al. 2011)

The geography of biodiversity
Conservation biology

Species’ invasions

The geography of disease transmision
Linking niches with evolutionary processes
Other (creative) applications
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APPLICATIONS

1. The geography of biodiversity

Possible questions:
What is the distribution of one organism in a given area?
What are the main factors influencing its distribution?

Where can | find similar species?



APPLICATIONS

Guisan et al. 2006
Improvement of sampling design and distribution of rare species

Conservation Biology Volume 20, No. 2, 501-511
(©2006 Society for Conservation Biology
DO 10.1111/).1523-1739.2006.00354 X

Using Niche-Based Models to Improve the Sampling
of Rare Species

ANTOINE GUISAN,*t1 OLIVIER BROENNIMANN,* ROBIN ENGLER,* MATHIAS VUST *
NIGEL G. YOCCOZ,T ANTHONY LEHMANN,§ AND NIKLAUS E. ZIMMERMANN:

*University of Lausanne, Department of Ecology and Evolution (DEE), Laboratory for Conservation Biology (LBC), Biology Building,
CH-1015 Lausanne, Switzerland

tInstitute of Biology, University of Tromsa, 9037 Tromse, Norway

#Swiss Federal Research Institute WSL, Ziircherstrasse 111, CH-8903 Birmensdorf, Switzerland

§Swiss Center for Faunal Cartography, Terreaux 14, CH-2000 Neuchatel, Switzerland
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Guisan et al. 2006
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Figure 1. Analytical procedure illustrating the iterative
model-based sampling process.
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Guisan el al. Model-Based Sampling of Rare Species
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Miller & Franklin 2002
Distribution models for plant communities (alliances)

ECOLOGICAL
MODELLING

o VA
ELSEVIER Ecological Modelling 157 (2002) 227247

www_elsevier.com/locate/ecolmodel

Modeling the distribution of four vegetation alliances using
generalized linear models and classification trees with spatial
dependence*

Jennifer Miller *, Janet Franklin

Department of Geography, San Diego State University, San Diego, CA 92182-4493, USA

Received 15 June 2001; received in revised form 25 February 2002; accepted 16 April 2002
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Miller & Franklin 2002

Table 2
Vegetation alliances modeled

Mojave Desert Study Area
Mojeve Desert Ecoregion boundary
CORA prediction subsection

Fig. 1. The Mojave Desert Study Area (box shows mapped subsection for CORA predictions used in Figs. 5 and 6).

Label  Alliance name n n Dominant and indicator species Habitat
test  train

ATCA  Arwriplex canascens 7 16 A canascens, Bromus madritensis Margins of playas
Shrubland allance

CORA Coleogyne 21 110 C. ramosissima, Atriplex confertifolia, Ephedra  Widespread: shallow rocky soils
ramaosissing — Shrubland nevadensis, Ephedra viridis, Eviogomon fascicu-  on upper bajadas, pediments and
alliance latum | Salizaria mexicana hill slopes

PIMO  Pinus monophylla 12 38 P omonophylla, Artemisia tridentata, Quercus Upper elevations: cool, moist
Woodland alliance cornelivs-mulleri, Nama californica mountain areas

YUBR  Yuceca brevifolia 87 265 Y. brevifolia, Artemisia tridentata, Artemisia MNarmrow zone, base of mountains
Wooded shrubland alli- confertifolia, C. ramosissima , Opuntia acantho-
ance

carpa

The data set of 3819 observations was divided randomly into a 75% train and 25% test subsets. n test @ves the number of
observations present in the n = 960 test dataset; » train gives the number of observations present in the n = 2859 training dataset.
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Miller & Franklin 2002

Table 1

Environmental variables used in this study

Variable Variable

name

Sumprecip  Average summer precipitation

Winprecip  Average winter precipitation

Jantemp Minimum January temperature

Jultemp Maximum July temperature

Elevation Elevation; from USGS 7.5 DEM

Slope Slope

Swness Cosine(aspect —225%) (Franklin et al., 2000)

Lposd Landscape position; Average difference between cell and neighbors;
positive in valleys, neutral in mid-slope position, and negative on ridges
(Fels, 1994)

Solrad Solar radiation (Dubayah, 1994)

T™I Topographic moisture index; number of cells draining into a cell divided
by the tangent of slope (Beven and Kirkby, 1979)

Landform Geomorphic landform (Dokka et al., 1999)

Landcomp  Surface composition

Climate variables are 1 km resolution; all others are 30 m resolution.

Model predictions for CORA alfiance

Probability of presence
] o
B 1-10
Bl -2
Bl 2-4
Bl %
Bl 500

Fig. 6. Predictions generated for test area with (A) CORA
classification tree (P=0.1); (B) CORA classification tree with
kriged dependence term (P =0.2); (C) CORA GLM (P=10.2);
(D) Cora GLM with kriged dependence term (P =0.2).
Optimum probability thresholds are given in parentheses.
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2. Conservation biology

Possible questions:
What are the main conservation areas for a species?
How rare is one species in one area?

What will be the effect of climate change on species distributions?
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Thorn et al, 2009
They apply Maxent to assess conservation priorities

Diversity and Distributions, (Diversity Distrib.) (2009) 15, 289-298

T aa Ecological niche modelling as a technique

ibiaauiaill for assessing threats and setting
conservation priorities for Asian slow
lorises (Primates: Nycticebus)

J. S. Thorn*, V. Nijman, D. Smith and K. A. I. Nekaris
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Thorn et al, 2009

Table 1 Criteria for qualifying habitat patches as low, medium or high risk. The ranking indicates the suitability of habitat patches for
supporting viable populations of Nycticebus.

Measure Low risk Medium risk High risk
Size of forest patch > 40 km’ >20 km’ > 10 km’
Proximity to protected areas Within 20 km* Within 20-30 km Within 30—40 km
Proximity to populated areas > 10 km >5km Adjacent
Proximity to roads > 10 km >5km Adjacent
Proximity to agriculture >5km > 2.5km Adjacent

*For N. menagensis ‘Proximity to protected area, the low risk criterion was within 20 km of protected area network or inside the Heart of Borneo.

Table 2 Results of the jackknife validation method of model testing for Nycticebus coucang, N. javanicus and N. menagensis, showing the sample
sizes included for modelling, and the data used to calculate the P-values.

Species Locality sample size  Number of successes  Mean fractional predicted area  Lowest presence threshold (LPT)  P-value
N. coucang 15 13 0.54 18.664 0.006
N. jmvanicus 10 9 0.49 12.523 0003

N. menagensis 23 21 0.72 4.886 0.027
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(n) N cowcang (2] N, menagensis
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Figure 2 Percentage of suitable habitat classified as low risk,
medium risk or high risk for Nycticebus menagensis, N. javanicus and
N. coucang according to the risk assessment criteria.

{c) N javanicus

Remnant species distribution

- Eecommendation for protecied
arca extension

- Protected area recommended as priority
survey site

% Frotected area netwaork

Figure 3 Recommendations for protected area extensions and priority survey areas based on species remnant distributions and results of the
risk assessment for (a) Nycricebus cowcang on Sumatra, (b) M. menapensis on Bomeo, and {c) M. jmvamios on Java, Protected area extensions are
shown in dark grey and priority survey areas are shown in black.
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Jiménez-Alfaro et al. 2012
Estimation of the AOO to estimate local distribution ranges

i i i i i T BIDLOGICAL
Contents lists available at SciVerse ScienceDirect et Riah

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Modeling the potential area of occupancy at fine resolution may reduce
uncertainty in species range estimates

Borja Jiménez-Alfaro**, David Draper®, David Nogués-Bravo ©

* Jardin Botdnico Atldntico, University of Oviedo, Av. del Jardin Botdnico 2230, 33394 Gijon, Spain
® Dep. Biologia Vegetal, ETSI, Universidad Politécnica de Madrid, Av. Complutense s/n. Ciudad Universitaria, 28040 Madrid, Spain
“Center for Macroecology, Evolution and Climate, University of Copenhagen, Denmark
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Jiménez-Alfaro et al. 2012

Table 1

Explanatory variables used to fit spedes distribution models for Empetrum nigrum and Data set 1

absolute ranges for the study area. All variables wens derived from a Digital Elevation ‘ R 7Y ;

Model (DEM) at 15 m = 15 m resoluton, and included as continuous environmental - 5

{ o~
' <
variables in MaxEnt software (Phillips et al., 2006]. L ' N
Variable Min-Max  Description b ,“k" "k;;"'.. < a
P G v,

Altitude 1570-2150 Elevation (m) derived from DEM ﬁf"“{
/ '/ o =
3 v of

Slope 0-75 Slope degrees generated from DEM

Radiation 1496-7466 Annual global solar radiation {WM?) o
derived from alttude, exposure and solar ) "_.
Erajectory v,,”'-' g b

Curvature —73 086 Indirect variable related to flow 1y
accumulation, reflecting concavity (<0)or
convexity (=0}

Aspect (Morthness) —1to 1 Cos (aspect) sen (slope ) o

Aspect (Easterness) —1to 1 Sen (aspect) sen (slope) _—

Fig. 1. Potential area of occupancy estimated for Empetrum nigrum along its known
distribution area in Spain, using two data sets obtained from expert (Dataset 1) and
systematic (Data set 2) surveys, Dark wlors show model-based estimates using
maximum entropy algorithm and the minimal predided area as probability
threshold. Grid (gray) cells represent the ADO that would be measured using the
occurrence of the speaesin 1km x 1 km grids.
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Jiménez-Alfaro et al. 2012

Data set 1
@® Dataset 2

01 02 03 04 05 06 07 08 08 15 - | Dataset1 (Expert survey)
Habitat Suitability Threshold { ™ Data set 2 (Systematic survey)
Fig. 2. Sensitivity of species distribution models to different thresholds of habitat ? =
suitability, according to the total Area of Occupancy (ADO) measured when using = T
presence data obtained from expert (Data set 1) and systematic (Data set 2) surveys. (] 8 4
E 1 a4z
4 -
0
05km)  [1km) 2 km)

Model-based Coarse-scale grids

Fig. 3. Total estimates of Area of Occupancy (ADO] for Empetrum mgrum in Spain,
according to different survey protoools (Data set 1 and 2) and alternatve
miecasurements of model -based methods (based on fine-resolution models and the
minimal predicted area) and coarse-scale grids (based on reported lolites) at
different accuracy.
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3. Species’ invasions

Possible questions:
What is the niche of invasive species?
What is the risk of species’ invasion in one region?

How invasive species adapt to climatic changes?
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Broennimann et al. 2007
Comparing the niche of an invasive plant in two continents

Ecology Letters, (2007) 10: 701-709 doi: 10.1111/j.1461-0248.2007.01060 .x

LETTER

Evidence of climatic niche shift during biological
invasion

Abstract
0. Broennimann,' U. A. Treier,”?®  Niche-based models calibrated in the native range by relating species observations to
H. Miiller-Scharer,” W. Thuiller,®  climatic variables are commonly used to predict the potential spatial extent of species’
f‘- T. Peterson® and A. Guisan' invasion. This climate matching approach relies on the assumption that invasive species
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Broennimann et al. 2007
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Table 1 List of predictors available in each climatic data set

Data set Vatiable Description
WORLDCLIM BIO1 Annual mean temperature
BIO2 Mean diurnal range
BIO3 Isothermality
BIO4 Temperature seasonality
BIO5 Max temperature of warmest month
BIOG6 Min temperature of coldest month
BIO7 Temperature annual range
BIOS8 Mean temperature of wettest quarter
BIOY Mean temperature of driest quarter
BIO10  Mean temperature of warmest quarter
BIO11  Mean temperatute of coldest quarter
BIO12  Annual precipitation
BIO13  Precipitation of wettest month
BIO14  Precipitation of driest month
BIO15  Precipitation seasonality
BIO16  Precipitation of wettest quarter
BIO17  Precipitation of driest quarter
BIO18  Precipitation of warmest quarter
BIO19  Precipitation of coldest quarter
CRU 10 act/pet  Ratio of actual to potential
evapotranspiration
pet Potential evapotranspiration
prec Annual amount of precipitations
std_prec Annual variation of precipitations
tmin Minimum temperature of the
coldest month
tmp Annual mean temperature
tmax Maximum temperature of the
warmest month
gdd Growing degree-days above 5 °C
CRU 0.5° tmin Minimum temperature of the
coldest month
tmp Annual mean temperature
tmax Maximum temperature of the
warmest month
rad Annual amount of radiations

prec

Annual amount of precipitations
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Broennimann et al. 2007

Calibration in Europe (EU)
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Figure 2 Prediction maps and model evaluation. The upper and lower boxes illustrae, respectively, the results obtained from models
calibrated in Europe (EU; a, b) and Western North America (WNA; ¢, d), and projected into the other range. The maps (a c) show the
predicted climatic suitability (meen number of models, among eight modelling techniques, predicting the species present). The series of grephs
(b, d) plot mode performance [area under the curve (AUC)] for 100 repetitions of each technique, based on random re-sampling of the data.
The AUC (see Supplementary Material) of areceiver-operaing characteristic (ROC) curve calculated on independent datais currently the most
objective measure of model performance for presence-absence daa, with 1 indicaing perfect prediction, 0.5 not different than randomand Oa
perfect counter prediction. The horizontal axis indicaes the mode performance of the predictions in the native area (EU). The vertica axis
indicates the model performance of the predictions in the invaded area (WNA). The horizontd and vertical dashed lines indicate predictions
that do not differ from random (AUC %4 0.5) when projected in the other area (WNA in b; EU in d). Error barsindicate the sendard deviation
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Benedict et al. 2007
Ecological risk map for the most invasive mosquito in the world

Published in final edited form as:
Vector Borne Zoonotic Dis. 2007 ; 7(1): 76-85.

Spread of the Tiger: Global Risk of Invasion by the Mosquito
Aedes albopictus

MARK Q. BENEDICTL, REBECCA S. LEVINEL, WILLIAM A. HAWLEYZ1, and L. PHILIP
LOUNIBOS?Z

1 Centersfor Disease Control and Prevention, Atlanta, Georgia

2 University of Florida, Florida Medical Entomology Laboratory, Vero Beach, Florida
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Benedict et al. 2007

FIG. 1.
Predicted Australasian range map of Ae. albopictus. Darker shades indicate pixels for which

higher numbers of models predicted potential suitable niches with the darkest shades signifying
10 models. The legend bar shows the 10 colors used. White squares represent the known
occurrence points used to create the models. Yellow squares are known introduction sites
outside of the native range.
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Benedict et al. 2007

Table 2
Annual Values for Climatic Environmental Variables at 408 Random Geo-Referenced Points where Ae.
albopictus Occurs Worldwide

Environmental characteristic Range Mean Median
Mean annual temperature (°C) 5.0-28.5 21.5 234
Mean maximum annual temperature (°C) 8.2-33.4 26.3 28.55
Mean annual minimum temperature (°C) -1.8-24.4 16.7 18.3
Mean annual precipitation (cm) 29.2-445.3 169.0 157.0
Mean annual wet days (#) 30.0-280.8 167.6 169.2
Ground-frost days/month (#) 0-138 14.9 0

FIG. 3.

Predicted distribution maps and actual spread of Ae. albopictus in the lower 48 states. The
predicted distribution areas (red) and the documented spread (yellow) of Ae. albopictusthrough
the year 2001 are shown. One of the two prediction maps for the US is shown. Differences
between the two consisted largely of one of the ten models used to create the prediction map
that predicted a broader Texas distribution. Counties colored green are those in which
introduction has occurred but not establishment.
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4. The geography of desease transmision

Possible questions:
What is the distribution area of a desease?
What are the main factors related to vectors and hosts?

What areas can be potentially affected by a desease?
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Peterson 2009
Potential distribution of malaria vectors under climate warming

BIVIC Infectious Diseases Bi.,.v.ifcm.

Research article

Shifting suitability for malaria vectors across Africa with warming

climates
A Townsend Peterson

Address: Biodiversity Research Center, The University of Kansas, Lawrence, Kansas 66045, USA

Email: A Townsend Peterson - town@ku.edu
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Peterson 2009
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Hay et al. 2013

Mapping infectious desease occurrence requires new models

PHILOSOPHICAL
TRANSACTIONS

OF
THE ROYAL
SOCIETY

rsth.royalsocietypublishing.org

o & ®

CrossMark

Global mapping of infectious disease

Simon |. Hay'?, Katherine E. Battle', David M. Pigott!, David L. Smith?3,
Catherine L. Moyes', Samir Bhatt', John S. Brownstein*, Nigel Collier®,
Monica F. Myers', Dylan B. George? and Peter W. Gething'

LSpatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, UK
2Fogarty International Center, National Institutes of Health, Bethesda, MD, USA

3Department of Epidemiology and Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health,
Baltimore, MD, USA

“Department of Pediatrics, Harvard Medical School and Children’s Hospital Informatics Program,

Boston Children’s Hospital, Boston, MA, USA

SNational Institute of Informatics, Research Organization of Information and Systems, Tokyo, Japan
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Hay et al. 2013 Conceptual scheme (with boosted regression trees)

Figure 1. A schematic overview of a niche/occurrence mapping process (for example boosted regression trees (BRT)) that uses pseudo-absence data guided by
expert opinion. Consensus based definitive extent layers of infectious disease occurrence at the national level (a) are combined with accurately geo-positioned
occurrence (presence) locations (b) to generate pseudo-absence data (c). The presence (b) and pseudo-absence data (c) are then used in the BRT analyses, alongside
a suite of environmental covariates (d) to predict the probability of occurrence of the target disease (e).
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5. Linking niches with evolutionary processes

Possible questions:
How species niches relate to phylogeography?
How the ecological niche of species change along the time?

Are species subjected to niche conservatism?
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Jakob et al. 2007
Differentiation processes: genetic vs. ecological variation

Molecular Ecology (2007) doi: 10.1111/j.1365-294X.2007.03228.x

Combined ecological niche modelling and molecular
phylogeography revealed the evolutionary history of
Hordeum marinum (Poaceae) — niche differentiation,

loss of genetic diversity, and speciation in Mediterranean
Quaternary refugia

SABINE S. JAKOB, ALEXANDER IHLOW and FRANK R. BLATTNER
Leibniz Institute of Plant Genetics and Crop Sciences (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
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Jakob et al. 2007
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Fig.1 (a) Geographical distribution of Hordeum marinum s.I. chloroplast haplotypes. Circles indicate H. marinum, triangles Hordeum
gussoneanum 2X, and squares H. gussoneanum 4x. The colours of the symbols refer to Fig. 1 (b). Regional subdivision into four geographical
areas (a—d) is indicated (see Table 4). The dashed lines indicate the approximate position of the —1°C January isotherm, in blue during
the last glacial maximum (LGM) about 20 000 vears ago, in red at present (based on data of the STAGE THREE proiect, http://
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Jakob et al. 2007
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Martinez-Meyer & Peterson 2006
Testing niche conservatism in eight species with pollen records

Journal of Biogeography (J. Biogeogr.) (2006) 33, 1779-1789

m Conservatism of ecological niche
characteristics in North American plant
species over the Pleistocene-to-Recent

transition

E. Martinez-Meyer'* and A. T. Peterson’
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Martinez-Meyer & Peterson 2006

Table 1 Summary of reciprocal tests of predictivity of geographic distributions based on ecological niche characteristics for pollen records
of eight plant species, predicting from Last Glacial Maximum (‘Pleistocene’) to present, and vice versa. Ten best-subsets models were
developed for each reciprocal prediction for each species; ‘all’ refers to 10 of 10 models predicting presence, ‘most’ refers to >5 of 10 models
predicting presence, and ‘any’ refers to at least 1 of 10 models predicting presence

Proportional area Number of test points
predicted present successfully predicted Binomial probability
Species All Most Any n All Most Any All Most Any
Pleistocene predicts present
Acer rubrum 0.178 0.272 0.438 103 58 75 88 233 %1071 0 —8.4x 107"
Acer saccharum type 0.170 0.394 0.772 131 82 116 130 2.89 x 1071 0 -2x107"
Alnus incana 0.247 0.457 0.720 101 49 63 2 6.79 x 1078 0.000261 5.28 x 1077
Alnus viridis 0.258 0.376 0.600 109 55 70 87 1.04 x 1078 5.11 x 107° 3.06 x 107°
Brasenia schreberi 0.102 0.285 0.568 30 13 25 29 3.88 x 1077 5.09 x 107! 427 x 1078
Fraxinus nigra type 0.391 0.629 0.886 112 80 104 111 1.14 x 107"? 32x 107" 1.25 x 107¢
Juglans cinerea 0.310 0.570 0.835 77 36 60 74 0.001284 3.54 x 107° 0.000124
Sarcobatus vermiculatus 0.093 0.299 0.702 94 34 66 88 219 x 107" 278 x 10718 3.01 x 107°
Present predicts Pleistocene
Acer rubrum 0.115 0.163 0.236 6 5 5 5 2.32x107° 1.89 x 107> 0.000171
Acer saccharum type 0.079 0.142 0.235 6 2 4 4 0.008149 0.000305 0.00345
Alnus incana 0.029 0.149 0.277 7 0 2 5 0.184569 0.072542 0.002392
Alnus viridis 0.015 0.130 0.310 7 0 2 3 0.100394 0.050975 0.138968
Brasenia schreberi 0.070 0.140 0.230 6 2 4 6 0.005867 0.000289 <1071
Fraxinus nigra type 0.072 0.153 0.272 7 2 4 6 0.01038 0.001329 0.000109
Juglans cinerea 0.071 0.131 0.243 6 3 3 4 0.000337 0.003593 0.004081
Sarcobatus vermiculatus 0.145 0.219 0.282 5 3 4 4 0.001968 0.000501 0.001771
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Martinez-Meyer & Peterson 2006

Alnus incana

A. viridis

Brasenia schreberi

Fraxinus nigra type

Figure 1 Summary of model predictions based on Last Glacial Maximum (LGM) occurrence data and climate information, predicting
present-day occurrences. White = predicted absent by all models, light grey = predicted present by any model, dark grey = predicted
present by most models (6-10), and black = predicted present by all 10 models. Known occurrence points of pollen within each period
(LGM and present) are overlain; note that the LGM points are those that were used to develop models, and the present points represent the
independent testing data set.
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6. Creative applications

Two examples:
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How Quaternary megafauna responded to climate and humans?

ARTICLE

do0i:10.1038/naturel0574

Species-specific responses of Late
Quaternary megafauna to climate and
humans

Eline D. Lorenzen'*, David Nogués-Bravo*, Ludovic Orlando'*, Jaco Weinstock'*, Jonas Binladen'*, Katharine A. Marske®*,
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James Haile', Dennis L. Jenkins®, Pavel Kosintsev>*, Tatyana Kuznetsova®, Xulong Lai*®, Larry D. Martin®’,
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Figure 1 | Modelled potential ranges of megafauna species at 42, 30, 21 and
6 kyr Bp. Ranges were modelled using the megafauna fossil record and
palaeoclimatic data for temperature and precipitation; ice sheet extent was not
included as a co-variable. Range measurements were restricted to the regions
for which fossils were used to build the models, rather than all potentially
suitable Holarctic area. NA, not available.
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Can we predict the distribution of bigfoot in North America?

Journal of Biogeography (J. Biogeogr.) (2009)

GUEST
EDITORIAL

Predicting the distribution of Sasquatch
in western North America: anything goes
with ecological niche modelling

J. D. Lozier'™, P. Aniello® and M. J. Hickerson’
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“"Occurrence” data

Figure 1 Map of Bigfoot encounters from Washington, Oregon
and California used in the analyses. Points represent visual/audi-
tory detection, and foot symbols represent coordinates where
footprint data were available. Shading indicates topography, with
lighter values representing lower elevations.
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Figure 2 Predicted didributions of Bigfoot
congructed from all available encounter
data usng maxent (a) for the present
climate and (b) under a possible climate-
change scenario involving a doubling of
atmospheric CO5 levels. Results are presented
for logidtic probabilities of occurrence rang-
ing continuoudy from low (white) to high
(bleck). Differences between (a) and (b) are
shown in (c), with whiter values reflecting a
decline in logigtic probability of occurrence
under climate change, darker valuesreflecting
again, and grey reflecting no change. A
predicted digribution of Ursusamericanusin
western North America under a present-day
climate is also shown (d). White points
indicate sampling localities in California,
Oregon and Washington teken from GBIF
(n = 113 for training, 28 for testing, compare
with Fig. 1) used for the maxent model with
shading asin (a) and (b); black points indi-
cate additional known records not included
in the model.




