

NONPROLIFERATION AND NUCLEAR FORENSICS: DETAILED, MULTIANALYTICAL INVESTIGATION OF TRINITITE POST-DETONATION MATERIALS

Antonio Simonetti Dept. Civil & Environmental Engineering & Earth Sciences University of Notre Dame

University of Notre Dame-TEAM

Dr. Jeremy Bellucci

Dr. Christine Wallace

Elizabeth Koeman

Dr. Peter C. Burns

Nuclear Forensics

As "the technical means by which nuclear materials, whether intercepted intact or retrieved from <u>post-explosion debris</u>, are characterized (as to composition, physical condition, age, provenance, history) and interpreted (as to provenance, industrial history, and implications for nuclear device design)." Joint Working Group of the American Physical Society and the American Association for the Advancement of Science (2010)

Questions addressed by nuclear forensic analysis & associated time frames

٥	What the event a nuclear explosion? What was the yield?	Hours
٨	Was U or Pu used? or both? Level of sophistication of device?	Hours- Days
٩	Isotopic composition of fuel components? Provenance and history? Do isotope compositions of debris match any from known weapon tests?	Days
٢	What was the most probable design of the device? Do these match any existing designs? Any other materials present that might suggest a particular source?	Several weeks

Forensic Analysis Post-Detonation Materials (PDMs) Historic Test Sites

- Ideal for establishing and developing nuclear forensics protocols since the chemical and isotopic composition of weapons employed are well documented; PDMs provide a means to validate forensic results
- Once these new forensic techniques have been established, these can be applied to more recent and sophisticated nuclear detonations
- Source attribution is the ultimate goal of nuclear forensics!!

Trinity Test – Detonation of First Nuclear Device

Why is the study of post-detonation materials from the Trinity test a good starting point?

Design of trinity device was relatively "simple" and detonated in a remote location with "simple" geologic background (i.e., desert sand)

TRINITY TEST

- World's first detonation of a nuclear device
- Nicknamed "Gadget"
- July 16, 1945 at White Sands Missile Range, NM
- Detonated from a ~30 m high tower
 - ²³⁹Pu-implosion device
 - Equiv. to 21 kilotons of TNT

http://www.trinityremembered.com/ photos/index.html

WHAT IS TRINITITE?

- The explosion resulted in the partial melting of the surrounding desert sand and incorporated components of the device and test site materials, which subsequently fused into blast-melt glass referred to as **Trinitite**.
- Predominantly composed of silicarich glass
- Contains remnant mineral grains from desert (arkosic sand):
 <u>Quartz</u>, <u>Feldspars</u>, <u>Micas</u>, <u>Calcite</u>, <u>Gypsum</u>, minor amounts of <u>ferromagnesian minerals</u>, <u>zircons</u>
- Can contain remnants of the device, tower, diagnostic equipment: mostly copper and iron

http://www.trinityremembered.com/ photos/index.html

SITE SELECTION:

Flat area – minimize extraneous effect of the blast;

Good weather – necessary for good optical information;

Minimum 20 km distance - from nearest settlement;

Proximity to Los Alamos – minimize transportation of personnel and materials;

Trinitite Samples

A= Red inclusions; **B**= Black inclusions; **C**= "Coke Bottle"; **D**= "Regular", green trinitite

A = glass-like fused surface; B = large gas pockets on surface/perimeter
 C = rough texture of desert surface; D = red inclusions; E = black
 inclusions; F = light colored glass; G = blue inclusions; H = white
 inclusions; I = "Coke-bottle" inclusions; J = light/dark colored layered
 glass; K = protuberances/casts; L = metallic-like coating; M = elongated
 extrusions; N = lace-like structures; O = iron inclusions

Glass-like fused top surface

Bottom side shows rough texture of precursor desert sand

Vesicles

"Multi-scale Separation & Analysis of Heterogeneous Trinitite Phases"

GOALS and OBJECTIVES

- Conduct detailed chemical and isotopic characterization of trinitite samples at high spatial resolution, i.e. micron scale – development of 'forensic tools'
- The latter will be accomplished using a combination of micro-analytical techniques such as Electron Microprobe Analysis (EMPA), Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB), Transmission Electron Microscopy (TEM), and Laser-Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
- Development of scientific expertise in the area of nuclear forensics for graduate students and postdoctoral researcher involved.

Analytical Methods

BULK SAMPLE:

- Opitcal microscopy
- Gamma spectroscopy
- Alpha track radiography
- Beta autoradiography
- Micro- XRF
- Laser fluorination (stable oxygen isotope)

Micron-scale:

- SEM-EDS
- EMP
- FIB/ TEM
- LA-(MC)-ICP-MS

Origin of Radionuclides-Gamma Spectroscopy

Isotope	Half-life/ yr	Origin
¹³⁷ Cs	30,0	fission product (beta decay of ¹³⁷ Xe and ¹³⁷ I and also independently)
⁶⁰ Co	5,271	activation of ⁵⁹ Co – from test tower steel and from soil
¹³³ Ba	10,54	activation of ¹³² Ba – Ba part of explosive lense system (Ba (NO ₃) ₂ - Baratol)
^{152,154} Eu	13,33 / 8,8	activation of stable isotopes ^{151,153} Eu in soil by slow neutrons
²⁴¹ Am	432,2	mostly by beta decay daughter of ²⁴¹ Pu, produced mainly from ²³⁹ Pu during the explosion via double-neutron capture
²³⁹ Pu	24100	fuel

Bulk Analysis – Gamma Spectroscopy

Gamma Spectroscopy – Conclusions

- Based on the relative activities of ¹³⁷Cs, ¹⁵⁵Eu, ²³⁹Pu, and ²⁴¹Am, a similar behavior of these isotopes during the Trinity test is observed.
- The behavior of ¹³³Ba does not correlate with any of the bomb-derived isotopes, and therefore, its exact origin remains ambiguous.
- Based on the activity of ¹⁵²Eu, a spatial model calculation for the radioisotopes indicates their homogeneous distribution.

Detailed, In-situ Microanalysis

SEM Investigation of Inclusions – Trinitite Surfaces

Origin – desert sand

Trinitite sa	mples a	and inclusions.								
Sample	FeO	Iron-Silicate	Fe-Ti	Ti PbO W	Zircon	CuS	BaS Q	tz Glass	Plagioclase Glass	Hi-Ca-Glass
1	х	Y							Y	× ×
2		х		x x	×				х	
3		х	x	×	×		x		х	
4A		х	х			×		x	х	
4B	х	х	х			×			х	
4C		х	х		×				х	
4D									х	х
4E		х							х	
4F	х	х			\mathbf{N}			x	х	x
5A		х	х		×				х	х
5B		х			×				x	
5D		х	х					x	х	
5E	х	х	х		×				х	x
5F	х	х			<u> </u>				х	

Origin – gadget device & materials, blast tower,

Blast modeling – Inclusion work Two-stage process

 $oldsymbol{\circ}$

•

ullet

 $oldsymbol{\circ}$

 $oldsymbol{\circ}$

0

Bellucci & Simonetti (2012, J. Radioanalytical Nuclear Chemistry)

 $oldsymbol{\circ}$

 $oldsymbol{\circ}$

 $oldsymbol{\circ}$

Conclusions – **Trinitite-hosted inclusions**

<u>RELIEF:</u>
– "Flat" or "Bell-shaped" inclusions formed simultaneously with main phase of blast melt - "Topographic" inclusions precipitated ("rained down") later

ORIGIN of ELEMENTS:

- Fe-Ti blast tower
- Pb, Ta, W tamper of device
- Ga alloyed with Pu during enrichment process
- Ba device + natural

Distribution of Radioactive Elements-Micron scale

Wallace et al. (2013, JRNC)

Wallace et al. (2013, JRNC)

Trace Element Analysis

Laser Ablation ICP-MS

- Parameters:
 - Standard: NIST 612
 - Spot Size: 55μm
 - Frequency: 5 Hz
 - Fluence: ~12 J/cm²
- New Wave Research UP-213 Nd:YAG laser & Element2 HR-ICP-MS

Midwest Isotope and Trace Element Research Analytical Center (MITERAC)

LA-ICP-MS Analyses - Radionuclides

Table 2 Isobaric mass interferences monitored and corrections applied

Mass	136	137	138	147	149	151	152	153	154	160	163
	Ba	Ba	Ba								
				Sm	Sm ^b	Eu	Sm	Eu	Sm		
							Gd		Gd	Gd	
							136Ba ¹⁶ O ^a		¹³⁸ Ba ¹⁶ O ^a	Dy	Dy

^a Plasma oxide level (typically <1 %) was determined by comparison between total (measured) ion signal (cps) intensities for masses 152 and 154 and those calculated for 152Gd and 154Gd using natural atomic abundances of 160Gd and 163Dy based on laser ablation analyses of the NIST SRM 612 glass standard

^b Calculated ion signal intensities (cps) for 152Sm and 154Sm were based on natural abundance isotope ratios for Sm using the measured, interference-free ion signal for 149Sm. Excesses in absolute ion signal intensities (cps) calculated on masses 152 and 154 for laser ablation analyses of trinitie are attributed to the presence of activation products 152Eu and 154Eu, respectively

$$\delta^{a}X = ({}^{a}R_{\text{sample}} - {}^{a}R_{\text{standard}}/{}^{a}R_{\text{standard}}) \times 1000.$$

Distribution of Radioactive Elements – Conclusions

- Demonstrate for the first time that device-related radionuclides (e.g., U, Pu) are found primarily within the melt (glassy) component of trinitite.
- In areas characterized by higher Pu ion signals (i.e., abundances), these also contain elevated contents of U and fission products (e.g., ¹³⁷Cs), which confirm their association with the device.
- In contrast, crystalline (relatively intact, precursor) mineral phases, such as quartz, K-feldspar, are essentially devoid of radionuclides and other devicerelated components.

Distribution of Major & Trace Elements

- Can the distribution of <u>major</u> and <u>trace</u> <u>element</u> abundances for Trinitite obtained in-situ by Electron Microprobe & LA-ICP-MS be used to decipher <u>natural</u> vs. <u>anthropogenic</u> (devicerelated) components?
- I3 Trinitite samples were investigated total of 117 LA-ICP-MS analyses

Trace Elements Patterns

Normalize to upper continental crust

Looking for anomalous compositions

Order by condensation temperature

Samples with no clear mineral enrichments

Nb and Ta: Enriched Anthropogenic

Nb and Ta: Enriched Anthropogenic

Natural Enrichments

U enrichment without geologic indicators

Metals define linear correlations

Lead Concentrations (ppm)

FOV 2.5mm

Origins of Trace Elements

- Most trace elements can be attributed to precursor minerals within desert sand:
 - Calcite/Gypsum: Sr
 - Barite: Ba
 - K-feldspar: Cs, Rb, Ga
 - llmenite: Nb, Ta
 - Apatite, Monazite, Zircon: U, Th, Y, Hf, REEs
 - Except for metals: Nb, Ta, Cu, Co, Cr, Pb
 - Some U is not from natural background

U & Pb isotope compositions of Trinitite

Bellucci et al. (2013b, Analytical Chemistry)

Uranium isotopes

Pu-Isotope Systematics

²⁴⁰Pu-->²³⁶U
Half life: 6,560 y
²³⁹Pu-->²³⁵U
Half life: 24,100 y
²³⁸Pu-->²³⁴U
Half life: 87.7 y

Bellucci et al. (2013b, Analytical Chemistry)

Isotope Analysis

Laser Ablation Multi Collector ICP-MS

- Nu Plasma II Parameters
- ESI New Wave 193 Excimer

Uranium isotopes

Uranium isotopes

Uranium Isotopes

Influence of Pu

- Assuming an initial U isotopic composition
- Known half-lives
- One can mathematically predict the U isotopic composition resulting from the in-growth of Pu over ~68 years

²³⁵U/²³⁸U (present) = ²³⁵U/²³⁸U (initial) + ²³⁹Pu/²³⁸U * ($e^{\lambda 239Put} - 1$)

⁶ ${}^{236}U/{}^{238}U \text{ (present)} = {}^{236}U/{}^{238}U \text{ (initial)} + {}^{239}Pu/{}^{238}U * {}^{240}Pu/{}^{239}Pu * (e^{\lambda 240Put} - 1)$

⁶ ${}^{234}U/{}^{238}U (present) = {}^{234}U/{}^{238}U (initial) + {}^{239}Pu/{}^{238}U * {}^{238}Pu/{}^{239}Pu * (e^{\lambda 238Put} - 1)$

Pu model of "super grade Pu"

Spots with high Pu concentrations

Pu-model

Spots with high Pu concentrations

Conclusions

- Forensic investigation of PDMs is complex and requires a multi-analytical approach for accurate assessment of device's chemical & isotopic composition
- Traditional protocols involving "bulk" samples are time-consuming and will tend to "average out" the chemical and isotopic signals from device and matrix components
- Micro-analytical approach can provide both rapid and accurate forensic information – key attributes for source attribution purposes

On-going Research - Trinitite

- Pu isotope analysis LA-MC-ICP-MS (Dr. S. Mana)
- Oxygen isotope analysis laser fluorination (E. Koeman et al., in press, Analytical Chemistry)
- Pb isotope analysis of "Red areas" LA-MC-ICP-MS (E. Koeman & J. Bellucci)
- Li isotope analysis MC-ICP-MS (T. Magna, Czech Geol. Survey)

Lead Isotopes in Trinitite

Pb Isotopes

Koeman et al. (in prep.)

Estimated Device Composition

- Buchans Mine, NFLD (Canada)
 - Only mine active
 - Mined by American Smelting and Refining Co. from 1928-1984

Koeman et al. (in prep.)