Cellular Communication **Genomics Lectures** Kamil Růžička FGP CEITEC MU # ZIP codes often motor protein bound | Table 1 Cross-species comparison of proteins involved in cytoplasmic mRNA localization | | | | | |--|--|---|--|--| | Function/feature | Yeast | Drosophila
melanogaster | Vertebrates | | | Zip-code-binding hnRNP
protein (located in nucleus
and cytoplasm) | Not yet identified | Squid (<i>grk</i>) ²⁰ | hnRNP A2 (<i>MBP</i>) ²¹
VgRBP60* (<i>Vg1</i>) ⁶²
Vera/VgRBP* (<i>Vg1</i>) ^{59,60}
ZBP-1* (<i>β-actin</i>) ²² | | | Cytoplasmic zip-code-
binding RNP | She2 (ASH1, ISTZ?) ^{6,63,64} | Staufen (osk, pros) ⁶⁵
Swallow* (bcd) ⁸²
Ypsilon-Schachtel* (osk) ⁸³ | mStaufen* (?) ^{68,79,80}
VILIP* (<i>trk</i>) ⁶⁹
TB-RBP (<i>CaMKII?</i>) ^{98,99} | | | Motor protein for RNP | Myo4 (ASH1, IST2?) ^{4,6} | Kinesin I (<i>osk</i>) ⁸⁸
Dynein* (<i>bcd</i>) ⁸² | Kinesin* (MBP, CaMKII) ^{75,99} | | | RNP motor adaptor | She3 (ASH1, ISTZ?) ^{6,63} | Dynein light chain (bcd)82 | Not yet identified | | | mRNA/RNP anchor | Bni1*, Bud6* (<i>ASH</i> 1) ³² | Staufen (<i>bcd</i>) ³⁰
Oskar (<i>osk</i>) ³⁷ | XIsirt mRNAs* (Vg1)38 | | Mikko Frilander #### Localization of mRNA #### RNA hybridization in situ - classical technique, no alternative in developmental biology - results often clear - can be done without generating transgenic lines - tedious - only on "dead" samples # Protein sorting – target peptides | Location | Type of targeting signal | Properties | |-----------------------|---|--| | Nucleus | Nuclear localization signal (NLS) | Short clusters of basic amino acids | | Endoplasmic reticulum | Signal peptide | Cleavable N-terminal
presequence | | | ER retention signal | C-termini, H/KDEL motif | | Plastid | Transit peptide | Usually cleavable N-terminal
presequence | | Mitochondrion | Presequence/Transit peptide | Usually cleavable N-terminal
presequence | | Peroxisome | Peroxisome targeting sequence 1
(PTS1) | C-termini, a conserved short
motif | | | Peroxisome targeting sequence 1
(PTS2) | Cleavable N-terminal | | Tonoplast/vacuole | Signal peptide | Cleavable N-terminal presequence | | | Vacuolar sorting signals | Internal short sequence at near
N-terminal | | | | C-termini, targeting to protein
storage vacuole | | Apoplast | Signal peptide | Cleavable N-terminal presequence | ## Advanced confocal techniques - FRAP - photoactivatable FP - FCS ## FRAP - advantages not only proteins (also other dyes) ## FRAP – disadvantages - your cells are moving - high energy needed to bleach the ROI - can damage your material - long time needed to bleach - usually only one ROI can be observed time consuming ## FRAP derivatives FLAP <u>Fluorescence</u> <u>Localization</u> after <u>Photobleaching</u> two fluorochromes on one protein- one bleached, non bleached as control # Intermezzo: story from a conference even top scientists can be wrong ## Photoactivable proteins ### Advantages: - most elegant, most convincing ### Disadvantages: - very weak signal - each material needs optimization ## Remarks - your material is 3D - protein de novo synthesis in some experiments (e.g. cycloheximide stops translation) ### **FLIM** $\underline{F}luorescence\ \underline{L}ife\ \underline{T}ime\ Imaging\ \underline{M}icroscopy$ #### Fluorochromes - excitation spectra - emission spectraunique lifetime Lifetime sensitive to almost everything: - pH ionic strength polarity other fluorochrome ## FLIM - applications Protein-protein interactions (FRET-FLIM) (other lecture)