Cellular Communication

Genomics Lectures

Kamil Růžička FGP CEITEC MU

ZIP codes often motor protein bound

Table 1 Cross-species comparison of proteins involved in cytoplasmic mRNA localization				
Function/feature	Yeast	Drosophila melanogaster	Vertebrates	
Zip-code-binding hnRNP protein (located in nucleus and cytoplasm)	Not yet identified	Squid (<i>grk</i>) ²⁰	hnRNP A2 (<i>MBP</i>) ²¹ VgRBP60* (<i>Vg1</i>) ⁶² Vera/VgRBP* (<i>Vg1</i>) ^{59,60} ZBP-1* (<i>β-actin</i>) ²²	
Cytoplasmic zip-code- binding RNP	She2 (ASH1, ISTZ?) ^{6,63,64}	Staufen (osk, pros) ⁶⁵ Swallow* (bcd) ⁸² Ypsilon-Schachtel* (osk) ⁸³	mStaufen* (?) ^{68,79,80} VILIP* (<i>trk</i>) ⁶⁹ TB-RBP (<i>CaMKII?</i>) ^{98,99}	
Motor protein for RNP	Myo4 (ASH1, IST2?) ^{4,6}	Kinesin I (<i>osk</i>) ⁸⁸ Dynein* (<i>bcd</i>) ⁸²	Kinesin* (MBP, CaMKII) ^{75,99}	
RNP motor adaptor	She3 (ASH1, ISTZ?) ^{6,63}	Dynein light chain (bcd)82	Not yet identified	
mRNA/RNP anchor	Bni1*, Bud6* (<i>ASH</i> 1) ³²	Staufen (<i>bcd</i>) ³⁰ Oskar (<i>osk</i>) ³⁷	XIsirt mRNAs* (Vg1)38	

Mikko Frilander

Localization of mRNA

RNA hybridization in situ

- classical technique, no alternative in developmental biology
- results often clear
- can be done without generating transgenic lines
- tedious
- only on "dead" samples

Protein sorting – target peptides

Location	Type of targeting signal	Properties
Nucleus	Nuclear localization signal (NLS)	Short clusters of basic amino acids
Endoplasmic reticulum	Signal peptide	Cleavable N-terminal presequence
	ER retention signal	C-termini, H/KDEL motif
Plastid	Transit peptide	Usually cleavable N-terminal presequence
Mitochondrion	Presequence/Transit peptide	Usually cleavable N-terminal presequence
Peroxisome	Peroxisome targeting sequence 1 (PTS1)	C-termini, a conserved short motif
	Peroxisome targeting sequence 1 (PTS2)	Cleavable N-terminal
Tonoplast/vacuole	Signal peptide	Cleavable N-terminal presequence
	Vacuolar sorting signals	Internal short sequence at near N-terminal
		C-termini, targeting to protein storage vacuole
Apoplast	Signal peptide	Cleavable N-terminal presequence

Advanced confocal techniques

- FRAP
- photoactivatable FP
- FCS

FRAP - advantages

not only proteins (also other dyes)

FRAP – disadvantages

- your cells are moving
- high energy needed to bleach the ROI
 - can damage your material
 - long time needed to bleach
- usually only one ROI can be observed time consuming

FRAP derivatives FLAP

<u>Fluorescence</u> <u>Localization</u> after <u>Photobleaching</u>

 two fluorochromes on one protein- one bleached, non bleached as control

Intermezzo: story from a conference

even top scientists can be wrong

Photoactivable proteins

Advantages:

- most elegant, most convincing

Disadvantages:

- very weak signal
- each material needs optimization

Remarks

- your material is 3D
- protein de novo synthesis in some experiments (e.g. cycloheximide stops translation)

FLIM

 $\underline{F}luorescence\ \underline{L}ife\ \underline{T}ime\ Imaging\ \underline{M}icroscopy$

Fluorochromes

- excitation spectra
- emission spectraunique lifetime

Lifetime sensitive to almost everything:

- pH
 ionic strength
 polarity
 other fluorochrome

FLIM - applications

Protein-protein interactions (FRET-FLIM) (other lecture)

