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Prehled

= What is systems biology
= System theory

=  Omics
= Reductionism vs. holism
= Networks

=  Modular concept

= Regulation of gene expression — example task for
systems biology
= Gene regulation X->Y
= Transcriptional network of E. coli
= Negative autoregulatory networks
* Robustness of negative autoragulatory networks
= (Positive autoregulatory netwaorks)




*

What is systems biology

fashionable catchword?
a real new (philosophical) concept?
new discipline in biology?

just biology?
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Systems theory

» The behavior of a system depends on:

+ Properties of the components of the system
« The interactions between the components




Systems theory

» The behavior of a system depends on:

Properties of the components of the system
The interactions between the components

Forget about reductionism, think holistically.

o0rog [hol'-o0s] — greek. all, the whole, entire, complete




Systems biology

meeting of old and new

« Systems theory and theoretical biology are old

» Experimental and computational possibilities are new




Ludwig von Bertalanffy

(1901-1972)
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Omics-revolution shifts paradigm to large

systems

High Throughput Data Cellular Complexity

:' i P v ag V___-Vv i e 1 e
S

- Integrative bioinformatics
- (Network) modeling




Two roots of systems
biology

Biology root

HT at the genome-scale
High-throughput (1990s)
i scquencing (1980s) biology became -

Molecular biology data rich (lcnumu-.scﬂ]c
grows rapidly ", . :fna\l)'5| ’
(1960s & 70s) . bioinformatics

'-" grows (1990s)
_ — Systems biology requirements " *
Feed buc.k regulation in Genome-scale \9&
metabolism (1957) Broad fundamentals . | Systemsbiology
Lac operon (1961) Teamwork: multisite infrastructure *,
New curricula " ,
Avoid incremental thinking <

Analog simulation Genome-scale
(carly 1960s) models and

T

Large-scale
simulators of

. —
metabolic networks

Data poor in silico
biology, models of
viruses, red blood cell

analysis (late 1990s)

(1970s) (1980s & carly 1990s)

Systems root

Palsson 2007
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Associated disciplines

o Genomics

o Epigenomics

o Transcriptomics

o Translatomics / Proteomics
o Interactomics

o Metabolomics

o Fluxomics

o NeuroElectroDynamics

o Phenomics

o Biomics
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Associated disciplines

o Genomics

o Epigenomics

o Transcriptomics

o Translatomics / Proteomics
o Interactomics

o Metabolomics

o Fluxomics

o NeuroElectroDynamics

o Phenomics

o

. Jozef Mravec’s term:
Biomics

multidimensional biology
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How | understand systems
biology

o Genetics - you have one or few RNA processing
genes where you show their importance in
protoxylem development

o Functional genomics - you find in e.g protoxylem
expression profiles numerous RNA processing genes
and demonstrate which are important for
protoxylem developments

o Systems biology - based on obtained large scale
data you propose model how genes (and/or other
components) collectively regulate protoxylem
development

13




How | understand systems
biology

o Good biology — you explain why just some
genes regulate protoxylem development

(sorry for aphorisms)
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Reconstructed genome-scale
networks

B | Reference

Escherichia coli Feist AM. et al. (2007),
Mol. Syst. Biol.

Saccharomyces cerevisiae Forster J. et al. (2003),
Genome Res.

Oh YK. et al. (2007), J.

Biol. Chem.

Teusink B. et al., (20086),
J. Bio. Chem.

Duarte NC. et al., (2007),

Human
PNAS

Arabidopsis Arabidopsis Interactome
Mapping Consortium
(2011), Science
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Complexity of cellular
networks in E. coli

Interactions Components

>25,000 2,000 metabolites .-
1,000 proteins ./~

Biochemical Information

] reactions processing
,’? N | Structure
. Stress

>100,000 6-10,000 - ) Proteome 2 Other functions
I'u‘ ,’\,v\’
AN
RN
i "

>5,000 5000 %
0 4,000
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Sometimes the things are
different than we just think

18




Reconstruction of networks from -omics
for systems analysis

« Gene expression networks: based on transcriptional profiling
and clustering of genes

» Protein-protein interaction networks (Y2H, TAP etc).

« Metabolic networks: network of interacting metabolites
through biochemical reactions.
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Reconstruction of networks from -omics
for systems analysis

« Gene expression networks: based on transcriptional profiling
and clustering of genes

» Protein-protein interaction networks (Y2H, TAP etc).

« Metabolic networks: network of interacting metabolites
through biochemical reactions.
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How to simplify.

Modularity concept.

/

Lets e.g. assume that transcription and
translation is one module.
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E. coli

o -

Binding of a small molecule (a signal) to a transcription factor,
causing a change in transcription factor activity

Binding of active transcription factor 1o its DNA site

Transcription + translation of the gene

Timescale for 50% change in concentration of the transkated protein
(stable proteins)

~1 msec

~1 sec
~5 min

~1 h (one cell generation)

Generation time

20 min
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Description of gene
regulation

Transcription factor X regulates gene Y:

XY

(X = transcription = translation = Y)
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Description of gene
regulation
X-Y

Rate of production: 8 [units .time™]
Rate of degradation: « [time™"]
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Description of gene
regulation
X-Y
Rate of production: B [units .time]

Rate of degradation: «a [time™]
a= Ayt Ageg
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Description of gene
regulation
X-Y
Rate of production: B [units time]
Rate of degradation: « [time-1]

A= gyt Ageg

/

cells grow protein is degraded

® -GG -0 -@®

26




Description of gene

regulation
X-Y
Rate of production: 8 [units.time-1]
Rate of degradation: a [time]
Change of concentration:

v _ .
dt_B ¢
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1. Steady state — ustaleny stav

dY
 _n_ Y
I B—aY

dY_

— =0
dt Yst

!

B
Yt :E




2. Production of Y stops

v _ .
dt p—a
B —

Yy = Y™

The decay is exponential.
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2. Production of Y stops:

Measure of Y decay — response time (T} ;).

Y, = Yye™%
1
Yy = Eyst
log 2
i i =
1/2 .

4]

'

s

0 05 1 15 2 25
Uty

3 35 4 45 5

(log=>In [.CZ])
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2. Production of Y stops:

Measure of Y decay — response time (T} ;).

Yt = Ste_at 12
1
Y; = Eyst
log 2 0
T, ,, =
1/2 -

Large o« — rapid degradation

—

s

0 05 1 15 2 25

Uy,

3 35 4 45 5

(log=>In [.CZ])
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Stable proteins
(most of E. coli proteins)

log 2

Ty =

/ a

A= Agt Age,
a = dg

1 — cell generation

log2

— T

T —
1/2
/ Qi)
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Stable proteins
log 2

Ty =

/ a

A= Agt Age,
a = gy

1 — cell generation

log2

— T

T —
1/2
/ Qi)

Response time is one generation.
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3. Production of Y starts
from zero

E=B—C{Y




3. Production of Y starts
from zero

dy N

—=pf—a¥ —

dt

=
Z 06
=
0.4

02

3 —at % o5 | 15 2 15 3 a5 %
Yt — E(l — ) T

........

—_— )

45 5
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3. Production of Y starts

from zero

1.2

[ -

/ e

: 0 i
l(maglc) 0 05,1 15 2 25 3 35 4 a5 §

\ 0Ty,
\
\
\

Ny grows almost
linearly initially
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3. Production of Y starts

from zero
Response time:

Yo =Y (1 - e_m)

1 :
Y :EYst >?0!!-
. log 2
1/2 =,

The same response time as in case 2.
Response time does not depend on production rate!
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3. Production of Y starts

from zero
Response time:

Yo =Y (1 - e_m)

1 oo [
Yt = EYSt 308 -
#-DA ---------
. log 2 L]
_ 0 05 1 15 2 25 3 35 4 a5 5
1/2 — 0Ty
/ a

Not many degradation mechanisms in E. coli (energy
consuming).
Perhaps in plants?
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Networks

node thread
(CZ: uzel) (CZ: hrana)
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Transcriptional network of E. coli

420 nodes, 520 edges
How may self-edges? (CZ: samohrana?)
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Likelihood of the self-edge

o Assumptions from random network (400
nodes (N), 500 edges (E)). How many self-
edges?

1 1

OPSZE‘EZSOO'—

— =12 (¢1.1)
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Autoregulation is a
network motif

o
....A_‘_;,‘,:,, edunT ®ouns
)

»
"
\ ke
Lo
-
F ,'-'\_
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G
SR L
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e,
> Vo
.
o

420 nodes, 520 edges. 40 self-edges!
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Autoregulation is a
network motif

protein X

P 0
X - X
= Rl
geneX geneX
negative regulation positive regulation

E. coli:40 autoregulatory loops: 36 negative, 4 positive
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Negative autoregulatory loop is

best described by Hill’s function

v _ Qv
E—B—CK E—ﬁ(Y)_aY
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Negative autoregulatory loops
Hill’s function

45




Negative autoregulatory loops
Hill's function

/maximum

R .-~ production rate
max

ﬂmax
ﬁ(Y) = T _o.n
1+ (%)

steepness

concentration of Y needed (Hill’s function)
for 50 % repression
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Negative autoregulatory loops

Hill's function

B(Y) o~ T ' T max .
\ ! maximum
B | n | (initial)

production rate
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Negative autoregulatory loops
[} synthesis rate — stochastic noise

B(Y)

10
t{min)

(stochasticky ruch)

n

1+ ()

L
25

R may vary by 10 - 30 % (other parameters stable)
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Negative autoregulatory loops
Hill's coeficcient

BY) —— | + varies between 1 - 4,
| ~ __.--7  the higher the
j e steeper
3., n- + important factor:

\ | multimerization

ﬁmax
BY) = ———
1+ (k)




Negative autoregulatory loops
K — repression coefficient

* depends on chemical
bonds between Y and
its binding sites

* a point mutation can
increase K ~10 times

.
NNNNN Y

Bmax
. V) =
concentration of Y needed AY) 1+ Y n
for 50 % repression K
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Positive autoregulatory loops
Hill’s function

B(Y) » _"" rsmax
o e

112 pY) = n
) 1+ (3

K

51




rate of
change
(B - aY)

Back to simple regulation

removal (aY)

production (B)
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Example: if 3=0 (no production)

removal (aY)

rate of
change
B - aY)

Y.=0 Y

st
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production > removal

removal > production

production (B)

<
<

2]
—_
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removal (aY)

production ()

the longer the distance, the faster the change

55




Therefore more difficult to come to Y with time

Y
Yst
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Autoregulation vs. simple
production

removal (aY)

production (B)

st
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Comparison

Lets assume that these values are the same:
1. Y
2.«
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Comparison

Lets assume that these values are the same:
1. Y
2.«

Lets put it in one graph.
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Autoregulation vs. simple
production

B

In such case, always

max

>3

removal (aY)

production ()
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Autoregulation vs. simple
production

removal (aY)

production ()

Yst Y
the distance always more far => the reactions are faster




Response time was confirmed
Indeed faster (~5 times)

negative autoregulation

T T 1

T
1.5 2 2.5 3
Cell generations .
time

T t T
0 021 05

Alon 2007
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Cases of sharp curve

removal (aY)
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Cases of sharp curve

max

removal (aY)

st
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Cases of sharp curve

removal (aY)

B

max

Y

Fluctuations in synthesis or removal don’t change much.

st

Y
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Cases of sharp curve

removal (aY)

B

max

Y. ~K Y
Y depends only on K — on protein-DNA binding properties.




Conclusions

Negative autoregulation
o speeds up response time

o is robust (for a, ) => basically on/off

o bypasses stochastic noise

productibﬁhfrf)‘

\ l)/
v
T
ﬂma s (e
4

removal
(a¥)

67




Conclusions

The model explains why negative
autoregulation is a common network motif in
E. coli.

productioﬁhfrf)‘ i
k removal

S (a¥)

A




Conclusions

The model explains why negative
autoregulation is network motif.

We will not avoid mathematics in biology.
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Positive autoregulation leads to
slower response

d 1
= Negative
0.8 autoregulation
— Simple
_ 06 | regulation
X
S B — Positive
' autoregulation
0.2
0

0 0.5 1 1:5 2 2.5 3 35 4 45 5
Cell generations

70




Positive autoregulation leads to higher variation

f
»
o
(vl
w“
e}
o}
a]
E
=)
Z
log X
—— Negative —— Simple — Positive
autoregulation regulation autoregulation

=> increasing cell-cell variability

d

- extreme case

less extreme
case
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Positive autoregulation leads to higher variation

f ~ extreme
~ 7 case

Number of cells

log X
= Negative —— Simple — Positive
autoregulation regulation autoregulation

Strong variation:

- => differentiation of cells into 2 populations (development)

- =>memory for maintaining gene expression (development)

- helps with maintaining mixed phenotype for better response to

changing environment

72




Literature

Source literature

. http://www.youtube.com/watch?v=Z BHVFPOLk and further — excellent talks about
systems biology from Uri Alon (Weizman Institute)

- Rosenfeld N, Negative autoregulation speeds the response times of transcription networks.
J Mol Biol. 2002 Nov 8;323(5):785-93. — experimental testing of the data

. Alon U. Network maotifs: theory and experimental approaches. Nat Rev Genet. 2007

Jun;8(6):450-61. Review about the same.
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For enthusiasts
= Zimmer (2009). Microcosm- E Coli & the New Science of Life (Vintage) (popular scientific
book about E. coli as model organism and what you probably didn’t know)

- Albert-Laszl6 Barabasi (2005) V pavuciné siti. (Paseka) (znamenita kniha o matematice
siti, dynamicky se rozvijejicim oboru od pfedniho svétového védce)

. PA052 Uvod do systémoveé biologie, Piednasky. Fakulta Informatiky MU
- http://sybila.fi.muni.cz/cz/index - obor na fakulté informatiky.
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Reductionism vs. holism

Components view Systems view

Component Needed
homeostasis

Function o
S+Ee—sX—= E+P network
Time-dependent Steady state
concentration flux map
Calculate k Calculate C
Compute flux for
function
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Stochastic noise
(stochasticky ruch)

1.2 — ——

| | —— deterministic

intrinsic noise

N stochastic (>

extrinsic noise

Protein Concentration
o
(s>

(5,

0 1 2 3 T4
Cell Generation

e interni ruch — transkripce, translace, post-transkripéni jevy,
pozice DNA v chromozému
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Flux balance analysis (FBA)

Constraints set bounds on solution space,
but where in this space does the “real”
solution lie?

A

1 Identifying optimal

solutions An optimal

solution FBA: optimize for that flux distribution that
maximizes an objective function (e.g. biomass

@
A‘ flux) — subject to S.v=0 and a;=v;=B;
' Thus, it is assumed that organisms are evolved
//v‘ for maximal growth -> efficiency!
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@
A‘ flux) — subject to S.v=0 and a;=v;=B;
' Thus, it is assumed that organisms are evolved
//v‘ for maximal growth -> efficiency!




PA052 Uvod do systémové
biologie
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Metagenomics
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1.2 ——— -
—— deterministic
1 [} o slochasticW

intrinsic noise

extrinsic noise

0.4}

Protein Concentration
o
o

% i R T 5

Cell Generation

e interni ruch — transkripce, translace, post-transkripni jevy,
pozice DNA v chromozému
e externi ruch — fluktuace koncentraci regulaénich faktort
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