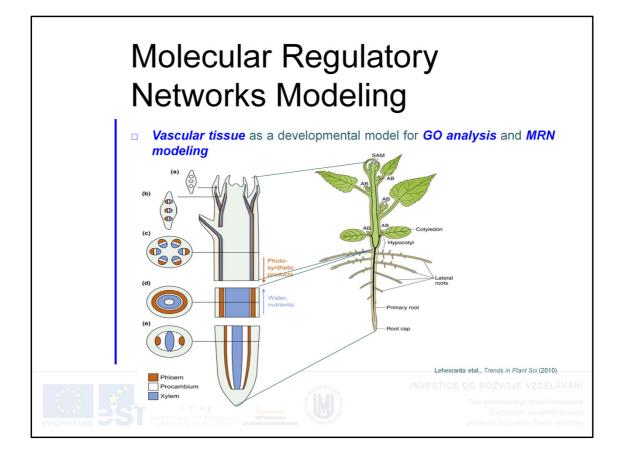
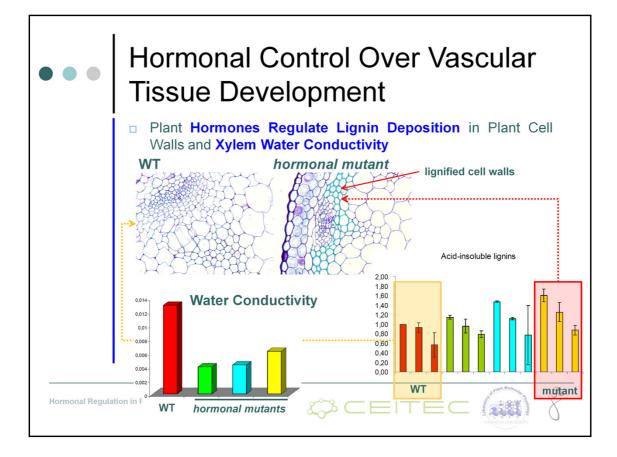
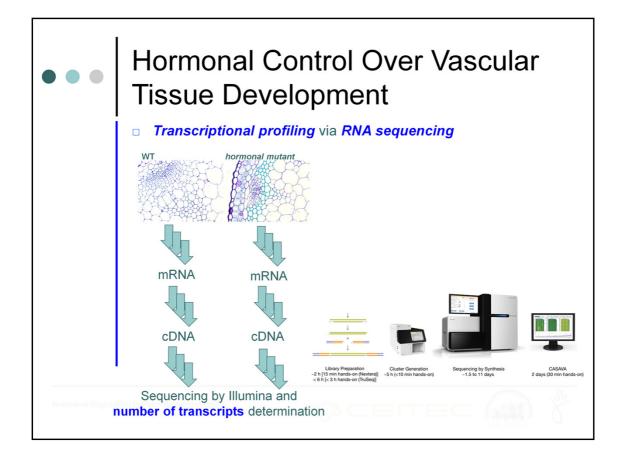


Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

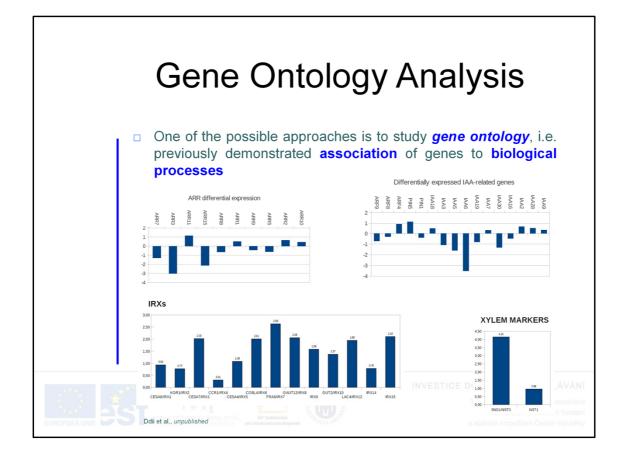


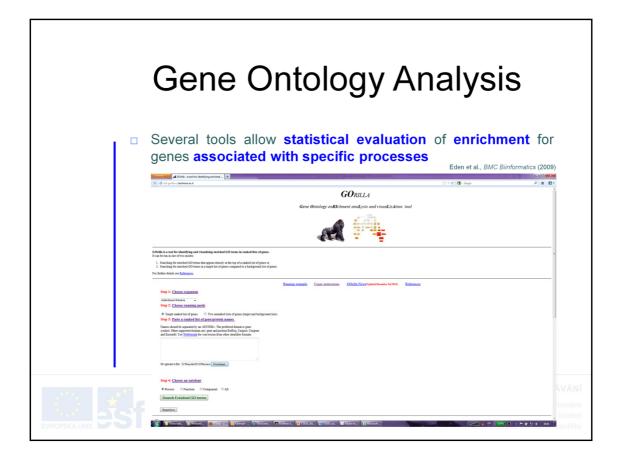


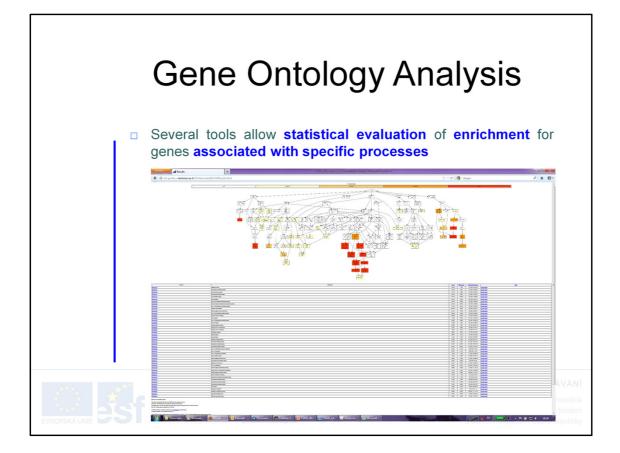


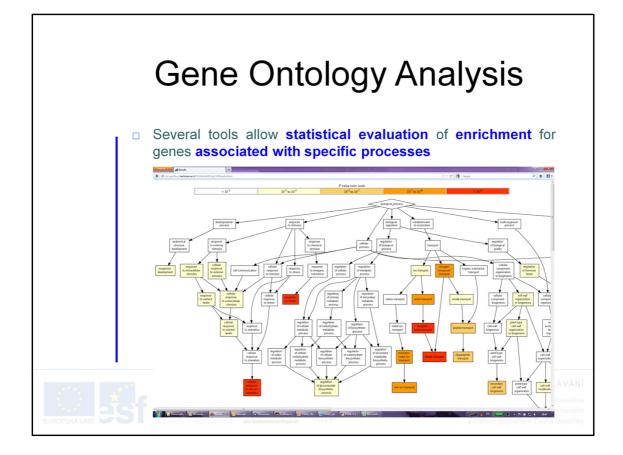
	Bi	esults of ologica	IIy F	Re die:		Va e re ex	an epre	t C	cond ed by I	Clu huge	amou get ar	nt
gene			locus	sample 1	sample_2	2 status	value 1	value_2	log2(fold_change)	test_stat		significant
AT1G07795			1:2414285-2414967		MT	ок		_	1.79769e+308	1.79769e+	0,00039 6.88885e-05	
HRS1			1:4556891-4558708	WT	MT	ок		0.696583	1.79769e+308	1.79769e+ 308	4.67708 6.61994e-06 05	le- yes
ATML014				WT	MT	ок			1.79769e+308	1.79769e+	0.00053	
						ок				1.79769e+	3.50131	e-
NRT1.6					мт				1.79769e+308	1.79769e+	3.2692e-08 07	yes
AT1G27570			1:9575425-9582376 1:22159735-	WT	MT	ок	(2,0829	1.79769e+308	308 1.79769e+	9.76039e-06 6.647e- 9.84992	
AT1G60095			22162419	WT	MT	ок	(0,688588	1.79769e+308	308 1.79769e+	9.95901e-08 07	yes
AT1G03020			1:698206-698515	WT	MT	ок	(1,78859	1.79769e+308	308 1.79769e+	0,00913915 0,0277	'958 yes
AT1G13609			1:4662720-4663471	WT	MT	ок	(3,55814	1.79769e+308	308 1.79769e+	0,00021683 0,00108	8079 yes
AT1G21550			1:7553100-7553876	WT	MT	ок	(0,562868	1.79769e+308	308	0,00115582 0,00471	
AT1G22120			1:7806308-7809632	WT	мт	ок	(0,617354	1.79769e+308	1.79769e+ 308	1.91089 2.48392e-06 05	le- yes
AT1G31370			1:11238297- 11239363	WT	MT	ок	(1,46254	1.79769e+308	1.79769e+ 308	0,00028 4.83523e-05	3514 3 yes
APUM10			1:13253397- 13255570	WT	MT	ок	(1.79769e+308	1.79769e+	5.46603 7.87855e-06 05	
AT1G48700			1:18010728- 18012871	WT	MT	ок	(1.79769e+308	1.79769e+	0,00037 6.53917e-05	
			1:21746209-							1.79769e+		
AT1G59077			21833195 1:22121549-	WT	мт	ок	(1.79769e+308	308 1.79769e+	0,00122789 0,00496	
AT1G60050			22123702	WT	MT	ОК	(1.79769e+308	308	0,00117953 0,0048	
AT4G15242			4:8705786-8706997 5:12499071-	WT	MT	ОК	0,00930712	17,9056	10,9098	-4,40523	1.05673e-05 7.13983	le-05 yes
AT5G33251 AT4G12520			12500433	WT	MT	OK	0,0498375		10,0349 9,66612	-9,8119	0 9.60217e-05 0.00052	0 yes
A14G12520			4:7421055-7421738	VV1	NI I	UK	0,0195111	15,8516	9,66612	-3,90043	9.002178-05 0,00052	cos04 yes
AT1G60020			22105276	WT		OK	0.0118377	7.18823	9.24611		6.19504e-14 1.4988e	

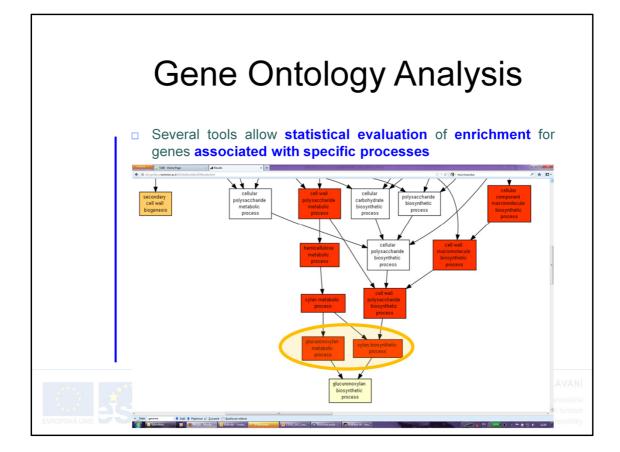
Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant.



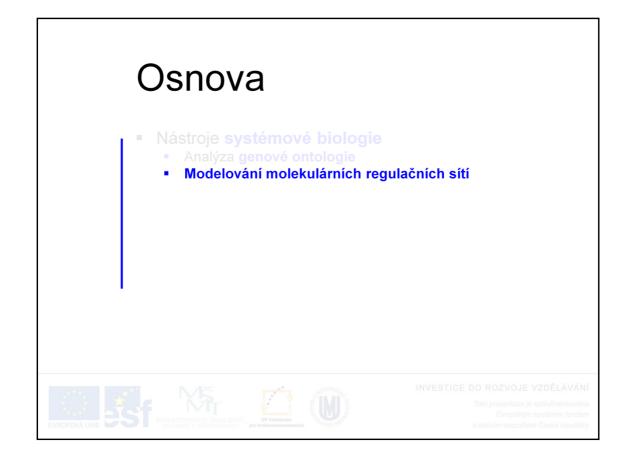


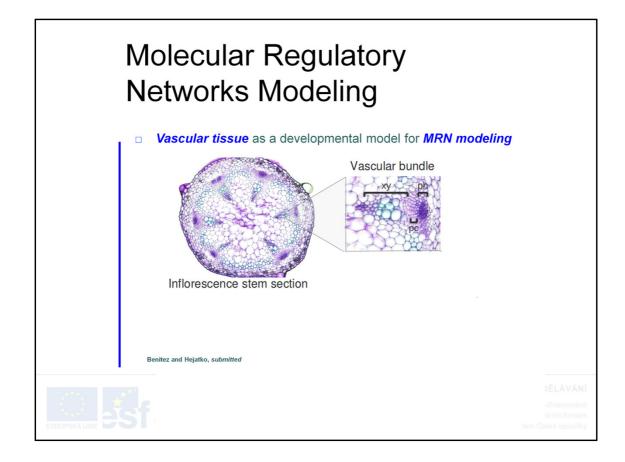

•	••	Results of –omics Studies vs Biologically Relevant Conclusions												
			Transcription regulated ge	•	g yi	elde	ed	more	e the	en <mark>7K</mark>	diffe		-	published
	gene			locus	sample_1	sample_2	status	value_1	/alue_2	log2(fold_change)	test_stat	p_value	q_value	significant
	AT1G07795			1:2414285-2414967	WT	мт	ок	0	1,1804	1.79769e+308		6.88885e-05	0,00039180	yes
	HRS1			1:4556891-4558708	WT	MT	ок	0	0,696583	1.79769e+308	1.79769e+ 308	6.61994e-06	4.67708e- 05	yes
	ATMLO14			1:9227472-9232296	WT	MT	ок	0	0,514609	1.79769e+308	1.79769e+ 308	9.74219e-05	0.00053505	i yes
	NRT1.6			1:9400663-9403789	WT	мт	ок	0	0,877865	1.79769e+308	1.79769e+ 308	3.2692e-08	3.50131e- 07	yes
	AT1G27570			1:9575425-9582376	WT	мт	ок	0	2,0829	1.79769e+308	1.79769e+ 308	9.76039e-06	6.647e-05	ves
	AT1G60095			1:22159735- 22162419	WT	MT	ок	0		1.79769e+308	1.79769e+ 308		9.84992e-	ves
	AT1G03020				WT		ок	0			1.79769e+ 308			
				1:698206-698515		MT				1.79769e+308	1.79769e+		0,0277958	
	AT1G13609			1:4662720-4663471		MT	ок	0		1.79769e+308	308 1.79769e+		0,00108079	
	AT1G21550			1:7553100-7553876	WT	MT	ок	0	0,562868	1.79769e+308	308 1.79769e+		0.00471497 1.91089e-	yes
	AT1G22120			1:7806308-7809632 1:11238297-	WT	MT	ок	0	0,617354	1.79769e+308	308 1.79769e+	2.48392e-06		yes
	AT1G31370			11239363	WT	мт	ок	0	1,46254	1.79769e+308	308	4.83523e-05	3	yes
	APUM10			1:13253397- 13255570	WT	мт	ок	0	0,581031	1.79769e+308	1.79769e+ 308	7.87855e-06	5.46603e- 05	yes
	AT1G48700			1:18010728- 18012871	WT	мт	ок	0	0.556525	1.79769e+308	1.79769e+ 308	6.53917e-05	0,00037473	ives
	AT1G59077			1:21746209-	WT	мт	ок	0		1.79769e+308	1.79769e+ 308		0.00496816	,
				21833195 1:22121549-							1.79769e+			
	AT1G60050			22123702	WT	MT	ОК	0		1.79769e+308	308	0,00117953		
	AT4G15242			4:8705786-8706997 5:12499071-	WT	MT	ОК	0,00930712	17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-05	i yes
	AT5G33251			12500433	WT	MT	ОК	0,0498375	52,2837	10,0349	-9,8119			0 yes
HO	AT4G12520			4:7421055-7421738 1:22100651-	WT	MT	ок	0,0195111	15,8516	9,66612	-3,90043	9.60217e-05	0,00052890	4 yes
	AT1G60020			22105276	WT	MT	ок	0,0118377	7,18823	9,24611		6.19504e-14		
8	AT5G15360			5:4987235-4989182	WT	MT	OK	0,0988273	56,4834	9,1587	-10,4392	0		0 yes

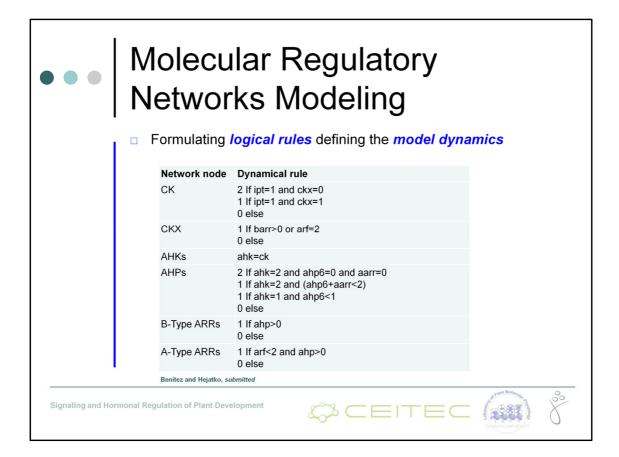

Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant.

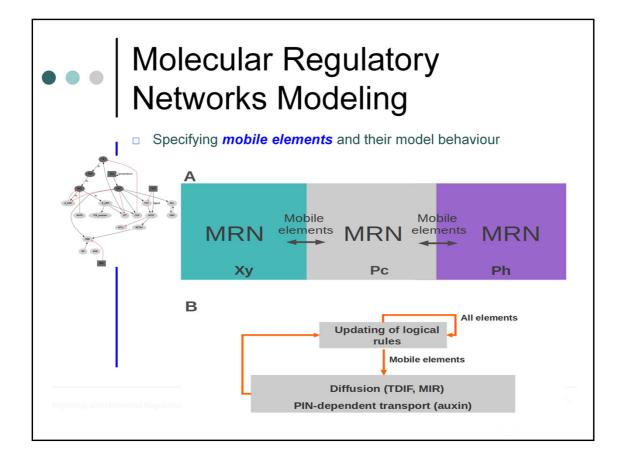


One of such recent and very useful tools is Gorilla software, freely available at <u>http://cbl-gorilla.cs.technion.ac.il/</u>.



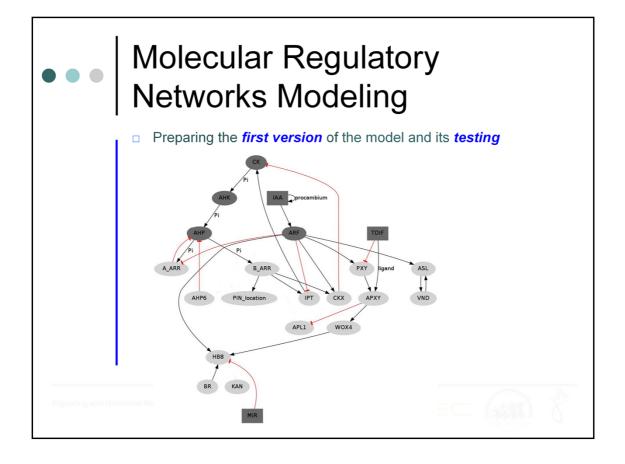



Gene	e Or	ntolo	gy Anal	lysis	1
genes asso			evaluation of e	enrichmer	1t for
A Resits	• konstatistes		☆ + σ] 8	Google	₽ 🗙 🗈•
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[±] Show genes	
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[+] Show genes	
hemicellulose metabolic process	2.97E-12	2.34E-9	3.29 (6331,77,999,40)	[+] Show genes	8
xylan metabolic process	3.21E-12	2.03E-9	3.34 (6331,74,999,39)	[+] Show genes	
nitrate transport	3.64E-12	1.92E-9	3.92 (6331,58,891,32)	[+] Show genes	
cell wall polysaccharide biosynthetic process	5.74E-12	2.59E-9	3.30 (6331,75,999,39)	[+] Show genes	
cellular component macromolecule	5.74E-12	2.27E-9	3.30 (6331,75,999,39)	[+] Show	

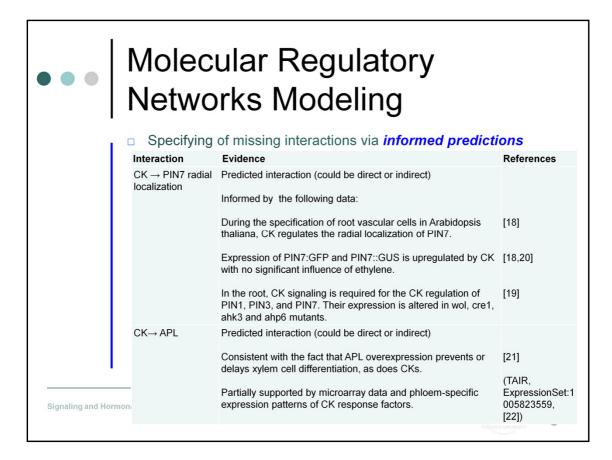

Gene	On	tolo	bav A	nalysis
Several tools genes associa	allow s	atatistica	al evaluatio	n of enrichment for
Results A Results Contraction of the C			Contrast of the second second	
Description	P-value	FDR q-value	Enrichment (N, B, n, b)	Genes
response to nitrate	4.76E-13	1.5E-9	4.13 (6331,55,891,32)	[+] Show genes
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	CL Hinds context COTT: particle synthesis and COTT: particle synthesis and COTTO: par
hamipathulaca matabalia nyoacaa	2.07E 12	2.24E.0	2 10 (6221 27 000 40)	AGL4 - protein agreements like 44 (RC11: heaves) RC12: heaves RC12: h

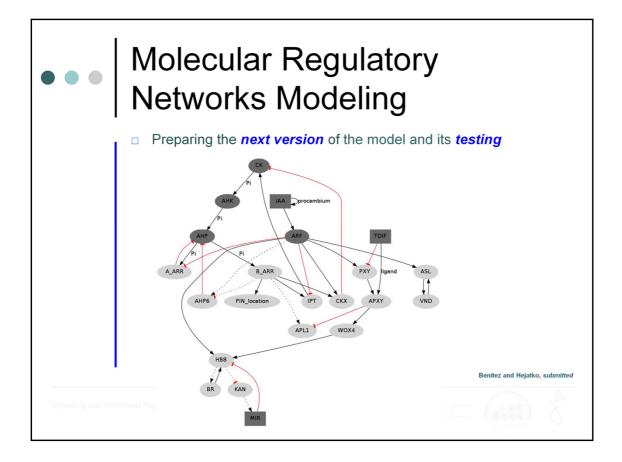
 Molecular Regulatory Networks Modeling Literature search for published data and creating small database 										
	Interaction	Evidence	References							
	A-ARRs – CK signaling	Double and higher order type-A ARR mutants show increased sensitivity to CK.	[27]							
		Spatial patterns of A-type ARR gene expression and CK response are consistent with partially redundant function of these genes in CK signaling.	[27]							
		A-type ARRs decreases B-type ARR6-LUC.	[13]							
		Note: In certain contexts, however, some A-ARRs appear to have effects antagonistic to other A-ARRs.	[27]							
	AHP6 – AHP	ahp6 partially recovers the mutant phenotype of the CK receptor WOL.	[9]							
Signaling and Ho	mon	Using an in vitro phosphotransfer system, it was shown that, unlike the AHPs, native AHP6 was unable to accept a phosphoryl group. Nevertheless, AHP6 is able to inhibit phosphotransfer from other AHPs to ARRs.	[9]							
	Benitez and Hejatko, submi	itted		0						

According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation:

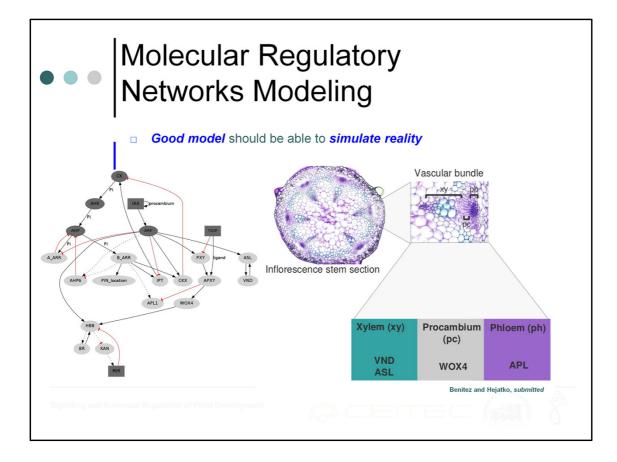

g(t+1)T[i] = H(g(t)[i] + D(g(t)[i+1] + g(t)[i-1] - N(g(t)[i])) - b)(2),

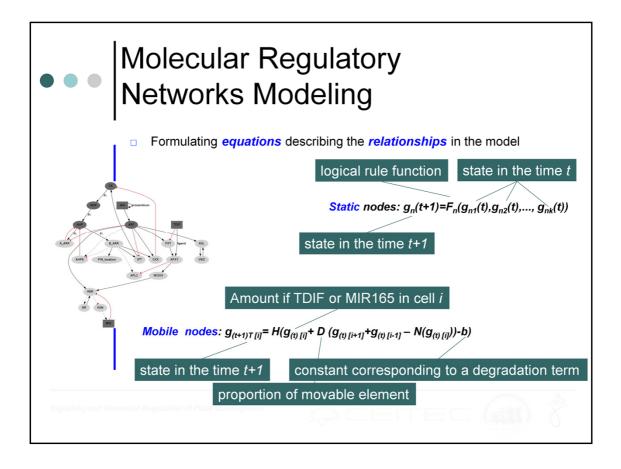
where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). *D* is a parameter that determines the proportion of *g* that can move from any cell to neighboring ones and is correlated to the diffusion rate of *g*. *b* is a constant corresponding to a degradation term. *H* is a step function that converts the continuous values of *g* into a discrete variable that may attain values of 0, 1 or 2. *N* stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation:


iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])-N(Diaa)(pin(t)[i])(iaa(t)[i])-biaa) (3),


where *Diaa* is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and *biaa* corresponds to a degradation term. As in equation 2, *H* is a step function

that converts the continuous values to discrete ones and *N* stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux.




The proposed model considers data that we identified and evaluated through an extensive search (up to January 2012). It takes into account molecular interactions, hormonal and expression patterns, and cell-to-cell communication processes that have been reported to affect vascular patterning in the bundles of Arabidopsis. The model components and interactions are graphically presented in the figure above. In the network model, nodes stand for molecular elements regulating one another's activities. Most of the nodes can take only 1 or 0 values (light gray nodes in the figure), corresponding to "present" or "not present," respectively. Since the formation of gradients of hormones and diffusible elements may have important consequences in pattern formation, mobile elements TDIF and MIR, as well as members of the CK and IAA signaling systems, can take 0, 1 or 2 values (dark gray nodes in the figure above) Benitez and Hejatko, submitted.

In comparison to the model shown on slide 21, the final version of the model contains the predicted interactions (dashed lines).

The initial conditions specify the initial state of some of the network elements (figure above) and are the following :

I) In the procambial position (central compartment), CK is initially available and there is an initial and sustained IAA input or self-upregulation. This condition is supported by several lines of evidence. Also *HB8*, a marker of early vascular development that has been found in preprocambial cells, is assumed to be initially present at this position. These conditions are not fixed, however. After the initial configuration, all the members of the CK and IAA signaling pathways, as well as *HB8*, can change their states according to the logical rules.

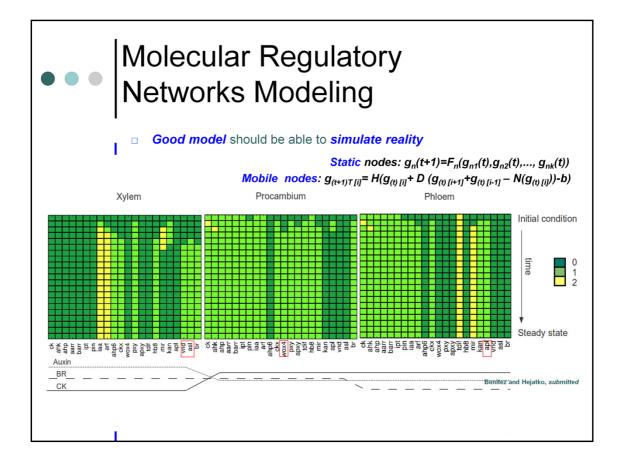
II) In the xylem and phloem positions, it is assumed that no element is initially active except for the CK signaling pathway and TDIF, both in the phloem position. The level of expression for a given node is represented by a discrete variable g and its value at a time t+1 depends on the state of other components of the network (g1, g2, ..., gN) at a previous time unit. The state of every gene g therefore changes according to:

gn(t+1)=Fn(gn1(t),gn2(t),...,gnk(t)) (1).

In this equation, gn1, gn2,..., gnk are the regulators of gene gn and Fn is a discrete function known as a logical rule (logical rules are grounded in available

experimental data, for example see slide 20). Given the logical rules, it is possible to follow the dynamics of the network for any given initial configuration of the nodes expression state. One of the most important traits of dynamic models is the existence of steady states in which the entire network enters into a selfsustained configuration of the nodes state. It is thought that in developmental systems such self-sustained states correspond to particular cell types.

According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation:


g(t+1)T[i] = H(g(t)[i] + D(g(t)[i+1] + g(t)[i-1] - N(g(t)[i])) - b) (2),

where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). *D* is a parameter that determines the proportion of *g* that can move from any cell to neighboring ones and is correlated to the diffusion rate of *g*. *b* is a constant corresponding to a degradation term. *H* is a step function that converts the continuous values of *g* into a discrete variable that may attain values of 0, 1 or 2. *N* stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation:

iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])-N(Diaa)(pin(t)[i])(iaa(t)[i])-biaa) (3),

where *Diaa* is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and *biaa* corresponds to a degradation term. As in equation 2, *H* is a step function that converts the continuous values to discrete ones and *N* stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux.

Using the logical rules, equations 1–3, and a broad range of parameter values (not shown here), it is possible fully to reproduce the results and analyses reported in the following sections (see the figure above for the simulation time course).

The initial conditions specify the initial state of some of the network elements (figure above) and are the following :

I) In the procambial position (central compartment), CK is initially available and there is an initial and sustained IAA input or self-upregulation. This condition is supported by several lines of evidence. Also *HB8*, a marker of early vascular development that has been found in preprocambial cells, is assumed to be initially present at this position. These conditions are not fixed, however. After the initial configuration, all the members of the CK and IAA signaling pathways, as well as *HB8*, can change their states according to the logical rules.

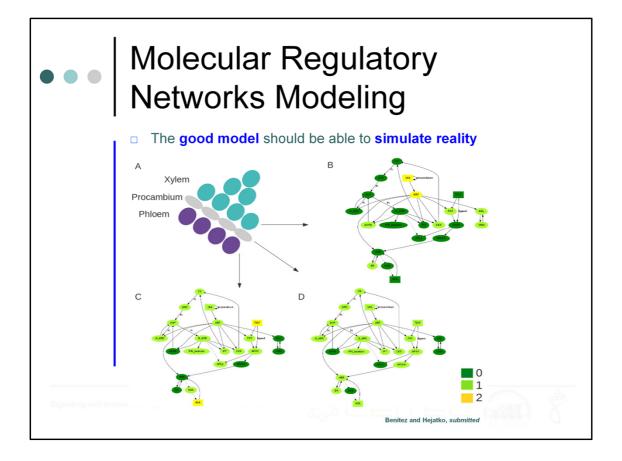
II) In the xylem and phloem positions, it is assumed that no element is initially active except for the CK signaling pathway and TDIF, both in the phloem position. The level of expression for a given node is represented by a discrete variable g and its value at a time t+1 depends on the state of other components of the network (g1, g2, ..., gN) at a previous time unit. The state of every gene g therefore changes according to:

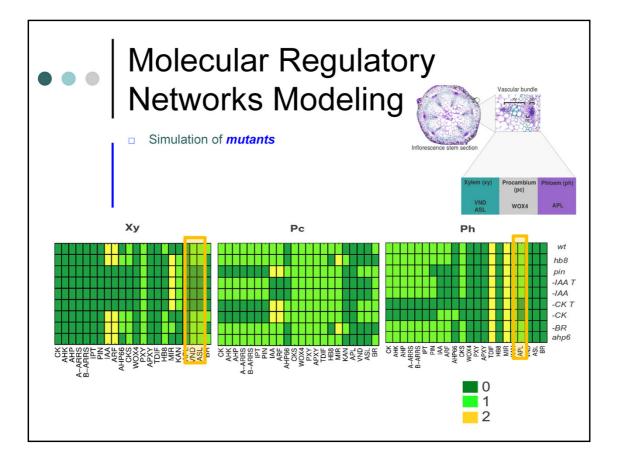
gn(t+1)=Fn(gn1(t),gn2(t),...,gnk(t)) (1).

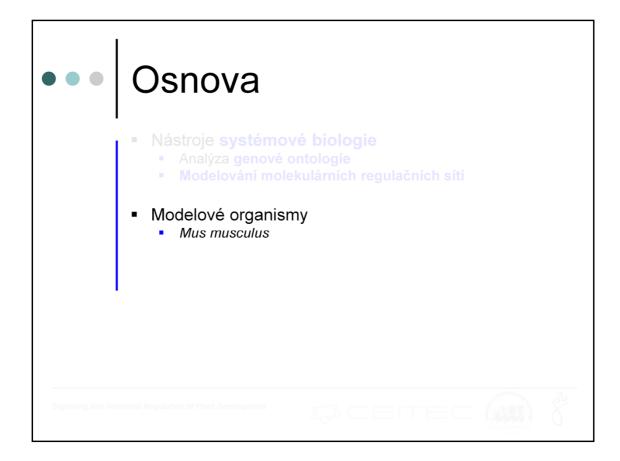
In this equation, gn1, gn2,..., gnk are the regulators of gene gn and Fn is a discrete function known as a logical rule (logical rules are grounded in available

experimental data, for example see slide 20). Given the logical rules, it is possible to follow the dynamics of the network for any given initial configuration of the nodes expression state. One of the most important traits of dynamic models is the existence of steady states in which the entire network enters into a selfsustained configuration of the nodes state. It is thought that in developmental systems such self-sustained states correspond to particular cell types.

According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation:

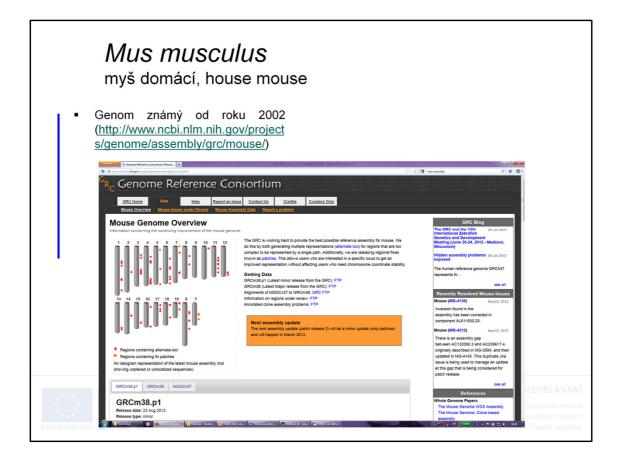

g(t+1)T[i] = H(g(t)[i] + D(g(t)[i+1] + g(t)[i-1] - N(g(t)[i])) - b) (2),

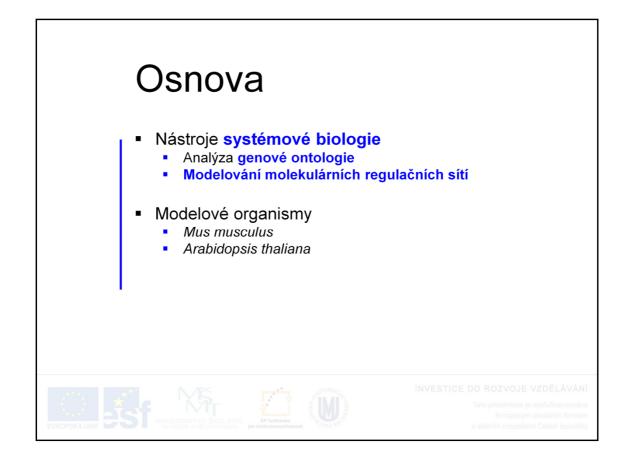

where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). *D* is a parameter that determines the proportion of *g* that can move from any cell to neighboring ones and is correlated to the diffusion rate of *g*. *b* is a constant corresponding to a degradation term. *H* is a step function that converts the continuous values of *g* into a discrete variable that may attain values of 0, 1 or 2. *N* stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation:

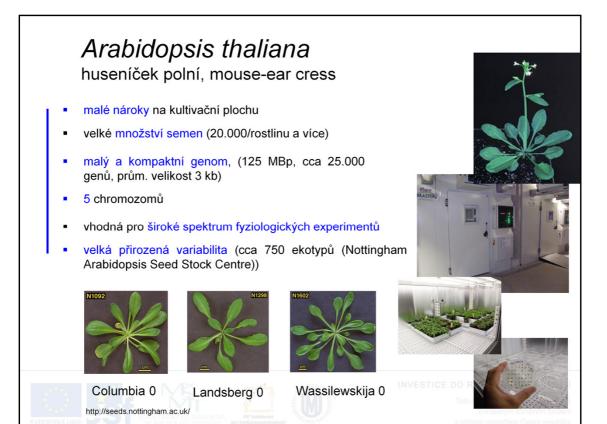

iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])-N(Diaa)(pin(t)[i])(iaa(t)[i])-biaa) (3),

where *Diaa* is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and *biaa* corresponds to a degradation term. As in equation 2, *H* is a step function that converts the continuous values to discrete ones and *N* stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux.

Using the logical rules, equations 1–3, and a broad range of parameter values (not shown here), it is possible fully to reproduce the results and analyses reported in the following sections (see the figure above for the simulation time course).

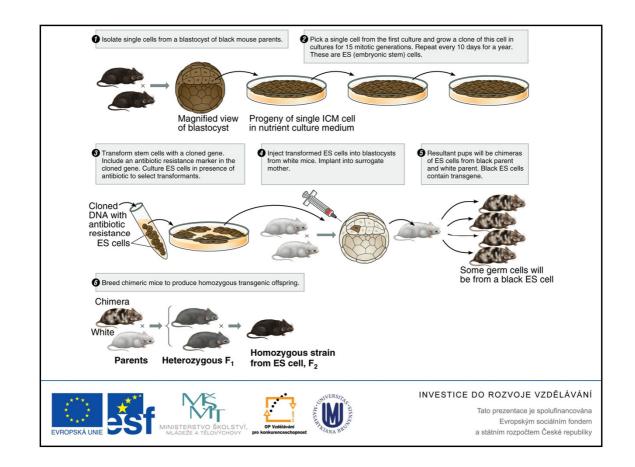




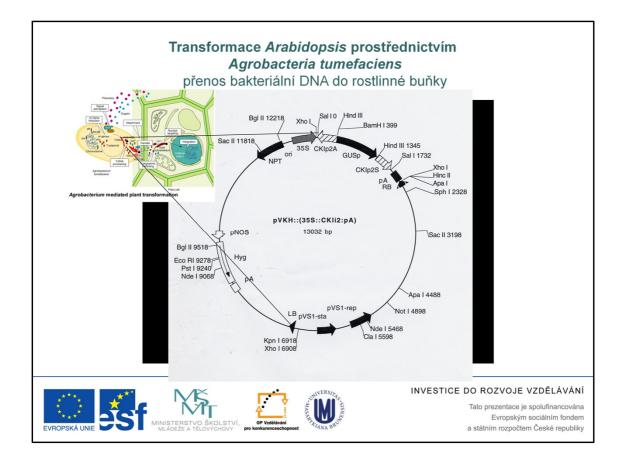


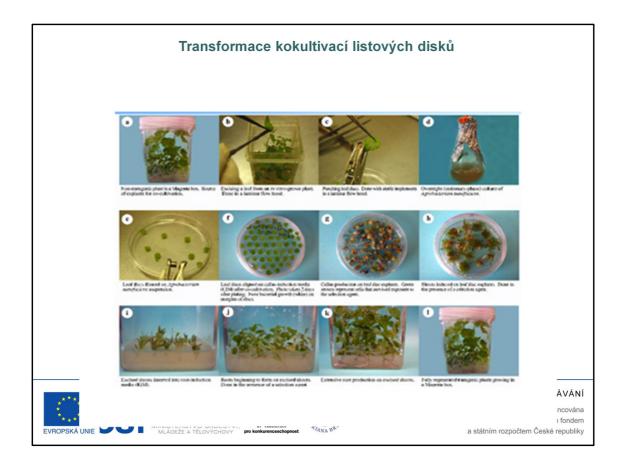


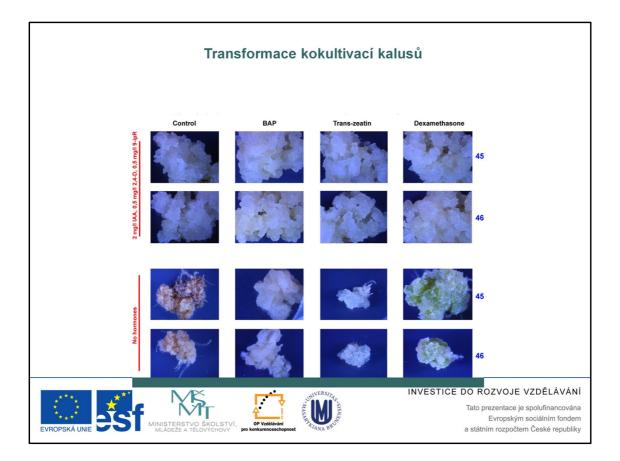
More info about mouse at http://www.informatics.jax.org/greenbook/index.shtml.

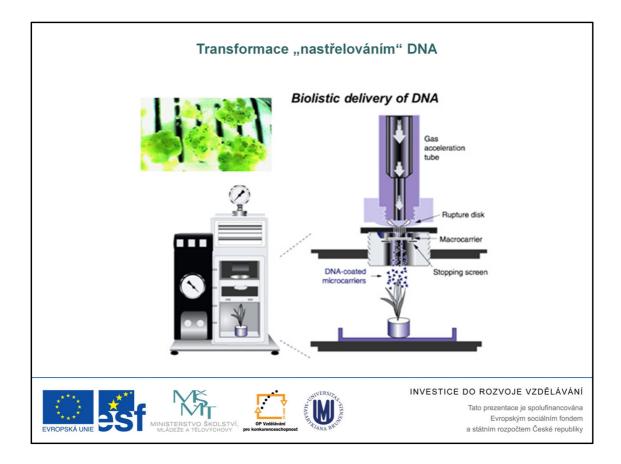


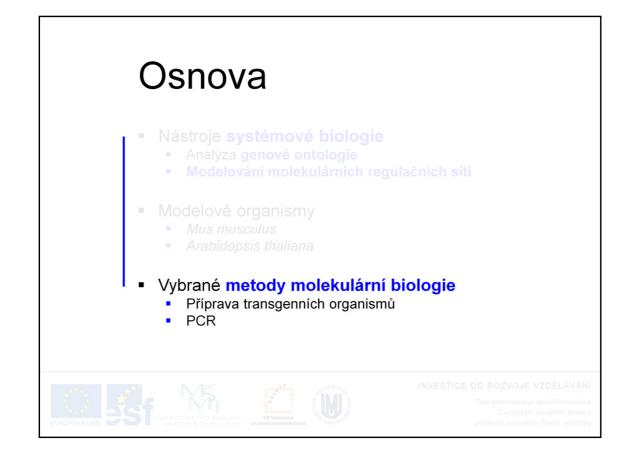
Individula ICM cells of the embryo could be isolated and later re-introgressed into the new embryo. These ICM cells are called **embryonic stem (ES) cells**. It is very important technique that allows production of transgenic mice.

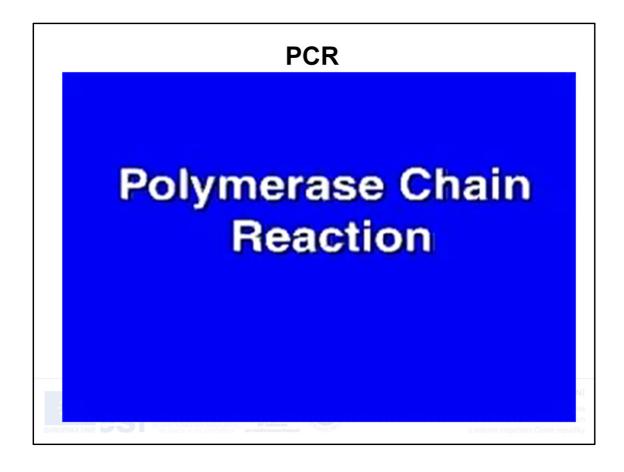

The isolated ES cells are transformed via foreign DNA construct and it is injected within the embryo. The transformed cell becomes a part of the embryo and might result into formation of different tissue types, among them the spermatogonia or oogonia. i.e. the tissue that provides progenitor for sperm or egg cells in the resulting chimera. Thus, the progeny of those chimeras will inherit the modified cell with certain probability and these individuals will carry the transgene in every cell of their body. Thus, the trangenic mice will be produced.


This is very important mainly with regard of the knockout mutant (K.O.) production. In the modified ES, the genes might be specifically eliminated via DNA recombination. In that way, function of many of the mice genes was identified.


E.g. the gene *NODAL* is expressed in the anterior portion of the primitive streak that is equivalent to the Hensen's node. *nodal/nodal* embryos are lethal, they do


not undergo gastrulation and from almost no mesoderm.






<section-header><section-header><section-header><section-header><complex-block><image><image><image><image><image>

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

