

Central European Institute of Technology BRNO | CZECH REPUBLIC

Protein Engineering

Pavel Mazura CEITEC – MENDELU Department of molecular biology and radiobiology Scaled Biosystems team mazura@sci.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

SCALED BIOSYSTEMS

Research & Development of molecular systems for control of plant growth and morphogenesis

Screening and characterization of novel β -glucosidases for target probing of plant hormone system

Bioinformatics, *E.coli* transformation and screening, DNA isolation + (basic molecular biology techniques)

mazura@sci.muni.cz

Hydrophobic amino acids

Charged amino acids

Polar amino acids

Protein structure

Domains are build from structural motifs

То first approximation а а polypeptide chain can be considered as a sequential arrangement of simple motifs that are formed from consecutive regions of the primary structure. For example, triosephosphate isomerase is built up from four motifs that $\beta - \alpha - \beta - \alpha$ are consecutive both in the amino acid sequence (a) and in the threedimensional structure (b).

The number of such combinations found in proteins is limited, and some combinations seem to be structurally favored.

Thus similar domain structures frequently occur in different proteins with different functions and with completely different amino acid sequences.

FIGURE 2.27. General mechanism of eukaryotic protein synthesis. The major steps include transcription of the DNA gene sequence into the messenger RNA template in the nucleus of the cell, translation of the DNA codons of that gene into amino acids, and their assembly into polypeptides in the cytoplasm. Important mediators of this process include transfer RNAs, splicing elements, and ribosomes.

Evolution © 2007 Cold Spring Harbor Laboratory Press

the Big picture

Scale is important !

Biosystems 10E-10 → 10E7m

Rational Design

(Directed Mutagenesis)

Random Mutagenesis/

Directed Evolution

Improved Protein

Protein Engineering

Rational Design (Directed Mutagenesis)

Google: AdvGentech5.ppt

Bioinformatics

DBID CH	IAIN SI	FIVLTQSPSSLSASLGDTITITCHASQNINVWLSWYQQKPGNIPKLLI	Y/
AGASD8	MOUSE	IQMNQSPSSLSASLGDTITITCHASQNINVWLSWYQQKPGNIPKLLI	¥7
Q58EU4	MOUSE	IVMTQSHKFMSTSIGDRVSITCKASQDVTTAVAWYQQKPGQSPKVLI	H
Q7TS98	MOUSE	IKMTQSPSSMYASLGERVTITCKASQDINSYLSWFQQKPGKSPKTLI	¥1
AGASE3	MOUSE	·IVLTQSPAIMSASLGERVTMTCTASSSvsSYLHWYQQKPGSSPKLWI	X1
AGASE6	MOUSE	IVLTQSPASLAVSLGQRATISCKASQSVDfyMNWYQHKPGQPPKLLI	Y
Q66JS7	MOUSE	IVLTQSPASLAVSLGQRATISCRASQSVStyMHWYQQKPGQPPKLLI	K
Q52L64	MOUSE	IVMSQSPSSLAVSVGEKVTMSCKSSQSlnqyLAWYQQKPGQSPKLLI	X .5
AGASEO	MOUSE	IVLTQSPAIMSASPGQKVTITCSASSSVS-YMHWYQQKPGSSPKLWI	X1
Q569Y8	MOUSE	IVLTQSPALMAASPGEKVTITCSVSSSIDSs1HWYQQKSGTSPKAWI	Χl
Q52L95	MOUSE	IKMTQSPSSMYVSLGEAVTITCKASQDIYSFLKWFQKKPGKPPKTLI	Y,
Q58EV6	MOUSE	IVLTQSPAIMSASPGEKVTMTCSASSGVS-YMHWYQQKSGTSPKRWI	Y1
AON7J3	9MURI	ILMTQTPLSLPVSLGDQASISCRSSQSinTYLEWYLQKPGQSPKLLI	¥.
Q5XFY8	MOUSE	IVLSQSPAILSGFPGEKVTMTCRASSSVN-YMWYQQKPGSSPKPWI	Y
Q3 KQK1	MOUSE	VVLTQSPALMAAFPGEKVTITCSVSSSisSNLHWYQQKSGTSPKPWI	X
AGASD7	MOUSE	WVMTQTPLSLPVSLGDQASISCRSSQS1nTYLHWYLQKPGQSPKLLI	C.S
Q652C0	MOUSE	LVMTQSPLSLSVSLGDQASISCRSSQSLnTYLHWYLQKPGLSPKLLI	¥.
Q5XKG4	MOUSE	IVMTQAAPSVPVTPGESVSISCRSSKS1nTYLYWFLQRPGQSPQLLI	¥.
Q58EU8	MOUSE	VVMTQTPLTLSVTIGQPASISCKSSQS1kTYLNWLLQRPGQSPKLLI	X.
AUA5D9	MOUSE	VVMTQTPLTLSVTIGQPASISCKSSQS1kTYLDWLLQRPGQSPKSLI	X.S
Q4KM66	RAT	IRMTQSPASLSASLGETVNIECLASEDIYSDLAWYQQKPGKSPQLLI	X1

DNA and AA sequence information: composition, similarity, physicochemical properties, motifs, experimental design for directed or directed evolution procedure

Lliterature search: current knowledge in this area, data mining, identification of possible problems, look for collaborations material etc.

3D structure derived information: structure motifs, similarity, surfaces, canals and cavities, check and evaluation of aminoacids possible involved in misfolding

HotS	pot Wizard 1.7	
HotSpot Wizard ×		<u> </u>
← → C (Soloschmidt.chemi.muni.cz/hotspotwizard/	<u>አ</u>	4
💮 Genesis 1:1 ASV - Yo 😽 Google 🛣 Bookmark Manager 🚿 SquirrelMail - Pi	řihlásit 🕅 Social Media News an 🦞 Wikipedia, the free e ≶ Seznam Slovník - Vícej 🏾 🎽 🗋 Other book	marks
test2 (1hxj)		
Back to results		
<u>Submit new job</u>		
Download results in one package		
	► 0	
+ Color Coding		
+ Q Controls		
- V Sequence		
Toxy Chain A:		
	STATE CARLERS	
COLLEPSEIPCRDWIPSDFIFGARISATCIEGAWNEDGRGESNWDAFCANA		\sim
110 100 100 100 100 100		
	Lo.	
SPGLDCAYPIGNSLVEPYIAGHNILLAHALAVDLYNKHYKRDDTRIGLAF		

Google: AdvGentech5.ppt

What can be engineered in Proteins?

-> Folding (+Structure):

- Thermodynamic Stability
 (Equilibrium between: Native ⇔ Unfolded state)
- 2. Thermal and Environmental Stability (Temperature, pH, Solvent, Detergents, Salt)

What can be engineered in Proteins?

-> Function:

1. Binding (Interaction of a protein with its surroundings)

How many points are required to bind a molecule with high affinity?

1. Catalysis (a different form of binding - binding the transition state of a chemical reaction)

Increased binding to the transition state \Rightarrow increased catalytic rates !!! Requires: Knowledge of the <u>Catalytic Mechanism</u> !!!

-> engineer Kcat and Km

Factors which contribute to stability:

- 1. Hydrophobicity (hydrophobic core)
- 1. Electrostatic Interactions:
 - -> Salt Bridges
 - -> Hydrogen Bonds
 - -> Dipole Interactions

- 1. Disulfide Bridges
- 1. Metal Binding (Metal chelating site)
- 1. Reduction of the unfolded state entropy with $X \rightarrow Pro$ mutations

Design of Thermal and Environmental stability:

- 1. Stabilization of α -Helix Macrodipoles
- 1. Engineer Structural Motifes (like Helix N-Caps)
- 1. Introduction of salt bridges
- 1. Introduction of residues with higher intrinsic properties for their conformational state (e.g. Ala replacement within a α -Helix)
- 1. Introduction of disulfide bridges
- 1. Reduction of the unfolded state entropy with $X \rightarrow Pro$ mutations

Second letter							
		U	С	А	G		
First letter	U	UUU } Phe UUC } UUA UUA } Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA UGG Trp	U C A G	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG GIn	CGU CGC CGA CGG	U C A G	Third
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU AGC } Ser AGA AGG } Arg	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G	

Mutagenesis

Mutagenesis -> change in DNA sequence

-> Point mutations or large modifications

Point mutations (directed mutagenesis):

- Substitution: change of one nucleotide (i.e. A-> C)
- Insertion: gaining one additional nucleotide
- Deletion: loss of one nucleotide

Consequences of point mutations within a coding sequence (gene) for the protein

(a) Point mutations and small deletions

Wild-type sequences

Amino acid N-Phe Arg Trp IIe Ala Asn-C mRNA 5'-UUU CGA UGG AUA GCC AAU-3' DNA 3'-AAA GCT ACC TAT CGG TTA 5' 5'-TTT CGA TGG ATA GCC AAT 3'

Missense

3'-AAT GCT ACC TAT CGG TTA-5' 5'-TTA CGA TGG ATA GCC AAT-3' N-Leu Arg Trp Ile Ala Asn-C

Nonsense

3'-AAA GCT ATC TAT CGG TTA-5' 5'-TTT CGA TAG ATA GCC AAT-3' N-Phe Arg Stop

Frameshift by addition

3'-AAA GCT ACC ATA TCG GTT A-5' 5'-TTT CGA TGG TAT AGC CAAT-3' N-Phe Arg Trp Tyr Ser GIn

Frameshift by deletion

GCTA CGAT 3'-AAA CCT ATC GGT TA-5' 5'-TTT GGA TAG CCA AT-3' N-Phe Gly Stop Silent mutations:

-> change in nucleotide sequence with no consequences for protein sequence

-> Change of amino acid

-> truncation of protein

-> change of c-terminal part of protein

-> change of c-terminal part of protein

Codon Usage is different in different species

UUU F 0.57	UCU S 0.11	UAU Y 0.53	UGU C 0.42		
UUC F 0.43	UCC S 0.11	UAC Y 0.47	UGC C 0.58		
	UCA C 0 15		UCA + 0.26		
UUA L 0.15	UCA 5 0.15	UAA * 0.04	UGA * 0.36		
UUG L 0.12	UCG S 0.16	UAG * 0.00	UGG W 1.00		
CUU L 0.12	CCU P 0.17	CAU H 0.55	CGU R 0.36		
CUC L 0.10	CCC P 0.13	CAC H 0.45	CGC R 0.44		
CUA L 0.05	CCA P 0.14	CAA O 0.30	CGA R 0.07		
CTIC I O AC	CCC D 0 55	C1C 0 0 70	CCC D 0 07		
CUG L 0.40	CCG P 0.55	CAG U 0.70	CGG R 0.07		
AUU I 0.58	ACU T 0.16	AAU N 0.47	AGU S 0.14		
AUC I 0.35	ACC T 0.47	AAC N 0.53	AGC S 0.33		
AUA I 0.07	ACA T 0.13	AAA K 0.73	AGA R 0.02		
AUG M 1.00	ACG T 0.24	AAG K 0.27	AGG R 0.03		
GUU V 0.25	GCU A 0.11	GAU D 0.65	GGU G 0.29		
GUC V 0.18	GCC A 0.31	GAC D 0.35	GGC G 0.46		
GUA V 0.17	GCA A 0.21	GAA E 0.70	GGA G 0.13		
GUG V 0.40	GCG A 0.38	GAG E 0.30	GGG G 0.12		
[Codon/a.a./fraction per codon per a.a.]					
E. coli K12 data from the Codon Usage Database					

UUU F 0.46	UCU S 0.19	UAU Y 0.44	UGU C 0.46		
UUC F 0.54	UCC S 0.22	UAC Y 0.56	UGC C 0.54		
UUA L 0.08	UCA S 0.15	UAA * 0.30	UGA * 0.47		
UUG L 0.13	UCG S 0.05	UAG * 0.24	UGG W 1.00		
CUU L 0.13	CCU P 0.29	CAU H 0.42	CGU R 0.08		
CUC L 0.20	CCC P 0.32	CAC H 0.58	CGC R 0.18		
CUA L 0.07	CCA P 0.28	CAA Q 0.27	CGA R 0.11		
CUG L 0.40	CCG P 0.11	CAG 🖸 0.73	CGG R 0.20		
AUU I 0.36	ACU T 0.25	AAU N 0.47	AGU S 0.15		
AUC I 0.47	ACC T 0.36	AAC N 0.53	AGC S 0.24		
AUA I 0.17	ACA T 0.28	AAA K 0.43	AGA R 0.21		
AUG M 1.00	ACG T 0.11	AAG K 0.57	AGG R 0.21		
GUU V 0.18	GCU A 0.27	GAU D 0.46	GGU G 0.16		
GUC V 0.24	GCC A 0.40	GAC D 0.54	GGC G 0.34		
GUA V 0.12	GCA A 0.23	GAA E 0.42	GGA G 0.25		
GUG V 0.46	GCG A 0.11	GAG E 0.58	GGG G 0.25		
[Codon/a.a./fraction per codon per a.a.]					
Homo sapiens data from the Codon Usage Database					

Mutagenesis Comparison of cellular and invitro mutagenesis

The Nobel Prize in Chemistry 1993

"for contributions to the developments of methods within DNA-based chemistry"

"for his invention of the polymerase chain reaction (PCR) method" "for his fundamental contributions to the establishment of oligonucleotidebased, site-directed mutagenesis and its development for protein studies"

Kary B. Mullis	Michael Smith
D 1/2 of the prize	① 1/2 of the prize
JSA	Canada
.a Jolla, CA, USA	University of British Columbia Vancouver, Canada
o. 1944	b. 1932 (in Blackpool, United Kingdom) d. 2000

Titles, data and places given above refer to the time of the award. Photos: Copyright © The Nobel Foundation

General strategy for directed mutagenesis

Requirements:

- DNA of interest (gene or promoter) must be cloned
- Expression system must be available -> for testing phenotypic change

Applications of directed mutagenesis

Approaches for directed mutagenesis

-> site-directed mutagenesis -> point mutations in particular known area

result -> library of wild-type and mutated DNA (site-specific) not really a library -> just 2 species

Protein Engineering

-> Mutagenesis used for modifying proteins Replacements on protein level -> mutations on DNA level

Assumption : Natural sequence can be modified to improve a certain function of protein

This implies:

- Protein is NOT at an optimum for that function
- Sequence changes without disruption of the structure
- (otherwise it would not fold)
- New sequence is not TOO different from the native sequence (otherwise loss in function of protein)

consequence -> introduce point mutations

Rational Protein Design

 \Rightarrow Site -directed mutagenesis

Requirements:

- -> Knowledge of sequence and preferable Structure (active site,....)
- -> Understanding of mechanism (knowledge about structure - function relationship)
- -> Identification of cofactors......

Site-directed mutagenesis methods

Site-directed mutagenesis methods -Oligonucleotide - directed method

Site-directed mutagenesis methods - PCR based

The concept of laboratory-directed protein evolution is not new.

Systematic approaches to directed evolution of proteins have been documented since the 1970s

One early example is the evolution of the EbgA protein from *Escherichia coli*, an enzyme having almost no -galactosidase activity. Through intensive selection of a LacZ deletion strain of *E. coli* for growth on lactose as a sole carbon source, the wild-type EbgA was "evolved" as a -galactosidase sufficient to replace the *lacZ* gene function (Campbell, J.1973).

Directed Evolution - Random mutagenesis

-> based on the process of natural evolution

- NO structural information required
- NO understanding of the mechanism required

General Procedure:

- 1. Generation of genetic diversity \Rightarrow Random mutagenesis
- 2. Identification of successful variants \Rightarrow Screening and seletion

Protein Engineering Directed Evolution

Successful directed evolution has four requirements:

- (i) the desired function should be physically feasible,
- (ii) the function should be biologically or evolutionary feasible, i.e., a mutational pathway must exist to get from an original protein to tailored protein through ever-improving variants,
- (iii) it should be possible to make libraries of mutants complex enough to contain rare beneficial mutations and
- (iv) a rapid screen or selection reflecting the desired function should be available (Arnold,1998)

Approaches for directed random mutagenesis

-> random mutagenesis

-> point mutations in all areas within DNA of interest

result -> library of wild-type and mutated DNA (random) a real library -> many variants -> screening !!!

if methods efficient -> mostly mutated DNA

General Directed Evolution Procedure

Limitation of Directed Evolution

1. Evolutionary path must exist - > to be successful

- 1. Screening method must be available
 - -> You get (exactly) what you ask for!!!
 - -> need to be done in -> High throughput !!!

Typical Directed Evolution Experiment

Successful experiments involve generally less than 6 steps (cycles)!!!

Why?

- Sequences with improved properties are rather close to the parental sequence -> along a evolutionary path
- 2. Capacity of our present methods to generate novel functional sequences is rather limited -> requires huge libraries
 - \Rightarrow Point Mutations !!!

Evolutionary Methods

Non-recombinative methods:

- -> Oligonucleotide Directed Mutagenesis (saturation mutagenesis)
- -> Chemical Mutagenesis, Bacterial Mutator Strains
- -> Error-prone PCR
- Recombinative methods -> Mimic nature's recombination strategy

Used for: Elimination of neutral and deleterious mutations

-> DNA shuffling

- -> Invivo Recombination (Yeast)
- -> Random priming recombination, Staggered extention precess (StEP) -> ITCHY

Evolutionary Methods Type of mutation - Fitness of mutants

Type of mutations:

- \Rightarrow Beneficial mutations (good)
- \Rightarrow Neutral mutations
- \Rightarrow Deleterious mutations (bad)

$\Rightarrow\,$ Beneficial mutations are diluted with neutral and deleterious ones

!!! Keep the number of mutations low per cycle

-> improve fitness of mutants!!!

Random Mutagenesis (PCR based) with degenerated primers (saturation mutagenesis)

Random Mutagenesis (PCR based) with degenerated primers (saturation mutagenesis)

Random Mutagenesis (PCR based) Error -prone PCR

-> PCR with low fidelity !!!

Achieved by:

- Increased Mg2+ concentration
- Addition of Mn2+
- Not equal concentration of the four dNTPs
- Use of dITP
- Increasing amount of Taq polymerase (Polymerase with NO proof reading function)

Random mutagenesis

- Chemical mutagenesis
- Combinatorial cassette mutagenesis
- Error-prone PCR
- Mutator strains
- RID
- SeSAM
- Saturation mutagenesis
- UV irradiation

Homologous

- DNA shuffling
- DOGS
- Family shuffling
- Family shuffling with restriction enzymes
- RACHITT
- RPR
- StEP
- Genome shuffling

- Non-homologous
- Exon shuffling
- DHR

Recombination

- ITCHY
- THIO-ITCHY
- RM-PCR
- SCRATCHY
- SHIPREC
- SISDC
- YLBS

Fig. 1. Comparison of (a) random mutagenesis and (b) recombination strategies.

Random Mutagenesis (PCR based) DNA Shuffling

DNase I treatment (Fragmentation, 10-50 bp, Mn²⁺)

Reassembly (PCR without primers, Extension and Recombination)

PCR amplification

Random Mutagenesis (PCR based) Family Shuffling

Genes coming from the same gene family -> highly homologous

-> Family shuffling

Random Mutagenesis (PCR based)

Figure 11 Procedures for the (a) StEP, (b) the ITCHY, and (c) the SHIPREC methods. Staggered Extension Process (StEP)

Truncation for the Creation of Hybrid EnzYmes (ITCHY) Sequence Homology-Independent Protein Recombination (SHIPREC)

Directed Evolution

Difference between non-recombinative and recombinative methods

...engineering proteins by circular permutation

Protein engineering must not necessarily involve the substitution of amino acids. The reorganization of a proteins' primary sequence can also change the catalytic properties. We are using a technique called circular permutation to explore the effects of termini relocation on catalysis, as well as protein stability & dynamics.

...engineering proteins by circular permutation

lipase B from Candida antarctica, an important biocatalyst in asymmetric synthesis. Upon relocating the protein termini by circular permutation, we observe up to 175-fold enhanced catalytic performance while preserving the enzyme's enantio-selectivity.

Stefan Lutz group

HTS (High throughput screening) System

Screening methods

- Genetic selection
 - Growth
 - Survival
- Display technology
 - In-vitro display (cell-free translation)
 - Phage display
 - Cell surface display (Bacteria & Yeast)
- Solid or liquid-phase assay

Screening systems

- FACS (Fluorescence-activated cell sorter)
- Digital image spectroscopy
- Fluorescence detection technique

Screening in *E.coli*

Theoretical implications for mutant library construction (size of the library)

Mutant library parameters calculated for our sample via standard equations and modified by introducing empirical coefficient. Number of transformants (L)=20 and number of possible sequence variants (V)=4.

	Standard	Modified
Library size containing 95% of variants	12	53
Library size with 95% chance of being complete	17.4	77

HTS (High throughput screening) System

Screening methods

- Genetic selection
 - Growth
 - Survival
- Display technology
 - In-vitro display (cell-free translation)
 - Phage display
 - Cell surface display (Bacteria & Yeast)
- Solid or liquid-phase assay

Screening systems

- FACS (Fluorescence-activated cell sorter)
- Digital image spectroscopy
- Fluorescence detection technique

AGE-RELATED DISORDERS - MALCOLM A. LEISSRING

Faculty and StaffCell and Molecular
StudiesDiscovery of Novel
Therapeutic TargetsHigh-Throughput
ScreeningIn Vivo StudiesAbout Dr. LeissringContact Information

Home

Once novel drug targets have been identified and validated in vivo and appropriate assays have been developed, it becomes possible to screen large collections of compounds in search of drug-like compounds that affect the target in appropriate ways.

The laboratory of Malcolm A. Leissring, Ph.D., uses these well-

Dr. Leissring's lab uses robotics for highthroughput compound screening.

characterized animal models to test novel therapeutic approaches to treating and

AGE. DELATED DICODDEDC MALCOLMA LEICEDINC

	Location	Assay	Format	Library size	
Hon	Harvard NeuroDiscovery Center	Fluorogenic	384-well, recombinant IDE	Approximately 37,000	=1
Cell Stuc	Harvard NeuroDiscovery Center	FAβB and fluorescence polarization	384-well, recombinant IDE	Approximately 120,000	
Disc Ther High	Southern Research Institute	FAβB and fluorescence polarization	1,536-well, recombinant IDE	Approximately 100,000	
In Vi	Scripps Florida	FAβB and fluorescence polarization	1,536-well, cell- based	Approximately 325,000 x 2	
Con	Genomics Institute of the Novartis Research Foundation	Other	1,536-well, cell- based	Approximately 1,200,000	a

STANFORD High-Throughput Bioscience Center (HTBC)

Search This Site

○ This Site Only ○ Stanford Medical Sites

SEARCH >

Stanford Medicine » School of Medicine » Research » Core Facilities » HTBC » Equipment

HTBC EQUIPMENT

Liquid Handling

Detection Systems

Imaging Systems

HOME

ABOUT

PERSONNEL

SERVICES

→ EQUIPMENT

Instrumentation available at the HTBC (CCSR 0133)

The HTBC has instrumentation for high-throughput (96 and 384 well microplate) liquid handling, highthroughput detection and high-content screening. Our small molecule HTS liquid handling system includes an integrated robotic arm for fully automated enzyme/protein and cell-based screening, while our siRNA liquid handling system allows for fully automated siRNA transfections, cell fixing and staining, and high content imaging. For more information select one of the tabs on the left. The Caliper LS Staccato small molecule liquid handling system and the Analyst GT were purchased with NCRR NIH Instrumentation grant number S10RR019513. The upgraded Agilent (formerly Velocity11) siRNA Screening system and advanced automated options for the ImageXpress Micro were purchased with NCRR NIH Instrumentation grant number S10RR026338.

See video of our integrated system running a real small molecule screen.

PART 1: Cell plate comes from automated Incubator, lid is removed, Twister picks up plate and takes to bar code reader.
Microfluidics for HTS

Microfluidics & Nanofluidics Research Laboratory

Microfluidics for HTS

Todd Thorsen lab

Figure 1. Droplet-generating biochemical screening chip. Monodispersed water droplets maintain uniform spacing and periodicity as they flow towards the device outlet.

Figure 2. Silicone microfluidic array chip for high-throughput single cell assays. Chip contains 1000 independent compartments and 3574 elastomeric valves.

High Content Analysis and High Content Screening

High Content Analysis (HCA) and High Content Screening (HCS) are imaging based multi-parametric approaches of cell analysis at the single-cell level. Originally developed as a complementary technology to traditional biochemical high-throughput screening (HTS) in drug discovery, today High Content Screening is established in a far broader area of the life science space as an unbiased method of imaging multiple cellular samples.

Miami Project High Content Screening Core

The core technology in the HCS uses the Cellomics VTI ArrayScan with a Thermo Fisher robot to feed the scanner.

This system can scan about thirty 96 well plates over night, acquiring 9 fields per well, with 3-4 colors. This is a lot of data.

Functional Diversity

Engineering Stability of Enzymes - T4 lysozyme

-> S-S bonds introduction

Table 8.2 Properties of T4 lysozyme and six engineered variants

Enzyme	Amino acid at position:						No.	%	T _m	
	3	9	21	54	97	142	164	ot -5-5-	Activity	(°C)
wt	Ile	Ile	Thr	Cys	Cys	Thr	Leu	0	100	41.9
pwt	Ile	Ile	Thr	Thr	Ala	Thr	Leu	0	100	41.9
А	Cys	Ile	Thr	Thr	Cys	Thr	Leu	1	96	46.7
В	Ile	Cys	Thr	Thr	Ala	Thr	Cys	1	106	48.3
С	Ile	Ile	Cys	Thr	Ala	Cys	Leu	1	0	52.9
D	Cys	Cys	Thr	Thr	Cys	Thr	Cys	2	95	57.6
E	Ile	Cys	Cys	Thr	Ala	Cys	Cys	2	0	58.9
F	Cys	Cys	Cys	Thr	Cys	Cys	Cys	3	0	65.5

Adapted from Matsumura et al., Nature 342:291-293, 1989.

wt, wild-type T4 lysozyme; pwt, pseudo-wild-type enzyme; A through F, six engineered cysteine variants; -S-S-, disulfide bonds; $T_{m'}$ "melting" temperature (a measure of thermostability).

Engineered protein

Engineering Stability of Enzymes - triosephosphate isomerase from yeast

-> replace Asn (deaminated at high temperature)

Table 8.3 Stability at 100°C of the yeast enzyme triosephosphate isomerase and its engineered derivatives

Enzyme	Amin at pos	o acid sition:	Half-life (min)		
	14	78			
Wild type	Asn	Asn	13		
Variant A	Asn	Thr	17		
Variant B	Asn	Ile	16		
Variant C	Thr	Ile	25		
Variant D	Asp	Asn	11		

Adapted from Ahern et al., Proc. Natl. Acad. Sci. USA 84:675-679, 1987.

Enzyme stability is expressed as the half-life, or rate of enzyme inactivation, at 100°C. A longer half-life indicates a more stable enzyme.

Engineering Activity of Enzymes - tyrosyl-tRNA synthetase from *B. stearothermophilus*

-> replace Thr 51 (improve affinity for ATP) -> Design

Table 8.4 Aminoacylation activity of native (Thr-51) and modified (Ala-51 and Pro-51) tyrosyl-tRNA synthetases

Enzyme	$k_{\rm cat}$ (s ⁻¹)	K_m (mM)	$k_{\rm cat}/K_m~({\rm s}^{-1}~{\rm M}^{-1})$
Thr-51	4.7	2.5	1,860
Ala-51	4.0	1.2	3,200
Pro-51	1.8	0.019	95,800

Adapted from Wilkinson et al., Nature 307:187-188, 1984.

The units for K_m , the binding constant of the enzyme for ATP, are millimolar units (mM); the units for k_{cat} , the catalytic rate constant, are reciprocal seconds (s⁻¹); and the units for k_{cat}/K_m , the catalytic efficiency, are s⁻¹ M⁻¹.

Engineering Ca-independency of subtilisin

Saturation mutagenesis -> 7 out of 10 regions were found to give increase of stability

Mutant:

10x more stable than native enzyme in absence of Ca

50% more stable than native in presence of Ca

Site-directed mutagenesis -> used to alter a single property Problem : changing one property -> disrupts another characteristics

Directed Evolution (Molecular breeding) -> alteration of multiple properties

Protein Engineering - Applications Directed Evolution

Protein Engineering - Applications Directed Evolution

Table 1. Examples of the diversity of properties that have been improved by evolutionary engineering

Protein	Altered function	Reference
Barley α-amylase	Thermostability: ten-fold increase of half-life at 90°C	JOYET et al. 1992
Subtilisin	Alkaline stability: doubling the autolytic half-time at pH 12	CUNNINGHAM and Wells (1987)
Subtilisin	Tolerates loss of stabilizing divalent cations	STRAUSBERG et al. (1995)
Subtilisin E	Active in 60% DMF	You and Arnold (1996)
Streptomyces griseus protease B	Broadened substrate specificity	SIDHU and Borgford (1996)
Green fluorescent protein	40-fold brighter fluorescing bacterial colonies	CRAMERI et al. (1996)
Immunoglobulin constant domain	Preferential formation of heterodimers	Atwell et al. (1997)
Immunoglobulin variable domain	Tolerates loss of structural disulfide bridge	Martineau et al. (1998)

Protein Engineering - Applications Directed Evolution

Protein	Property	Number of cycles for success	Number of nucleotide changes required	Number of amino acid changes required	Reference
β-Lactamase	Increased activity	3	4	4	Stemmer (1994b)
GFP	Improved folding and expression	3	3	3	CRAMERI et al. (1996)
Subtilisin E	Stability in aqueous DMF	2	3	3	You and Arnold (1996)
Arsenite membrane pump	Increased activity	3	3	3	CRAMERI et al. (1997)
FLP- recombinase	Thermostability	8	3-4	3–4	BUCHHOLZ et al. (1998)

Table 2. Representative experiments using successive cycles of variation and selection

In almost all cases a single nucleotide change leading to a single amino acid change was sufficient per cycle, the number of silent mutations was approximately the same. No amino acid change was reported that would have required more than one nucleotide change. Thus current protocols appear to sample sequence space in a biased fashion, in single mutation steps.

GFP

Home A-.

C Comments

2008 .

Prize category: Chemistry

Nobel Prizes	Alfred Nobel	Educational	∨ideo Player	Nobel Organizations	

Home / Nobel Prizes / Nobel Prize in Chemistry / The Nobel Prize in Chemistry 2008

1901

About the Nobel Prizes

Facts and Lists

Nobel Prize in Physics

Cort and list	t Nobel Drizes and	Nobel Laureates	V

- Nobel Prize in Chemistry
 - All Nobel Prizes in Chemistry

Facts on the Nobel Prize in Chemistry

Prize Awarder for the Nobel Prize in Chemistry

Nomination and Selection of Chemistry Laureates

Nobel Medal for Chemistry

Nobel Prizes in Organic Chemistry

Videos about Chemistry

Video Interviews

Video Nobel Lectures

Articles in Chemistry

Nobel Prize in Physiology or Medicine

Nobel Prize in Literature

Nobel Peace Prize

Prize in Economic Sciences

Nobel Laureates Have Their Say

Nobel Prize Award Ceremonies

Nomination and Selection of Nobel Laureates

The Nobel Prize in Chemistry 2008

🖶 Printer Friendly

Osamu Shimomura, Martin Chalfie, Roger Y. Tsien

The Nobel Prize in Chemistry 2008	Ŧ
Nobel Prize Award Ceremony	Ψ.
Osamu Shimomura	Ψ.
Martin Chalfie	Ψ.
Roger Y. Tsien	v

+ Share

M Tell a Friend

Photo: U. Montar Osamu Shimomura

the second second second

2

Photo: 11 Montar Martin Chalfie

Roger Y. Tsien

The Nobel Prize in Chemistry 2008 was awarded jointly to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien "for the discovery and development of the green fluorescent protein, GFP".

Central European Institute of Technology BRNO | CZECH REPUBLIC

Protein Engineering

Pavel Mazura CEITEC – MENDELU Department of molecular biology and radiobiology Scaled Biosystems team mazura@sci.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

