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Preface

This document contains exercise problems for the course F5170 – Intro-
duction to plasma physics. This work was supported by the Ministry of Re-
search and Education of the Czech Republic, project no. FRVŠ 12/2013/G6.
The most valuable source of information for this document was the book
Fundamentals of Plasma Physics by J. A. Bittencourt [4]. The authors
would be grateful for any notification about eventual errors.

The complete and up-to-date version of this document can be found at
http://physics.muni.cz/~sperka/exercises.html.

Contacts
Jǐŕı Šperka jewel@mail.muni.cz
Jan Voráč vorac@mail.muni.cz
Lenka Zaj́ıčková lenkaz@physics.muni.cz

Physical constants

Proton rest mass mp 1, 67 · 10−27 kg
Electron rest mass me 9.109 · 10−31 kg
Elementary charge e 1.602 · 10−19 C
Boltzmann’s constant k 1.38 · 10−23 J K−1

Vacuum permittivity ε0 8.854 · 10−12 A2 s4 kg−1 m−3

Used symbols

Vector quantities are typed in bold face (v), scalar quantities, including
magnitudes of vectors are in italic (v). Tensors are usually in upper-case
calligraphic typeface (P).
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Operators

scalar product a · b

vector product a× b

ith derivative with respect to x di

dxi

partial derivative ∂
∂x

nabla operator ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )

Laplace operator ∆ = ∇2

total time derivative D
Dt = ∂

∂t + u · ∇

Physical quantities
electron concentration ne

electron temperature Te

electron plasma frequency ωpe

Debye length λD

Larmor radius rc
Larmor frequency Ωc

magnetic moment m
force F
electric field intensity E
magnetic field induction B
arb. quantity for one type of particles χα
distribution function f(χα)
mean velocity u
charge denisty ρ
mass density ρm
collision frequency ν
source term due to collisions Sα
scalar pressure p
tensor of kinetic pressure P
mobility of particles Mα
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Chapter 1

Introduction

1.1 Theory

Electron plasma frequency

ωp =

√
ne e2

ε0me
= const

√
ne (1.1)

describes the typical electrostatic collective electron oscillations due to little
separation of electric charge. Plasma frequencies of other particles can be
defined in a similar way. However, the electron plasma frequency is the most
important because of high mobility of electrons (the proton/electron mass
ratio mp/me is 1.8× 103).

Note that plasma oscillations will only be observed if the plasma system
is studied over time periods longer than the plasma period ω−1

p and if ex-
ternal actions change the system at a rate no faster than ωp. Observations
over length-scales shorter than the distance traveled by a typical plasma
particle during a plasma period will also not detect plasma behaviour. This
distance, which is the spatial equivalent to the plasma period , is called the
Debye length, and takes the form

λD =

√
Te

me
ω−1

p =

√
ε0 Te

ne e2
= const

√
Te/ne. (1.2)

The Debye length is independent of mass and is therefore comparable
for different species.
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ne [cm−3] Te [eV] tlak [Pa] Ref.

Plasma Displays (2.5–3.7) ×1011 0.8–1.8 (20–50) ×103 [8]
max 3 ×1012 (40–67) ×103 [22]
(0.2–3)×1013 1.6–3.4 [19]

Earth’s ionosphere max 106 max 0.26 [6]
10−5 [2]

RF Magnetrons 0.5-10 [15]
1–8×109 2–9 0.3–2.6 [20]

DC Magnetrons 1018 1-5 0.5–2.5 [23]

RF Atmospheric
plasma

1013–1014 105 [10]

0.2–6 105 [12]

MW Atmospheric
plasma

1.2–1.9 105 [14]

3× 1014 [11]

Welding arc 1.5 105 [3]
1.5× 1017 105 [21]
1.6× 1017 1.3 105 [18]

Low-pressure CCP 6× 108 6–7 [24]
(0.5–4.5) ×1010 1.4–1.6 4.7 [5]

Fluorescent lamps 1010–1011 1 8× 103 [7]

Table 1.1: An overview of typical values of the most important parameters
for various plasmas.

1.2 Problems

1.2.1 Derivation of the plasma frequency

Consider a steady initial state with a uniform number density of electrons
and an equal number of ions such that the total electrical charge is neutral.
Neglect the thermal motion of the particles and assume that the ions are
stationary. Show that a small displacement of a group of electrons leads to
oscillations with the plasma frequency according to the equation (1.1).

Solution The situation is sketched in the figure 1.1. Assume that the
electric field in the plane perpendicular to the x-axis is zero (just like in
the case of an infinitely large charged plane or capacitor). Let us apply the
Gauss’s law to a closed cylindrical surface (only contour of which is sketched
in the figure): ∮

S
E · dS =

Q

ε0
=

(
Snee

ε0

)
x, (1.3)
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Figure 1.1: Illustration of the problem no. 1.2.1.

where S is the area of the base of the cylinder. The resulting electric field is

Ex =

(
n0e

ε0

)
x. (1.4)

Inserting this electric field into the equation of motion of a single electron
yields

d2x

dt2
+

(
n0e

2

meε0

)
x = 0, (1.5)

Which is an equation of a harmonic oscillator with the frequency

ωpe =

(
n0e

2

meε0

)1/2

. (1.6)

1.2.2 Plasma frequency and Debye length

Compute the plasma frequency and the Debye length for the following
plasmas

(a) Earth’s ionosphere with electron concentration ne = 106 cm−3 and elec-
tron temperature k Te = 0.2 eV.
[ωp = 5, 6× 107 rad · s−1 = 3, 5× 108 Hz, λD = 3, 3 mm]

(b) A cell of a typical plasma display with electron concentration of 1013 cm−3

and electron temperature of 1 eV. The cell dimension is about 100µm.
Is the condition that the system dimension should be much greater than
the Debye length fulfilled?
[ωpe = 2, 3× 1013 rad · s−1 = 3, 6 THz, λD = 21 nm]

(c) A welding arc with electron concentration of 1, 6×1017 cm−3 and electron
temperature of 1, 3 eV
[ωpe = 2, 3× 1013 rad · s−1 = 3, 6 THz, λD = 21 nm]

(d) A fluorescent lamp with electron concentration of 1010 cm−3 and electron
temperature of 1 eV
[ωpe = 5, 6× 109 rad · s−1 = 0, 90 GHz, λD = 74µm]
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1.2.3 Debye-Hückel potential

Show that Debye–Hückel potential

ϕ(r) =
e

4π ε0

exp
(
− r
λD

)
r

(1.7)

is solution of equation

∇2ϕ(r) =
ϕ(r)

r2
D

=
ne e

2

ε0kTe
ϕ(r) (1.8)

where rD is Debye–Hückel radius.
Remark: Debye–Hückel potential which is called after Pieter Debye

(1884-1966) and Erich Hückel (1896-1980) who studied polarisation effects
in electrolytes [9].

Solution Put simply the Debye-Hückel potential into the equation (1.8)
and calculate Laplace operator in spherical coordinates

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
(1.9)



Chapter 2

Motion of particles in
electromagnetic fields

2.1 Theory

The Lorentz force is the combination of electric and magnetic force on
a point charge due to electromagnetic fields. If a particle of charge q moves
with velocity v in the presence of an electric field E and a magnetic field B,
then it will experience the Lorentz force

F = q (E + v ×B) . (2.1)

The gyroradius (also known as Larmor radius or cyclotron radius) is
the radius of the circular motion of a charged particle in the presence of a
uniform magnetic field:

rg =
mv⊥
|q|B

, (2.2)

where rg is the gyroradius, m is the mass of the charged particle, v⊥ is the
velocity component perpendicular to the direction of the magnetic field, q
is the charge of the particle, and B is magnitude of the constant magnetic
field.

Similarly, the frequency of this circular motion is known as the gyrofre-
quency or cyclotron frequency, and is given by:

ωg =
|q|B
m

. (2.3)

Note: A cyclotron is a type of particle accelerator in which charged particles
accelerate due to high-frequency electric field. The cyclotron was invented
and patented by Ernest Lawrence of the University of California, Berkeley,
where it was first operated in 1932.

11
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2.2 Problems

2.2.1 Magnetic mirror

Magnetic mirrors are used to confine charged particles in a limited vol-
ume. The gradient of magnetic field induction can result in reversing the
direction of drift of a charged particle.

Suppose we have an electron located at z = 0 with initial velocity v0 and
an initial pitch angle ϑ. The magnetic field induction is given by

B(z) = B0

(
1 + (γ z)2

)
. (2.4)

Calculate the turning point zt [13].

Solution We start with the conservation of kinetic energy and the mag-
netic moment. The kinetic energy conservation condition yields

v2
0 = v2

t . (2.5)

The z-component of the velocity at the turning point must be zero, which we
immediately use in the equation describing the conservation of the magnetic
moment

me v
2
0 sin2 ϑ

2B0
=

me v
2
t

2B0 (1 + (γ zt)2)

v2
0 sin2 ϑ

(
1 + (γ zt)

2)
)

= v2
t

(
= v2

0

)
γ2 z2

t =
1− sin2 ϑ

sin2 ϑ

zt =
1

γ tanϑ
. (2.6)

We see that the position of the point of reflection depends only on the
gradient of the magnetic field and on the initial pitch angle.

2.2.2 Magnetic mirror of a different construction

Calculate the turning point for a charged particle in a magnetic mirror
with induction given by

B(z) = B0

(
1 + (γ z)4

)
. (2.7)

The initial pitch angle is ϑ.[
zt =

(
1

γ tanϑ

)1/2
]
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Figure 2.1: Sketch of the problem 2.2.3.

2.2.3 Electron in vacuum – three parts

(a) The time dependence of the position of the electron in the first part is
expressed as x(t) = 1

8 t
4 + π. The electron remains in the first part for

one second. Calculate the magnitude of the velocity vx that the electron
acquires at the end of the first part.
[0.5 m/s]

(b) After that, the electron, having the velocity vx, enters the second part,

where a transverse electric field
−→
E of the magnitude 10−10 V m−1 is

applied. This field is generated by the plates of a capacitor with the
length d = 1 m. What is the vertical displacement of the electron with
respect to the starting position at the end of the second part? First
derive the general solution.
[35.2 m]

(c) Finally, the electron enters a homogeneous magnetic field
−→
B of the mag-

nitude 20.6µT (this is the magnitude of the horizontal component of the
geomagnetic field induction in Brno). Calculate the Larmor radius, cy-
clotron frequency and the magnitude of the magnetic moment of the
rotating electron.
[rc = 9.72× 10−6 m, Ωc = 3.6× 106 rad · s−1, |m| = 2.7× 10−23 A ·m2]

(d) What would be the result for proton, neutron and positron? For illus-
tration see 2.1.

2.2.4 E×B drift

Suppose we have a vacuum chamber with electric field E = 1 kV m−1

perpendicular to magnetic field B = 1 mT. Calculate E×B drift speed for
an electron inside the chamber.[
E
B

]
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2.2.5 Relativistic cyclotron frequency

What is the relativistic cyclotron frequency of an electron with velocity 0.8 c
(c denotes speed of light)?
[ω = 6

10 eB/m]

2.2.6 Relativistic particle in an uniform magnetic field

Derive the gyroradius, angular gyrofrequency Ωrel
c , and energy of rela-

tivistic particle with speed v and charge q in an uniform magnetic field with
magnitude of magnetic induction B.

Solution Gyroradius:

r =
γβm0c

qB
(2.8)

Angular gyrofrequency:

Ωrel
c =

|q|B
γm0

=
Ωc

γ
= Ωc

√
1− β2 = Ωc

√
1−

(v
c

)2
(2.9)

Energy:

Ek = mγc2 −mc2 =
mc2√

1− v2/c2
−mc2 (2.10)

2.2.7 Law of conservation of electric charge

Derive continuity equation from Maxwell’s Equations.[
∂ρ
∂t +∇ · J = 0

]
2.2.8 Magnetostatic field

Proof, that in presence of magnetostatic field total kinetic energy of
charged particle Wk remains constant.

2.2.9 Cyclotron frequency of electron

What is a cyclotron frequency (in Hz) of electron in homogenous magneto-
static field:
a) | ~B| = 0.01 T
b) | ~B| = 0.1 T
c) | ~B| = 1 T
d) | ~B| = 5 T
[a) 0.28 GHz ; b) 2.8 GHz; c) 28 GHz d) 140 GHz]
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2.2.10 Cyclotron frequency of ionized hydrogen atom

What is a cyclotron frequency (in Hz) of ionized hydrogen atom in homoge-
nous magnetostatic field:
a) | ~B| = 0.01 T
b) | ~B| = 0.1 T
c) | ~B| = 1 T
d) | ~B| = 5 T
[a) 0.15 MHz ; b) 1.5 MHz; c) 15 MHz d) 76 MHz]

2.2.11 Magnetic moment

Suppose a planar closed circular current loop has area |S| = 10−3 m2 and
carries an electric current:
a) I = 1 A
b) I = 2 A
c) I = 8 A
Calculate the magnitude of its magnetic moment |m|.
[a) |m| = 10−3 A m2; b) |m| = 2× 10−3 A m2; c)|m| = 8× 10−3 A m2 ]

2.2.12 Magnetic moment 2

How can be written the magnitude of the magnetic moment |~m|, which is
associated with the circulating current of charged particle (charge q, angular
frequency ~Ωc, mass m) in uniform magnetostatic field ~B?

[|~m| = |q| | ~Ωc|
2π π r2

c ; | ~Ωc| = |q| | ~B|
m ]

2.2.13 Lorentz force

Suppose a magnetostatic field ~B = (1, 2, 0) T. The velocity of an electron is
~v = (0, 2, 1) m s−1. Calculate Lorentz force.
[~F = −e · (−2, 1,−2) N]
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Elements of plasma kinetic
theory

3.1 Theory

• Phase space is defined by six coordinations (x, y, z, vx, vy, vz).

• The dynamical state of each particle is appropriately represented by a
single point in this phase space.

• The distribution function in phase space, fα(~r,~v, t), is defined as the
density of representative points of the particles α in phase space:

fα(~r,~v, t) = N6
α(~r,~v, t)/(d3r d3v). (3.1)

• The number density, nα(~r, t), can be obtained by integrating fα(~r,~v, t)
over all of velocity space:

nα(~r, t) =

∫
~v
fα(~r,~v, t)d3v (3.2)

• The differential kinetic equation that is satisfied by the distribution
function, is generally known as the Boltzmann kinetic equation:

∂fα(~r,~v, t)

∂t
+ ~v · ∇~r fα(~r,~v, t) +~a · ∇~v fα(~r,~v, t) =

∂fα(~r,~v, t)

∂t

∣∣∣
collision

(3.3)

16
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3.2 Problems

3.2.1 Uniform distribution function

Suppose we have system of particles uniformly distributed in space with con-
stant particle number density n, which is characterised by one dimensional
distribution function of speeds F (v):

F (v) = C for v ≤ v0

F (v) = 0 otherwise,

where C is positive non-zero constant. Express C using n and v0.

[Solution: By integration n = C
v0∫
0

dv we will get the solution C = n
v0

.]

3.2.2 Linear distribution function

What is the normalizing constant C of the following distribution function
of speeds?
F (v) = C v for v ∈ 〈0, 1〉 and F (v) = 0 otherwise.
[C = 2n (n denotes the particle density)]

3.2.3 Quadratic distribution function

What is normalizing constant C of following distribution function of speeds?
F (v) = C v2 for v ∈ 〈0, 3〉 and F (v) = 0 otherwise.
[C = n/9 (n denotes the particle density)]

3.2.4 Sinusoidal distribution function

What is the normalizing constant C of the following distribution function
of speeds?
F (v) = C sin(v) for v ∈ 〈0, π〉 and F (v) = 0 otherwise.
[C = n/2 (n denotes the particle density)]

3.2.5 Boltzmann kinetic equation

Consider the motion of charged particles, in one dimension only, in the
presence of an electric potential ϕ(x). Show, by direct substitution, that a
function of the form

f = f

(
1

2
mv2 + q ϕ(x)

)
is a solution of the Boltzmann equation under steady state conditions.
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Average values and
macroscopic variables

4.1 Theory

• The macroscopic variables, such as number density, flow velocity, ki-
netic pressure or thermal energy flux can be considered as average
values of physical quantities, involving the collective behaviour of a
large number of particles. These macroscopic variables are related to
the various moments of the distribution function.

• With each particle in the plasma, we can associate some molecular
property χα(~r,~v, t). This property may be, for example, the mass, the
velocity, the momentum, or the energy of the particle.

• The average value of the property χα(~r,~v, t) for the particles of type
α is defined by

〈χα(~r,~v, t)〉 =
1

nα(~r, t)

∫
~v
χα(~r,~v, t)fα(~r,~v, t) d3v. (4.1)

• For example, the average velocity (or flow velocity) ~uα(~r, t) for the
particles of type α is defined by

~uα(~r, t) = 〈vα(~r, t)〉 =
1

nα(~r, t)

∫
~v
~v fα(~r,~v, t) d3v. (4.2)

18
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4.2 Problems

4.2.1 RMS speed

What is the rms speed of the following three electrons (|v1| = 1, |v2| = 2
and |v3| = 5)?
[
√

10]

4.2.2 Mean speed of sinusoidal distribution

What is the mean speed of the following distribution function of speeds?
f(v) = n

2 sin(v) for v ∈ 〈0, π〉 and f(v) = 0 otherwise. n denotes the particle
density.
[1]

4.2.3 Mean speed of quadratic distribution

What is the mean speed of the following distribution function of speeds?
f(v) = 3n v2 for v ∈ 〈0, 1〉 and f(v) = 0 otherwise n denotes the particle
density.
[3/4]

4.2.4 The equilibrium temperature

Consider Maxwell-Boltzmann distributions in Fig. 4.1. Which one has the
highest equilibrium temperature?
[c)]

4.2.5 Particle density

Consider Maxwell-Boltzmann distributions in Fig. 4.2. Which one has the
highest particle density?
[c)]

4.2.6 Most probable speed of linear distribution

Consider the following distribution function of speeds f(v) = n v for v ∈
〈0, 1〉 and f(v) = 0 otherwise.
What is the most probable speed of this distribution?
[1]

4.2.7 Most probable speed of sinusoidal distribution

Consider the following distribution function of speeds f(v) = 1
2 sin(v) for

v ∈ 〈0, π〉 and f(v) = 0 otherwise.
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Figure 4.1: Diagram to the problem of the highest equilibrium tempera-
ture 4.2.4.
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Figure 4.2: Diagram to the problem of the highest particle density 4.2.5.
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What is the most probable speed of this distribution?
[π2 ]



Chapter 5

The equilibrium state

5.1 Theory

• The equilibrium distribution function fEqα (~r,~v, t) is the time-independent
solution of the Boltzmann equation in the absence of external forces.

• In the equilibrium state the particle interactions do not cause any
changes in fEqα (~r,~v, t) with time and there are no spatial gradients in
the particle number density.

• fEqα (~r,~v, t) is known as the Maxwell–Boltzmann distribution or Maxwell
distribution (see problems 5.2.2–5.2.4).

Math useful for calculations
The ”Gaussian integral” is the integral of the Gaussian function e−x

2
over

the entire real line. It is named after the German mathematician and physi-
cist Carl Friedrich Gauss. The integral is (a, b denotes a constant):∫ +∞

−∞
e−x

2
dx =

√
π;

∫ ∞
−∞

e−a(x+b)2 dx =

√
π

a
. (5.1)

The gamma function Γ(n) is an extension of the factorial function, with its
argument shifted down by 1, to real and complex numbers. That is, if n is
a positive integer:

Γ(n) = (n− 1)! (5.2)

Other important formulas:∫ ∞
0

xne−a x
2
dx =

Γ( (n+1)
2 )

2 a
(n+1)

2

; Γ

(
1

2

)
=
√
π. (5.3)

22
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5.2 Problems

5.2.1 Gamma function

Starting from the definition of a Gamma function show that, if n is a positive
integer, then

Γ(n+ 1) = n!

Recipe: First, using integration by parts of Γ(n+1) =
∫∞

0 xne−x dx demon-
strate that

Γ(a+ 1) = aΓ(a).

Next, it remains to show, that Γ(1) = 1.

5.2.2 1D Maxwell-Boltzmann distribution function

Gas composing of particles of one kind moving in only one dimension x
is characterised by the following homogeneous isotropic one-dimensional
Maxwell-Boltzmann distribution function:

f(vx) = C · exp

[
−mv2

x

2kT

]
. (5.4)

(a) Calculate the constant C.

(b) Derive the 1D Maxwell-Boltzmann distribution function of speeds.

(c) Calculate the most probable speed.

(d) Calculate the mean speed.

(e) Derive the relation for the number of particles passing through a unit
of length in a unit of time from one side (the flux of particles from one
side).

Solution

(a) Integrate the distribution function over the whole velocity space. The
condition that the integral equals the concentration of particles n yields

n = C

∞∫
−∞

exp

[
−mv2

x

2kT

]
dvx = C

√
2kTπ

m
. (5.5)

C = n

√
m

2kTπ
(5.6)
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(b) Distribution of particle speeds F (v) from the summation over the both
possible directions is

F (v) = 2n

√
m

2kTπ
exp

[
−mv2

2kT

]
(5.7)

(c) From the condition that the derivation of the distribution F (v) must
equal zero

0 = v exp

[
−mv2

2kT

]
(5.8)

we will get that the most probable speed is zero.

(d)

〈v〉 =

∞∫
0

v F (v) dv =

√
2kT

πm
(5.9)

(e)

Γ =

∞∫
0

vx f(vx)dvx = n

√
kT

2πm
(5.10)

5.2.3 Two-dimensional Maxwell-Boltzmann distribution func-
tion

Solve the tasks of the preceding problem with two-dimensional Maxwell-
Boltzmann distribution function

f(vx, vy) = C · exp

[
−
m (v2

x + v2
y)

2kT

]
. (5.11)

Results:

(a) C = mn
2π k T

(b) F (v) = 2π v f(v) = nm
k T v exp

[
−mv2

2kT

]
(c) Most probable speed v =

√
k T
m .

(d) Mean speed 〈v〉 =
√

k T π
2m .

(e) Γ = n
√

k T
2mπ



CHAPTER 5. THE EQUILIBRIUM STATE 25

5.2.4 Three-dimensional Maxwell-Boltzmann distribution func-
tion

Solve the tasks of the preceding problem with three-dimensional Maxwell-
Boltzmann distribution function

f(vx, vy, vz) = C · exp

[
−
m (v2

x + v2
y + v2

z)

2kT

]
. (5.12)

Results:

(a) C = n
(

m
2π k T

)3/2
(b) F (v) = 4π n

(
m

2πkT

)3/2
v2 exp

[
−mv2

2kT

]
(c) Most probable speed v =

√
2 k T
m .

(d) Mean speed 〈v〉 =
√

8 k T
πm .

(e) Γ = n
√

k T
2mπ

5.2.5 Exotic one-dimensional distribution function

Solve the tasks of the preceding problem with the following function (Cauchy/Lorentz
distribution):

f(v) =
C

v2 + kT
m

. (5.13)

Results:

(a) C = n
√

kT
mπ2

(b) F (v) = 2n
√

kT
mπ2

1
v2+ kT

m

(c) Most probable v = 0 speed.

(d) Mean speed v is not defined, [1] see Cauchy distribution.

(e) Not defined.



Chapter 6

Particle interactions in
plasmas

6.1 Theory

Collisional phenomena can be divided into two categories:

• elastic - conservation of mass, momentum and energy is valid in such
a way that there are no changes in the internal states of the particles
involved and there is neither creation nor annihilation of particles.

• inelastic - the internal states of some or all of the particles involved are
changed and particles may be created as well as destroyed. A charged
particle may recombine with another to form a neutral particle or it
can attach itself to a neutral particle to form a heavier charged particle.
The energy state of an electron in an atom may be raised and electrons
can be removed from their atoms resulting in ionization.

The total scattering cross section can be obtained by integrating σ(χ, ε)dΩ
over the entire solid angle:

σt =

∫
Ω

σ(χ, ε)dΩ. (6.1)

In the special case, when the interaction potential is isotropic (e.g. Coulomb
potential), we can get the total scattering cross section using the formula

σt = 2π

π∫
0

σ(χ) sinχdχ. (6.2)

For the same case, when the interaction potential is isotropic, we can get
the momentum transfer cross section using the formula:

26
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σm = 2π

π∫
0

(1− cosχ)σ(χ) sinχdχ. (6.3)

6.2 Problems

6.2.1 Mean free path of Xe ions

Scattering cross section σ for elastic collisions of Xe+ ions with Xe atoms
is approximately independent on their energy with cross section value of
σ = 10−14 cm2.

A) Calculate mean free path l of Xe+ ions for elastic collisions in a weakly
ionized plasma in xenon atmosphere at room temperature (20 ◦C) at the
pressure:
a) 1000 Pa
b) 10 Pa
c) 0.1 Pa

B) How long is the time period between two subsequent collisions, if the
mean temperature of Xe ions is T = 1000 K?

Solution:

A) The mean free path is defined as

λ =
1

nσ
.

Density of particles can be calculated from the equation of state p = nk T ,
so

λ =
k T

p σ
.

So the final results for given pressures are:

a) 4 · 10−6 m b) 4 · 10−4 m c) 4 · 10−2 m.

B) The thermal velocity of ions is v =
√

3 k T
M . Mass of Xe ion is approx-

imately 131 amu (1 amu = 1.66 · 10−27 kg). The time period between two
subsequent collisions equals to the fraction of mean free path and thermal
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velocity:

τ = λ

√
m

3 k T
.

So the results are: a) 17 · 10−9 s b) 17 · 10−7 s c) 17 ·10−5 s.

6.2.2 Hard sphere model

What is the total scattering cross section for the hard sphere model (two
elastic spheres, radius R1 and R2)?
[π (R1 +R2)2]

6.2.3 Total scattering cross section

Differential cross section is given by

σ(χ) =
1

2
σ0(3 cos2 χ+ 1) (6.4)

Calculate the total cross section and the momentum transfer cross section.
[4π σ0, 4π σ0]



Chapter 7

Macroscopic transport
equations

7.1 Theory

From different moments of Boltzmann equation, the following macro-
scopic transport equations can be derived:

• From the condition of conservation of mass the continuity equation

∂ρmα
∂t

+∇ · (ρmαuα) = Sα, (7.1)

where ρmα is the mass density of type-α particles and Sα describes
the creation or destruction of particles due to collisions (ionization,
recombination, etc.).

• From conservation of momentum the momentum transfer equation

ρmα
Duα
Dt

= nαqα (E + uα ×B) + ρmαg−∇ · Pα + Aα − uα Sα (7.2)

uα is the mean velocity, D
Dt = ∂

∂t + uα · ∇ is the total time derivative
operator, nα is the particle density, qα is the charge of a single particle,
E and B are the electric and magnetic fields, g is the gravitational
acceleration, Pα is the kinetic pressure dyad,

Aα = −ρmα
∑
β

ναβ(uα − uβ) (7.3)

is the collision term with ναβ being the collision frequency for the
momentum transfer between the particles of type α and particles of
type β. From conservation of momentum during a collision follows

ρmα ναβ = ρmβ νβα. (7.4)
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• From the energy conservation the energy transport equation

D

Dt

(
3 pα

2

)
+

3 pα
2
∇ · uα + (P · ∇) · uα +∇ · qα =

= Mα − uα ·Aα +
1

2
u2
α Sα, (7.5)

where pα is the scalar pressure, qα is the heat flux vector and Mα

represents the rate of energy density change due to collisions.

7.2 Problems

7.2.1 Afterglow

Consider a homogeneous plasma afterglow consisting of electrons and one
type of singly charged positive ions. In this case, the continuity equation is

∂ne
∂t

= −kr ne ni, (7.6)

where kr is the rate coefficient for recombination. The spatial derivatives
vanish because of the spatial uniformity. The concentration of electrons at
t = 0 is n0. Calculate ne(t > 0). Remember the quasineutrality condition.[
ne(t) = n0

n0 kr t+1

]
7.2.2 Macroscopic collision term – momentum equation

Consider a uniform mixture of different fluids (all spatial derivatives
vanish), with no external forces, so that the equation of motion for the α
species reduces to

duα
dt

= −ναβ (uα − uβ). (7.7)

Assume that the mass density of β species is much greater and thus neglect
the temporal change of uβ. Notice that at equilibrium (duα/dt = 0) the
velocities of all species must be the same.

solution The situation is identical in all spatial coordinates, thus, only
the solution in the x direction will be presented.

duαx(t)

dt
+ ναβuαx(t) = ναβ uβx (7.8)

This simple differential equation can be solved by the method of variation
of parameter. First, look for the particular solution of the homogeneous
equation

duαx,p(t)

dt
+ ναβuαx,p(t) = 0 (7.9)
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This is obviously
uαx,p(t) = C e−ναβt (7.10)

We now take the parameter C to be time-dependent C = C(t) and calculate
the deriative

duαx(t)

dt
=

dC(t)

dt
e−ναβt − C(t) ναβe−ναβt (7.11)

inserting this into the original equation (7.8) yields

dC(t)

dt
e−ναβt = ναβ uβx

from which we obtain by integrating

C(t) = uβx eναβ t +K

where K is an arbitrary integration constant. The solution is then

uαx(t) = uβx +K e−ναβ t (7.12)

And similarly for all three spatial components. The velocity uα will expo-
nentially approach to the velocity uβ with the rate given by the collision
frequency for momentum transfer ναβ.

7.2.3 Macroscopic collision – momentum equation II

Recalculate the task of the previous problem without the assumption
uβ = const. In this case, the velocities uα, uβ are described by a pair of
coupled differential equations

duα(t)

dt
= −ναβ (uα(t)− uβ(t)). (7.13)

duβ(t)

dt
= −ρmα

ρmβ
ναβ (uβ(t)− uα(t)), (7.14)

where ρmα, ρmβ are the mass densities of particles α, β. Suppose that uα
and uβ are parallel and uα(t = 0) = 2uβ(t = 0).

(a) Calculate the time dependence of the difference u = uα − uβ.

(b) Calculate uα(t) and uβ(t).

Results:

(a) u(t) = uα(0) · exp
[(

1 + ρmα
ρmβ

)
t
]

(b) uα(t) = uα(0)
ρmα+ρmβ

(
ρmβ · exp

[
−ναβ

(
1 + ρmα

ρmβ

)
t
]

+ ρmα

)
uβ(t) = u(t) + uα(t)
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7.2.4 Simplified heat flow equation

Suppose the simplified equation for heat flow in a stationary electron gas

5 pe
2
∇
(
pe
ρme

)
+ Ωce (qe ×B) =

(
δqe

δt

)
coll

. (7.15)

Assume the collision term given by the relaxation model(
δqe

δt

)
coll

= −ν (fe − fe0) (7.16)

and the ideal gas law pe = ne k Te. Show that the heat flow equation can be
written as

Ωce

ν
(qe ×B) = −K0∇Te + (fe − fe0), (7.17)

where

K0 =
5 k pe
2me ν

(7.18)

is the thermal conductivity.



Chapter 8

Macroscopic equations for a
conducting fluid

8.1 Theory

The equations governing the important physical properties of the plasma
as a whole can be obtained by summing the terms for the particular species.
If also several simplifying assumptions are made, the following set of so
called magnetohydrodynamic equations can be derived:

• The continuity equation

∂ρm
∂t

+∇ · (ρmu) = 0 (8.1)

• The momentum equation

ρm
Du

Dt
= J×B−∇p (8.2)

• Generalised Ohm’s law

J = σ0(E + u×B)− σ0

n e
J×B. (8.3)

The electric and magnetic fields are further bound by the Maxwell equations.
In these equations, viscosity and thermal conductivity are neglected.

8.2 Problems

8.2.1 Electric current density

The mean velocity of plasma u is defined as a weighted average of the
mean velocities of the particular species

u =
∑
α

ρmα
ρm

uα (8.4)
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where ρm is the total mass density of the plasma. Each species has con-
centration nα, charge qα and the so called diffusion velocity wα = uα − u.
Calculate the total electric current density J in terms of the total electric
charge density ρ and the particular densities, charges and diffusion veloci-
ties. Note, that due to the definition of the mean velocity of plasma, the
result is not simply J = ρu.[
J = ρu +

∑
α
nα qαwα

]
8.2.2 Fully ionised plasma

From the equation for electric current density in fully ionised plasma
containing electrons and one type of ions with charge e

J =
∑
α

nα qα uα = e(ni ui − ne ue) (8.5)

and form the equation for the mean velocity of the plasma as a whole

u =
1

ρm
(ρme ue + ρmi ui) (8.6)

derive the drift velocities ui and ue.[
ui = µ

ρmi

(
ρmu
me

+ J
e

)
, ue = µ

ρme

(
ρmu
mi
− J

e

)
, µ = memi

me+mi

]
8.2.3 Diffusion across the magnetic field

From the momentum conservation equation with the magnetohydrody-
namic approximation

ρm
Du

Dt
= J×B−∇p (8.7)

and the generalised Ohm’s law in the simplified form and without considering
the Hall effect term

J = σ0 (E + u×B) (8.8)

derive the equation for the fluid velocity u.
Assume E = 0 and p = const. and calculate the fluid velocity perpen-

dicular to the magnetic field B.

Solution The equation for u is

ρm
Du

Dt
= σ0 E×B + σ0 (u×B)×B−∇p. (8.9)

Assuming E = 0 and p = const., it reduces to

ρm
Du

Dt
= σ0 (u×B)×B (8.10)
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To calculate the vector (u×B)×B we define the coordinates such that
the z-axis is parallel with the magnetic field. In these coordinates, the cross
product is

(u×B)×B = (−uxB2, −uy B2, 0). (8.11)

The equations for x and y component of the velocity are thus of the same
form. Writing only the equation in x

Dux
Dt

=
−σ0B

2

ρm
ux (8.12)

This has a form of a simple decay problem. The solution is

ux(t) = ux(0) exp

(
−σ0B

2

ρm
t

)
. (8.13)

The same holds for uy, so the time dependence of the component of the

velocity perpendicular to the magnetic field u⊥ =
√
u2
x + u2

y is

u⊥(t) = u⊥(0) exp (−t/τ) , (8.14)

where
τ =

ρm
σ0B2

(8.15)

is the characteristic time for diffusion across the magnetic field lines.



Chapter 9

Plasma conductivity and
diffusion

9.1 Theory

In weakly ionised cold plasma, the equation of motion for electrons takes
the simple form of the so called Langevin equation

me
Due
Dt

= −e (E + ue ×B)− νcme ue, (9.1)

where νc is the collision frequency for momentum transfer between the elec-
trons and the heavy particles.

In the absence of a magnetic field, the current produced by moving
electrons is

J = −e ne ue (9.2)

and the DC conductivity is

σ0 =
ne e

2

me νc
(9.3)

and the electron mobility

Me = − e

me νc
= − σ0

ne e
. (9.4)

When an external magnetic field is present, the plasma becomes anisotropic,
and the DC conductivity and electron mobility are described by tensors (see
problem 9.2.2).

In weakly ionised plasma with relatively high density of neutrals, the
diffusion equation for charged species α is

∂nα
∂t

= D∇2nα. (9.5)
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The diffusion coefficient De for electrons in an isotropic plasma with no
internal electric fields is

De =
k Te
me νc

. (9.6)

In the magnetised plasma, the De becomes a tensor similar to the DC
conductivity or electron mobility.

In plasma, electrons usually diffuse faster than ions due to their lower
mass and thus higher mobility. As a result, internal electric field is produced,
slowing down the diffusion of electrons and speeding up the diffusion of ions.
This effect is called ambipolar diffusion. If the relation between the ion
concentration ni and ne is

ni = C ne (9.7)

where C is a constant, the ambipolar diffusion coefficient Da is

Da =
k (Te + C Ti)

me νce + C mi νci
, (9.8)

where νci, νce are the collision frequencies for momentum transfer between
neutrals and ions or electrons, respectively.

9.2 Problems

9.2.1 DC plasma conductivity

From the Langevin equation for electrons in the absence of magnetic
field and in the steady state

− eE−me νc ue = 0 (9.9)

derive the expression for the DC conductivity of the plasma.

Solution The electric current density is defined as

J = −e ne ue (9.10)

Inserting this into the Langevin equation (9.9), we obtain the expression for
the current density J

J =
ne e

2

me νc
E (9.11)

The Ohm’s law states
J = σ0 E (9.12)

the DC conductivity is thus

σ0 =
ne e

2

me νc
. (9.13)
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9.2.2 Mobility tensor for magnetised plasma

In magnetised plasma, the Ohm’s law obtains a matrix form

J = S ·E (9.14) Jx
Jy
Jz

 =

 σ⊥ −σH 0
σH σ⊥ 0
0 0 σ‖

  Ex
Ey
Ez

 ,

where the components of the DC conductivity tensor S are

σ⊥ =
ν2
c

ν2
c + Ω2

ce

σ0 (9.15)

σH =
νc Ωce

ν2
c + Ω2

ce

σ0 (9.16)

σ‖ = σ0 =
ne e

2

me νc
, (9.17)

where νc is the collision frequency for momentum transfer between electrons
and heavy particles and Ωce is the electron cyclotron frequency due to the
external magnetic field. Find the components of the mobility tensor Me

defined as
ue =Me ·E. (9.18)

Results:

Me =

 M⊥ −MH 0
MH M⊥ 0

0 0 M‖



M⊥ = − νc e

me (ν2
c + Ω2

ce)
(9.19)

MH = − Ωce e

me (ν2
c + Ω2

ce)
(9.20)

M‖ = − e

me νc
(9.21)

9.2.3 Ohm’s law with magnetic field

Consider the equation J = S · E as in the preceding problem. Suppose
that E = (E⊥, 0, E‖) and B = (0, 0, B0). Calculate J. Note what direction
of the electric current is governed by what component of S.[
J = (σ⊥E⊥, σH E⊥, σ‖E‖)

]
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9.2.4 Diffusion equation

Solve the diffusion equation for one spatial dimension

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
(9.22)

by separation of variables, assuming

n(x, t) = S(x)T (t). (9.23)

Results:

• Tk(t) = T0 exp(−Dk2 t)

• S(x) = c(k) exp(i k x), k is a separation constant

• n(x, t) =
+∞∫
−∞

c(k) exp(−i k x−Dk2 t) dk



Chapter 10

Some basic plasma
phenomena

10.1 Theory

In a paper from 1923, an American chemist and physicist wrote, that
electrons are repelaed from negative electrode, whereas positive ions are
attracted towards it. Langmuir concluded, that around every negative elec-
trode, a sheath of defined thickness containing only positive ions and neutral
atoms exists. Morever, Langmuir observed, that also the glass wall of the
discharge chamber is negatively charged and repels (or reflects) almost all
electrons [16].

The fact, that insulated objects inside plasma are negatively charged
(in respect to plasma) to floating potential, is caused by higher mobility of
electrons than ions. The thermal velocity of electrons (kBTe/me)

1/2 is at
least 100 times higher than the thermal velocity of ions (kBTi/Mi)

1/2 [17].
The first reason for different mobility is higher mass of ions. If we consider
only proton (the lightest ion that can appear in a plasma), than the ratio
between the mass of proton and electron mp/me is 1836. This ratio cor-
responds approximately to the ratio of masses of heavy bowling ball (5 kg)
and ping pong ball (2,7 g). Another reason for higher thermal velocity of
electrons in low-temperature plasma is their higher temperature in respect
to the ions.

The slowest possible speed of ions at the sheath edge is called the Bohm
speed uB. Ionts are accelerated to this speed in a quasi-neutral pre-sheath,
where small electric field exists. The Bohm criterion of plasma sheath is
described by following equation

us(0) ≥ uB =

√
kB Te

Mi
. (10.1)
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10.2 Problems

10.2.1 Waves in non-magnetized plasma

Plasma of so called E layer of Earth’s ionosphere has electron density ap-
proximately 105 cm−3 and is at altitude of approximatelyo 100 km.
a) Which electromagnetic waves can be reflected from this layer?
b) Calculate the dielectric constant of plasma for the waves with frequencies
of 100 Mhz and 1000 Hz.
b) Calculate the skin depth of the wave with frequency of 1000 Hz.

Solution:

a) All electromagnetic waves with frequency lower than the plasma frequency
(2 839 725 Hz) will be reflected.

b) The dielectric constant of plasma is defined as

ε = 1−
ω2
p

ω2

For 100 MHz ε = 0.9991 (positive value, elmag. waves propagate), for
1000 Hz ε = −8064037 (negative value, imaginary refraction index, reflec-
tion).

c) Skin depth δ appropriately equals to c/
√
ω2
p − ω2, where c is speed of

light. The skin depth for 1000 Hz is 16.8 m.

10.2.2 Floating potential

Explain why insulated object inserted to plasma will aquire a negative po-
tential with respect to the plasma itself.

10.2.3 Bohm velocity

Calculate the Bohm velocity for hydrogen ion in plasma with electron tem-
perature of Te = 1 eV.
[9 787.2 m/s]

10.2.4 Plasma frequency

When the macroscopic neutrality of plasma is instantaneously perturbed by
external means, the electrons react in such a way as to give rise to oscillations
at the electron plasma frequency. Consider these oscillations, but include
also the motion of ions. Derive the natural frequency of oscillation of the
net charge density in this case. Use the linearized equations of continuity
and of momentum for each species, and Poisson equation, considering only
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the electric force due to the internal charge separation.

[ω = (ω2
e + ω2

i )1/2, where ωi =
√

ne e2

ε0Mi
]



Chapter 11

Boltzmann and
Fokker-Planck collision terms

11.1 Theory

Under several simplifying assumptions (mainly homogeneous and isotropic
distribution function of electronic velocities, molecular chaos, considering
only binary collisions and ignoring external forces), so called Boltzmann
collision integral can be derived(

∂f

∂t

)
coll

=

∫∫
g σ(g,Ω) [fe(v

′) f1(v′1)− fe(v) f1(v1)] dΩ d3v. (11.1)

g = |v − v1| is the relative speed of the electron and its collision partner,
σ is the differential cross section for this type of collisions, depending on
the solid angle Ω. Two types of distribution functions are considered here
– the electronic distribution function fe(v) and that of the particular kind
of collision partners f1(v1). If more kinds of collision partners should be
considered, the collision term is expressed as a sum of terms similar to eq.
(11.1).

The first term expresses the amount of electrons with initial velocity v′

that undergo collisions with the collision partner with velocity v′1. After
this collision, the electrons have velocity v and their collision partners have
velocity v1, i.e. they add to the electronic distribution function at the
velocity v. The second term expresses an inverse collision, which leads to
loss of particles of the velocity v and is thus negative.

If only collisions leading to small-angle deflections are considered, as
expected for long-range Coulomb interactions, the Fokker-Planck collision
term can be derived(

δ fα
δt

)
coll

= −
∑
i

∂

∂vi
(fα〈∆vi〉av)+

1

2

∑
ij

∂2

∂vi∂vj
(fα〈∆vi∆vj〉av), (11.2)
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where

〈∆vi〉av =

∫
Ω

∫
v1

∆vi g σ(Ω)dΩfβ1 d3v1 (11.3)

〈∆vi∆vj〉av =

∫
Ω

∫
v1

∆vi∆vj g σ(Ω)dΩfβ1 d3v1 (11.4)

are the coefficients of dynamical friction and diffusion in velocity space,
respectively.

11.2 Problems

11.2.1 Collisions for Maxwell-Boltzmann distribution func-
tion

Consider a plasma in which the electrons and the ions are characterised,
respectively, by the following distribution functions

fe = n0

(
me

2π k Te

)3/2

exp

[
−me(v − ue)

2

2 k Te

]
(11.5)

fi = n0

(
mi

2π k Ti

)3/2

exp

[
−mi(v − ui)

2

2 k Ti

]
(11.6)

(a) Calculate the difference (fe(v
′) fi(v

′
1)− fe(v) fi(v1)).

(b) Show that this plasma of electrons and ions will be in the equilibrium
state, that is, the difference (fe(v

′) fi(v
′
1) − fe(v) fi(v1)) will vanish if

and only if ue = ui and Te = Ti.

Solution

(a)

(fe(v
′) fi(v

′
1)− fe(v) fi(v1)) = n2

0

(
1

2π k

)3(memi

Te Ti

)3/2

×

×
(

exp

[
−me (v′ − ue)

2

2 k Te
− mi (v′1 − ui)

2

2 k Ti

]
−

− exp

[
−me (v − ue)

2

2 k Te
− mi (v1 − ui)

2

2 k Ti

])
(11.7)

(b) For the difference to vanish, the term in the parentheses must equal zero.
This will happen if the arguments of the exponentials will be equal. Let
us rewrite the arguments, omitting the factor −(2 k)−1:

me

Te
(v′2 − 2 v′ · ue + u2

e) +
mi

Ti
(v′21 − 2 v′1 · ui + u2

i ) (11.8)
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me

Te
(v2 − 2 v · ue + u2

e) +
mi

Ti
(v2

1 − 2 v1 · ui + u2
i ) (11.9)

From the derivation of the Boltzmann collision term follows, that the
pairs of velocities v, v1 and v′, v′1 can be considered as pairs of velocities
before and after an elastic two-body collision. Thus, they are bound by
the conservation laws:

me v
2 +mi v

2
1

2
=
me v

′2 +mi v
′2
1

2
(11.10)

me v +mi v1 = me v′ +mi v
′
1 (11.11)

It is now obvious from the last four equations, that the collision term
will vanish if and only if Te = Ti and ue = ui. In other words, the
distribution function fe will be changed by the collisions only if the
plasma is out of equilibrium – the collisions tend to bring the plasma to
the state of equilibrium.

11.2.2 Collisions for different distributions

Recalculate the task (a) of the preceding problem with Druyvesteyn-like
distribution function for electrons and Maxwell-Boltzmann-like distribution
for ions (Ce, ae and Ci are constants)

fe = Ce exp[−aem2
e (v − ue)

4] (11.12)

fi = Ci exp

[
−mi (v′1 − ui)

2

2 k Ti

]
(11.13)

Will the difference (fe(v
′) fi(v

′
1)− fe(v) fi(v1)) be zero for ue = ui?

11.2.3 Collisions for Druyvesteyn distribution

Recalculate task (a) of the first problem for Druyvesteyn-like distribution
for both electron and ion velocities (see eq. (11.12)). Can the collision term
be equal zero for ue = ui? Is it possible to find equilibrium state of plasma
described by the Boltzmann kinetic equation with Boltzmann collision term
in form of Druyvesteyn-like distribution?
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ques, H Schöpp, D Uhrlandt, and J Schein. Power dissipation, gas
temperatures and electron densities of cold atmospheric pressure he-
lium and argon rf plasma jets. Plasma Sources Science and Technology,
46(12):125203, 2013.
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