mocies with only an E, component tangential

i ider TM, : ‘
con\liemezier Eﬁnz@ro vaofue of E, at the wall will drive a wall curren o[ 2 ) . _ -
scont I | DL (nouof)
according to Ohm's law:

j =oE (4-46 2 exampie, in copper, o = 5.80 % 107 (Q-m)""1 so that the skin dEpth at 1
Let us use this in Ampere’s law (Equation 4.1), applied within the wall
assuming a wave with time dependence e _
, @ (44 e i }Z - T]'de = J.joe’(lﬂ).\'fﬁdAx — _m.émrjo (453)
(VXB)OE:pGGEZfITEZ ) . 2
c : - J J
For walls of high conductivity, so that L,0 >> (D/fCPZ - 0;11’1'08,0’ INE i(g];;égg_ , define a complex surface impedance of the conducting wall by
soht side. Now, take the curl of Faraday's ‘aw o
second term on thg rlg4 ;-} and the fact that there are no free charges, so th; |
4.2) and use Equation . | I |
zo=r =t o =) {4.54)
VeE = 51 1
[Vx(VxE)|ez=-VE, = io{V % B)e 2 = ioiy0E,
i i -dimensional planar situation, so .
For convenience, model this as a one plenar o _ 1 "
i 1 ined shortly) 1 U
Equation 4.48 takes the form (with . to be determ -1 G -

4*E,
dx?

has the dimensions of a resistance, although strictly speaking,
4 resistance in the classical sense.

sider the relationship between J, and the tangential component
all. Starting with Ampere’s law again, neglecting the so-called
urrent term, (1/c?) dE / o, we integrate over the area perpen-
axis that excludes the empty interior of the waveguide:

”VxB-d=(ﬁBodl=u0”jch (456)

formation of the area integral to a closed line integral over the
e area of integration is a direct consequence of Stokes’ theo-
that the magnetic field drops to zero deep in the conductor
try causes the portions of the line integral perpendicular to
-wall to vanish, the line integral becomes an integral over
surface of the waveguide. Now for most cases of interest
gration on the far right-hand side of Equation 4.56 decom-
able integrations along the surface of the waveguide and

=—o’E,

i ing i wa
with x measured from the wall, at X = 0, and increasing into the wa

has the solution

with E, the axial electric field at the wall, x =0, and

- (i*_l) (mu“(,)”?

21/2

j ithin th
i i field drops off exponentially wit
e 2 one s Exto the wall. The distance

is known as the skin depth, 5,

What we se
and the phase is shifted as one move

exponential field drop-off in the wall
given by



perpendicular to the surface of the waveguide, into the wall. This is cle
at least approximately the case for our rectangular and circular wavegtide
where one can separate the dependences on x and y, or r and 8, into prodjy
of functions that depend only on x or y, or r or 8. Therefore, in a cylindy
waveguide, for example, for a TM mode, we can rewrite Equation 4.5

WL,TM=2—;§-rO& Jf D [7,- (Mp,,)]2 (4.61)

is point, we want to eliminate D in favor of the power carried by the
gide: To do so, we return to Equation 4.39:

1
Iz = B(—) :
g .'1 woo 2w 1 % n
rJ-rer‘de(ExB*)o%=ﬁ—J-rer‘d9(E,.B§—EBB,"T) (4.62)
where ], is defined analogously to Equation 4.53 as the current per 2Hq 7D 2Wy b

circumference at the waveguide wall.

Finally, we use the Poynting vector, S = E x H, to determine the po
flow per unit length from the electromagnetic field into the wall per |
length, which is power lost to the resistivity of the wall. We denote
quantity Wy, and it is given by i

expfessions for the field quantities in Table 4.3, performing the
i‘_iation 4.62, and solving for D, Equation 4.61 becomes

@

W, = EsTaRe cﬁ E, {1, By (1) 7,00

(4.63)

quanﬁ'_ty','which is the loss per unit length along the axis, we can

where the integral is over the surface of the waveguide at r = r,. Note
average loss per unit area in the wall:

when the wall is perfectly conducting, E,(r;) = 0 and there is no powe
As we found earlier, though, E, no longer vanishes at the wall for finiite
so that we can see how the power loss in the wall arises. Makhqg’__'ﬁs
Equations 4.54 and 4.57, remembering that we take the real part:
integral in Equation 4.58, we find

Bum) Wome o 1(R) Py (4.64)

L

e

1
Wi = 7 R J‘
0

the ‘power loss in the wall, the power carried along the

de e
willalso decline exponentially with distance along the waveguide:

/.

which emphasizes the significance of the surface resistivity, R,, in dete Py, ( z) = Pye 2 (4.65)
ing power losses to the wall. In finding J,, we note that because ¢ is:a ’
quantity, E, in Equation 4.46 is a small quantity, of order o, while J, at
are of order unity, so that we find J, from Equation 4.57. For TM mode . 01T,
a circular waveguide, By is given in Table 4.3. From the table and Equ. o
457, we find i W )

IM modes: By =2t = LIR Y 1 (4.66)

2Py

ol Sy |

a5 ) [ )] s e)

I

1 of the corresponding expressions for TE waves proceeds
ing account of the fact that the wall current flows in response
ntial magnetic field components, By and B,. In this case,

where, as usual, 7, = 377 Q. Putting this expression into Equation
using the identity [, (1,,) =], (1,,), we get




s
2 RS (x4 nz P
Wi =2 J (f_ r— e (4.67)

d dissipates its energy. We caution the reader, though, that our expression
not completely accurate in the vicinity of the cutoff frequency, since our
v deriying approximations begin to break down in this region.
Of course, all of the foregoing relationships between the power and the
1 field strengths and between the power and the power dissipated in the
alls. are single- -mode relationships linking the power and electric field for
ven mode. As the cross section increases, multiple modes will become
able to carry power in the waveguide, and the power density summed
55 all modes will become important. Regarding power density, a trade-
many times involved: one would like to limit the number of modes
'ila'B'Ie at the signal frequency in a waveguide or cavity, either to cut off
opagation between cavities in a Klystron or klystron-like device altogether
ibit competition between modes in the generation and transmission
wer' As we have shown, in principle, any mode with a cutoff frequency
he frequency of an input signal can carry the wave energy; the exact
onment of energy among the different modes is determined by the
ils of the coupling to the waveguide. Because o, decreases as the cross-
onal dimensions of a waveguide increase, a single-mode waveguide must
enough fo allow only one mode to be above cutoff for a given
cy. Achieving high power-handling capacity in HPM systems, how-
ently requires large cross-sectional areas, so that many modes lie
tf, particularly at the higher signal frequencies. Such waveguides
‘be overmoded, and special care must be taken to prevent energy
er into unwanted modes. Many of the recent advances in HPM sources
sed on techniques for better control of parasitic modes in over-
tures: waveguides, cavities, and beam-wave interaction regions.

<PL,TE> _ Wi AR fa 1 + n Pre
A 2nry mw \Zy I\ f o

2 2
TE modes: By = 1R fe ki !

T3 2 1/2
RIS e e 1Y ]

A plot of B for several modes in a copper waveguide is shown in Figur
4.8. Remember that f§ gives us the rate at which the fields decrease expone
tially with distance along a waveguide with small, but nonzero, resistivity
in the wall material, while the power drops exponentially at twice this rate
according to Equation 4.65. Note that the quantities we have derived invo
dimensionless ratios except for the inverse dependence on the Wavegm'
radius and area, so that the units in these expressions depend only on
units with which we measure the waveguide radius. We see that this quan
diverges near the cutoff frequency. In fact, physically, we expect that a
group velocity drops to zero at the cutoff frequency, the electromagn
energy quits propagating along the line, so that the wave, in a sense;.

Ix107%
TEq TEgs :
Ix107% g ER odic Slow-Wave Structures
L1 L i nour attention to Figure 4.4 and recall a significant feature of
7 ] on curves for both rectangular and circular waveguides: the
E E ] 1ty along the waveguide, w/k,, of all of the normal modes for
1x107°F TEq; 0z d: circular waveguides is greater than the speed of light, c. To
group velocity for each mode, dw/0k,, lies between — and ¢, so
1x106 L 4 arries energy along the waveguide at a speed greater than the
ght: Nevertheless, the superluminal phase velocities (L.e., greater
N Y o SN ! a limitation because, as we shall see, they do not allow
1 10 160 1000 vith space-charge waves with phase velocities less than c.
f{GHz) o] td this limitation is to introduce a periodic variation in some
e waveguide in order to reduce the phase velocities below the
FIGURE 4.8 this creating normal modes known as slow waves. This might

The attenuation coefficients for the fields and power in a waveguide with lossy wal

the conductivity of copper. cally loading the waveguide with a resonant cavity, or wind-

wound wire around the inner wall of the waveguide, or



radial and axial electric field componénts, E; and E,, and the aximuthal
‘ agnetic field component By, The periodicity of the system allows us to
iploy Floquet’s theorem to write E, as a sum of terms:

péfibdiéally varying the radius of the waveguide. In fact, }oading :
waveguide with resonators spaced azimuthally arop.n.d the wall is hgw the
interaction region for magnetrons, including relativistic magnetrons, is con
structed. The use of slow-wave structures (SWSs) constructed by wrapping
a helical winding around the beamn transport region, while common n con
ventional microwave devices operating at subrelativistic voltages (i.e., wel
below 500 kV), is not seen in relativistic microwave sources, presumabl
because of concerns about breakdown between turns in the winding at hig]
power and large DC fields. In addition, the low phase velocities that can b
achieved with a helix are simply not needed in relativistic devices, as we
shall see. On the other hand, periodic variation of the wall radius in relativ:
istic Cerenkov devices (Chapter 9), as well as in Bragg reflectors and mg
converters, is a very common configuration.

L= ) By (r)efored Z E,, (r)e"ter |¢mo (4.73)

Hi=—=o M=o

here that Floquet’s theorem essentially amounts to expanding the field
“otirier series, which is required to maich the boundary conditions in
tions 4.5 and 4.6 at the periodically varying boundary of the slow-wave
ture. Each of the other field cornponents can be written in a sum of the

form; for each term of the sum at a given value of m, the components
elated by relations of the form shown in Table 4.3, with k, replaced by
1d k; replaced by k,.:

4.4.1 Axially Varying Slow-Wave Structures

Let us consider this last method of producing a slow-wave structure fir

2 2 :
We will only sketch out the process of deriving a dispersion relation, lea.\; K = %cozi - CCL ~K2 (4.74)
the rather complicated derivation for such devices to the reader who wis
to consult the references.”¢ The important point is that for slow-wave 5t1
tures of this kind in relativistic electron beam devices, because the elect
velocity is almost ¢, the waves need not be slowed to any great degre
Therefore, the variation in the wall radius is rather small, so that it can y k, O, | wr
treated as a small perturbation of a smooth-walled circular waveguide = m? _

For simplicity, we consider variations of the wall radius with dis_

along the axis of period z, assuming no variations with 0, for E,, each function E,, obeys a differential equation like Equa-

that, from Table 4.3,

T {Z) =ta (Z+ZO)
i Ezm = Am ]D (k_LmT) (476)

although we note that structures can vary helically, also. As a conseque
of Equation 4.70, the radian frequency of the normal electromagnetic mo

of the slow-wave structure @ is a periodic function of the axial waverit oint; the derivation for TM waves in a periodic slow-wave struc-

ges from that of the smooth-walled circular waveguide because,
<l 7 Mgn/To* Rather, we need to find a different dispersion
reen' o and k,. The process by which this is done is recounted

f:the references. In short, we find the unit tangent and unit
tors for the surface of the slow-wave structure; the direction of
ctors n, and n,, is straightforwardly determined from the shape
en by r,(z), so that n, and n, will depend on z. We then use

Equations 4.5 and 4.6, also using the solution for E,_ in
d the expressions for the other field quantities derived from

k)= ok, +mhy}= ok, }

where m is any integer, k, = k, + mh,, and

oint out that m is an index on the so-called spatial harmonics in the periodicity
4:70 and the sum in Equation 4.72, while n is the index on the radial ordering
Consider TM modes and further assume no azimuthal variation (i: I functions J,. By assumption, the azimuthal index p has been chosen to be

0); in this case, the only nonzero electromagnetic field components




v applying them at r,(z). To avoid having to deal with the z variation of
the resulting expressions, we invert the Fourier transform that we employed
in Equation 4.74, for example, multiplying the boundary condition for the
tangential component of E by exp(~ilh,) and integrating over z from -zy?2 to
z,/2. When we do so, our boundary conditions can be written as a linea
algebraic expression of the form

E

DeA=0 (4.77

f{GHz)

where D is an infinite-dimensional matrix with elements give by

Dbu = % T ei("k’,)r{uzjoI:k_Lmrw (Z)]dz

C
im 2p/2

factors A, in Equatlon 4.76. In order for a solution to exist for the vector:
in Equatxon 4.77, it must be true that

det [D] =0 “

Note that the matrix elements depend on the shape of the wall perturba
through the term in the argument of the Bessel function in the integra
Figure 4.9, we plot @ vs. k, for the particular case of a sinuscidally Tipp
slow-wave structure, for which

1,(2) = 1y + rysin (hyz)

with rg = 1.3 emy, 1y = 0.1 e, and z, = 1.1 ecm. In the plot, we have let k;
over the interval from 0 to hy; the plot is periodic in k, if we exten
interval. Note that slow waves with |0/k,| < ¢ have been created b
periodicity in Equation 4.71. As we shall discuss, the plot shown the
only appr0x1mate1y correct because of convergence issues with the
the expansion in Equation 4.73. :

The dispersion relation given by Equahons 4.78 and 4.79 is clearly il
complicated than that for TM waves in circular waveguides with con
radius; however, one can construct an approximate version of the plotsk
in Figure 4.9 by properly connecting a set of dispersion diagrams fo
stant-radius waveguide modes, with wavenumbers properly shifted b
tiples of hy, as shown in Equation 4.71. An example application of this p
for the lowest four modes of a sinusoidally rippled slow-wave striu
shown by the solid curves in Figure 4.10.° The broken curves in the
are the dispersion curves of three spatial harmonics of the TMGm mo
a smooth-walled waveguide with constant radius, r,, = 1y :

he sloﬁr-wave-structure dispersion curves from the shifted smooth-walled
Th_ese curves are periodic in k, with period hy. (From Leifeste, G.T. et al., J.
1986. With permission.)




.Forisinusoidaily rippled walls, it has been: provén that the series in
quation 4.73, which is based on the so-called Rayleigh hypothesis, fails to
nverge When hgr; = 2n(r,/z,) > 0.44878 Comparing the results of calcu-
tions using Equation 4.73 with results obtained by numerically solving
axwell’s equations with no assumption of a Floquet expansion, Watanabe
18 foun.d that the dispersion relation in Equation 4.79, with matrix
ments given in Equation 4.78, is quite accurate at hor; ~ 5 x 0.448.° The
lutions for the electromagnetic field quantities within the rippled-wall
cture derived using a Floquet expansion, however, are noticeably dif-
nt:from the quantities determined by numerical solution of Maxwells
tions.: Toward the center of the rippled-wall slow-wave structure
ugh, the fields computed by the two methods are more similar to on(;
ther, so that the effect of the fields on a beam would be approximately
amie using either method.

o’ =kiet ok, (0,11) {4.81)

shifted for three values of m (= -1, 0, 1) in k,, = k, + mhy,. In this expression,
since we are considering smooth-walled waveguide modes, the cutoff fre-

quencies are as given in Table 4.3:

o (O,n)ziﬁ;ﬁ

When we examine the figure, intuition tells us — and analysis of tﬁe_'
dispersion relations shows — that the periodic dispersion curves for th
slow-wave structure can be approximated to generally acceptable accurac
by properly connecting the spatial harmonics of the smooth-walle
waveguide in Equation 4. 81. Three simple rules govern this process:

&

1. Curves are constructed from the lowest frequency upward.

2. Every shifted smooth-wall curve is used, and each section of a

smooth-wall curve is used only once.

3. SWS dispersion curves for different modes do not intersect. At inter

sections between the shifted smooth-wall curves, one jumps fro
one smooth-wall curve to another in tracing the structure curves,
leaving a gap between the structure curves that increases in widt
with r, /7, the relative depth of the wall perturbation. -

zimuthally Varying Slow-Wave Structures

ally varying slow-wave structures used in Cerenkov devices such
ativistic backward wave oscillators (BWQs) of Chapter 8, the peri-
ation in the wall radius is typically relatively small. In the azimuth-
g slow-wave structures found in magnetrons, on the other hand
uthal variations are substantial. In fact, the slow-wave structure 1'11’
on usually consists of N resonators spaced around a cylindrical
many times known, reentrant cavity. A simple example of such a
shown in Figure 4.11. One can see that the volume of a resonator
ble, although somewhat smaller, than the volume of the central
- Therefore, the technique for deriving a dispersion relation for
5| S qualitatively different than that used for an axially varying

Note that each curve for the SWS, unlike those for the smooth-wall m
is limited to a finite range of frequencies, called a passband. Passband
different modes may overlap in frequency. The spatial configurations of
electromagnetic fields associated with a mode will be similar to those
nearest smooth-wall curve. Thus, a mode might have the characteri;
a TM,;, mode for one range of k,, and those of a TMy, mode over a diffe
range of k, (see Problem 7). -

Except in the vicinity of the intersection of two smooth-walled cuiv
the form in Equation 4.81 for different values of axial index m or radia
n [through ®,(0, n)], the dispersion relation for a slow-wave stru¢
generally well approximated by the nearest smooth-walled waveguid
of Equation 9.5. Further, the radial variation of the mode pattern
slow-wave mode is quite similar to that for the closest smooth
waveguide mode. Because @,, scales with 1/r; and the periodici
dispersion curve scales as hy = 21/z,, to lowest order, the dispersi
erties of the slow-wave structure are dominated by the average. st
radius and its periodicity. The band gaps between modes where two s
wall modes intersect and the coupling of the beam and the structur
other hand, increases with the ratio r/r, for a structure such a

Equation 4.80.

gnefron, with r, the cathode radius and 1, the anode radius.




In a magnetron, for S'mel'i'ciq"r, we neglect axial field variations to lowest
order, so that the fields vary only with radius and azimuthal angle, 8. The
nonzero field components are E, B, and B,. The two key features of the
analytical approach to deriving the dispersion relation for the azimuthall
varying slow-wave structure in a magnetron® are the following: (1) the
electromagnetic fields in the side resonators and in the central coaxial cavi
are derived separately, usually under the assumption that the azimuth
electric field E, is a constant across the gap where the resonator opens in,
the central coaxial cavity atr = r,; and (2) the dispersion relation itself resyl
from the resonance that occurs when the admittances of the resonator Y
and the central coaxial cavity Y., add to zero at the gap where the re'sg
nator joins the central cavity at r = r,;

(4.85)
Y

res

+ Ymaxia! =0 .
e can clearly see the periodicity, as well as the fact that the admittance

where the admittajr;ces at the gap are defined by es wherever kL is an odd multiple of /2 and poles (where Y, >

h j EH, dt  h I E,B,do alculating the admittance of the central coaxial cavity is a more complex

e see that the coaxial cavity will have a periodic boundary con-

Y =~ =5 s ( e azimuthal electric field at the anode radius r = r,. We therefore
out field solutions using a Fourier expansion in 6, writing them in

gap ap

In this expression, the integral is across the gap atr =r,, his the leng
the gap in the axial direction, and H, = B,/j1,. The numerator in the ex
sion is the radial flow of power using the Poynting vector, and the d
inator is analogous to a voltage across the gap; since power is propor
to the product of voltage and current, the admittance does indeed have
of resistance . According to Kroll,*® the gap admittance calculated using
fields in a side resonator is given by

Eo(r,0,t)= iEBS (r)e |t (4.86)

Sm—oe

t s is the index on the Fourier expansion, analogous to the
juation 4.74 for axially periodic systems, while p is the azi-
de' number of the solution, analogous to k, in Equation 4.74.
Maxwell's equations in the coaxial region, with Eg=0atr =r,, yields

; Bl (krﬂ)Nl(krv)—]l (krW)NO (Icrﬁ)
WZo 1 I, (krﬂ)Nl (krﬂ)— I (krv)Nl (krﬂ)

N L T
| £ ()= (0) e e @87
where Z, = 377 Q, v is the opening angle of the gap, as shown in Figur
k= w/c, and J and N are the Bessel functions of the first and seco,
Note here that Y, is independent of 6, so that it is the same for ca
N resonators in the device. The admittance is a periedic functi
although the Bessel functions somewhat obscure the real physics in
The resonator is similar to a rectangular slot resonator with a constar
ing between conducting walls, d, shown in Figure 4.12. The admittan
this rectangular slot resonator is 2

ssion J," = dJ,(x)/dx, and similarly for N,". The expression in
ves one terin in the expansion of Equation 4.86. The expres-
B, are derived from E, in a straightforward fashion. To write
t the boundary condition on Ey at r = 1,, let us introduce one
rder to number the N side resonators from g = 0 to g = N ~
tishes at the conducting wall at r = r,, except in the gaps of




the resonators, where it has the fixed magnitude E, but is phase shifted fro
gap to gap:

Ee(r:rﬂ,e):Ee*'(z“Pm)'? ’M_Mgg<%+g
N 2 N 2

It is a straightforward process to compute the constants in the Fou
expansion of Equation 4.86, A, from Equation 4.87, using the bounda
condition at v = r, and inverting the Fourier transform. The result fr
Kroll?? is

Gtion of the dependence of Y ot k = @/c. {From Kroll, N., Microwave
ﬂin's, G.B., Ed., McGraw-Hill, New York, 1948. With permission.}

sin(sw)| Jo (kr) Ny (k) - Tl ) N2 (k) |
2 (re ENWE SWW Lf( ) ( ;—];Ekrc;l\fggkrﬂ)) o

+mN shows simultaneous plots of Y, 4. and -Y,... The normal-mode
s=p+m

w/c are given by the intersections of the curves for each. The
ns labeled 1 through 4 are the lowest-order modes for the corre-
lues of the azimuthal index p. The normal-mode frequency for
The fact that there is no cutoff frequency above zero is a
“the coaxial geometry, in which there is no nonzero cutoff
'w_ed another way, the modes are like transverse electromag-

&

Note here that we have suppressed the time dependence for convenies
and only specific values of the index s are allowed, a consequence of
symmetry of the azimuthal boundary condition. Computing I, from
value of E, one then computes the gap admittance using the coax1a1 cd
fields, which is shown in the reference to be

oward a maximum value for p = N/2. This frequency must
' “f k less than the zero crossing for the curve of YIES If we

T R S U PACA A CA R AU LALS
cmxiaf_l—
2y, 7y A sy IR CATNA AR A NALA

In addition to the geometric parameters N, h, y, r,, and r,, this expre:
depends on the frequency, through k = ®@/c and the mode number p;
can easily show that in Equation 4.90, the admittance for a given value
is the same as that for N - p.

To find the normal-mode frequencies for a given mode number p, oni
Y o 1 Equation 4.90 equal to -Y . in Equation 4.84. This equation
be solved numerically, but we can visualize the solutions graphically:
plot the admittances as a function of k. First, Figure 4.13 is a qualita
depiction of the dependence of Y. alone as a function of the norma
variable kr, for an eight-resonator system (i.e., N = 8). Because Y (P

Y comaat{IN — p) only the values for p equal to 0 through 4 are shown. Ana
of Equation 4.90 shows that there are an infinite number of poles and:_z
for the admittance; in the figure, only the poles at k = 0 for p = 0 and z
2/(x, + ) for p = 1 are shown. Note that this latter pole occurs when
2m/A =2/ (r, + r.), where A is the wavelength in the azimuthal dlrech
Thus, this pole occurs when A is approximately equal to the circumfer
of the central coaxial cavity. '

of the dependence of Y., and Y. The intersections between the two
encies of the normal modes for the device, (From Kroll, N., Microwave
. Bd., McGraw-THill, New York, 1948. With permission.}




“Leakage”

Radiation
= Resistive wall loss
& (a)
-
8 .
g Highly reflecting Partially reflecting
g mirror %, mirror
i ™ A
/ R AVAVAVAV
: ! Radiation

ty with partially open ends. Radiation from the right end is usefully extract-
ge and absorption in the wall resistance are loss channels. (b} An example of an
velope in the cavity of (a); note the large field amplitude in the exiraction region.
al cavity, with extraction through a partially reflecting mjrror on the right.

Phase shift

FIGURE 4.15

Dispersion relation for the A6 magnetron, with the phase shift on the horizontal 'él..)(ls

2 . : ; o .
n(p/N). (From Palevsky, A. and Bekefi, G3., Fhys. Fluids, 22, 986, 1979. With permissiog ts for a- TM,, wave, for example — E, E,, and B, — must vanish

that the electromagnetic waves in the cavity will be reflected
quently, the axial wavenumber k,, which was a free parameter
Iy long waveguide, will be restricted to certain discrete values
In the expressions for E,, E,, and B,, we would replace exp(ik,z)
equire kL. = qm, with q any integer. This adds a third index
ation‘of the cavity modes; for example, TM,,,. The dispersion
; given in Figure 4.4 is now replaced by a set of points lying
et curve, spaced Ak, = n/L apart. In actual practice, though,
mewhat artificial, situation is modified, because of losses of
the cavity, either as intended radiation or as parasitic Josses to
esistance or to leakage through openings intended* or unin-
fore; if we speak of a resonance line for an ideal lossless, closed
well-defined discrete values of k,, then an open, lossy cavity has
ad n k, (and, through the dispersion relation, m) to its line
ample, a small antenna were inserted into the cavity, the

to and stored there would have a qualitative dependence
that shown in Figure 4.17.

higher. The dispersion relation for the A6 magnetron with N = g aﬁd
apd I, given by 1.58, 2.11, and 4.11 ¢m, respectively, is shown in Fig'ﬁr
SinceL=r,-r,=2cm, Fonax = 00/ 21 = 3.75 GHz. By comparison; the
N/2 = 3 mode (the so-called n-rode} frequency is £ = 2,34 GHz x’:v
conside}"ably lower than f,. In Chapter 6, we will Eiscuss the é_IS
properties and their effect on device performance in greater delajl.

4.5 Cavities

An important distinction between waveguides and cavities is that the
are closed to some degree at the ends, so that electroma {

s are competing within a cavity, one might be suppressed by cutting slots

on of minima in the fields of the desired mode so that the undesired mode
avity; or the slots might be oriented to suppress the flow of the RF wall cur-
gsired modal field patterns.



a radiated energy loss time constant from the cavity, T,, as the ratio

E tored energy to the power lost from the cavity, in terms of which
g
¥ Q, =n,T, (4.94)
(33
B3
5
o
g
m tont N
@ v T (4.95)

FIGURE 4.17 e

Stored energy in a cavity with nonzero line width about the line center o, mété the group velocity Vg, WE write @ = W , so that Vg =
In the limit of large values of k,, that is, at short wavelengths, v, =
her hand, for small k, or long wavelengths, where v, is small, k,
ximately given by grn/L, with q the axial mode index. Incorpo-
expressions into Equations 4.94 and 4.95, and using the relation-
en’@ and the free-space wavelength of the radiated microwaves

271t/ A, we estimate

These notions lead us to the quality factor, Q, characterizing cavitieg Q
is defined very generally, regardless of the cavity shape, as 21t times th
ratio of the time-averaged field energy stored in the cavity to the ener
lost per cycle: :

average stored a
—om = ed energy _ ® verage stored energy

energy lost per cycle ® power loss rate 0, =21 L 1 (short wavelengths) (4.96a)
’ A{1-RR
where @, is the center frequency of the resonant line width of the cavity: ( 1 2)
definition holds regardless of the cavity shape. In addition, one can ,
that Q is related to the resonance line width Aw of Figure 4.17 by L1 (long wavelengths) {4.96b)

Y q(l—RiRz)
_ Wy
T 2A®

Q iple,.in a low-group-velocity device operated at long wave-
ttoff, such as a gyrotron, the long-wavelength limit applies.
e sometimes referred to generally as diffraction generators,
n.the end is largely due to diffraction of the radiation from
pen end. Providing Equation 4.96b holds for such diffraction
th poorly reflecting end surfaces, the minimum radiative (dif-
d) ©. of these devices for the lowest axial mode with q =1 is
We can see that Q, decreases with the axial mode number;
5, radiative losses from a cavity increase with the axial mode
1l the radiative component of Q scales as a power of the
vity measured in free-space wavelengths of the radiation.

eral estimate of the parasitic losses in a cavity is a difficult
ly when slotted or absorber-loaded cavities are used. An
be made, however, if we limit ourselves to an approximate
cavity in which the only losses are due to wall resistivity. In
that the stored energy is proportional to the energy density
niegrated over its volume. The power loss, on the other
onal to the frequency times the energy density integrated
me of the resistive layer roughly skin deep at the cavity

We have described the power loss from a cavity as arising from two f;
radiated output power and parasitic losses.* Because power losses a
tive, we can use the definition in Equation 4.92 to write

1 1 1
I Sy
Q Qr Qp

with Q, and Q,, representing the radiation and parasitic terms, re_é.i)'
Both factors will depend, of course, on the cavity configuration and th
involved. To estimate the radiated contribution, Q,, return to Equéu

* Different terminologies are used for these two contributions to Q. What is called th
Q here is sometimes called the diffractive Q — referring in particular to the diffrac
coupling from low group velocity devices such as gyrotrons — or the external Q. Qurp:
Qis also called the resistive  — apt when the only cavity losses are due to wall loss
external Q, which applies when cavity losses are due primarily to radiation of unwanted
energy through strategically placed wall slits. :




wall.“Hriths argument,-we cancel ot energy density in the numers
and denominator of Equation 4.91 to obtain

T W ( geometrical factor)

el e — — — 10 GW, 50%
. T Mg ms o e Pt "“:'.:_ """""""""""" — I0GEW, 10%
' at TP IR R 1 GW, 10%

... R N (R 1 GW, 50%

where the geometrical factor is typically of the order unity (see Proble;
One might think that maximizing (3 is desirable. Certainly, storing eney
within the cavity increases the internal feedback, thus lowering the threshs
for oscillation and reducing the demand on a power supply to produce;
required electron beam current to drive an oscillator, In the world of Hp
however, high currents are relatively easy to produce, so that the challg
is shifted to the tasks of generating and handling high power in the ¢3
From each standpoint - generating and handling high power — itis acty
desirable to lower Q at high power. In the generation process, we shall
that the driving electron beam power is most effectively utilized whe
several times thethreshold value; hence, raising the output power req
raising the threshold level, which translates to lowering Q. In hand
microwave power, remember that the output power is proportional tg .
stored energy divided by Q, so that high Q implies high values of sfo
energy and larger electric fields in the cavity. This factor raises the:
heating rates and can lead to breakdown. :
In closing our discussion of the quality factor, we touch on the iss i
time for cavities, which is the time required for the fields in a cavity to
up to a steady-state level. Reasoning from Equation 4.91, it is apparent
the fill time is proportional to Q. For certain HPM applications invol
cavities, fill time is an important additional consideration. In the accele
cavity of an RF linac, for example, the goal is to transfer energy fo'e
rather than extract it. Therefore, a trade-off must be made between
Q to maximize the accelerating field and lowering Q to limit the fil
and resultant requirement it places on RT puise lengths. As a secon
ple, certain RF pulse compression schemes depend on the dynamic ¢
of a cavity’s Q in order to rapidly discharge the HPM energy that was:
accumulated at lower power. The discharge time is roughly equal to
time, and switching to a lower Q permits this rapid discharge.

)3 10
Voltage (MV}

nd current required to produce 1 and 10 GW of microwave output at power
£ 10 and 50%.

P= TIPVI (4.98)

t and voltage to reach 1 and 10 GW at efficiencies of 10
can see that currents of the order of 10 kA, or 10 s, are
[tages around 1 MV. In most cases, this current is carried

ayers to the next chapter, where we will discuss cathodes, dicdes,
ns.In this chapter, though, we discuss the basics of electron
space-charge-limited electron flow in Child-Langmuir
ometry) and Langmuir-Blodgett diodes (cylindrical geom-
as the current limit imposed by the magnetic pinching of a
eam: Also, we consider electron flow along electron drift tubes
etically insulated electron layers, all as background for our
crowave interactions, which will follow.

4.6 Intense Relativistic Flectron Beams
. : I . arge-Limited Flow in Diodes
High power microwave sources tap the kinetic energy of electio '

intense relativistic beam or rotating layer to produce the intense mier
fields. To get an idea of the parameter range in which HPM device
remember that the microwave power Pis generated at some powere
Mp from an electron current I accelerated by a voltage V: :

e one-dimensional planar geometry of Figure 4.19, with a
and an anode at x = d. The electric potential at the cathode
‘at the anode, ¢(x = d) = V;. An electron current of density
Yo,(x) flows from the cathode to the anode, where —e is the




! Anode 1/2
" - B 0 =(171—J . (4.103)
S .
:—:——-ivu lJ dx 2e £,0/?
F 1e“
amw mmm }-x=0 equation, ¢ vanishes at the cathode. One can also show that as ]
Cathode 35 from 0, so that the amount of space-charge in the anode—cathode

ases, the magnitude of the electric field at the cathade, dp/dx = ¢,
es from Vy/d. The maximum current crossing the gap, which we
i Jsci, is the value at which ¢'(0) = 0, which one can show is given in
tical units by

FIGURE 4.19 _
The ideal Child-Langmuir diode, with infinite parallel-plate electrodes separated by a distatie,
d, with a voltage V, across the gap. :

charge on an electron, n(x) is the number density of electrons measured;
m, and v,(x) is the velocity of an electron. In equilibrium, with no tiri

dependence, ¢ and n are linked by Equation 4.4:

3/2
Vy (MV
Jscr A =2-33~—w—[ of )] (4.104)
)

| m* [d(cm)T
T ) @

> Child—Langmuir,”! or space-charge-limited, current density in a

on diode. Now if we can ignore edge effects, so that the current

iform across the surface of a cathode with area A, the current

h a Child-Langmuir diode is Jo A and the impedance Z for such
uld be the ratio of the current to the voltage, or

where we have replaced the electric field with the gradient of ¢ in this Ty
dimensional problem. For convenience, let us assume that V, < 500 kV.
that the problem is nonrelativistic; we therefore relate ¢ and v, throug
conservation of energy, assuming that the electrons leave the cathode w-
v (0) = O i

with m the mass of an electron. We close this set of equations by téki_n
divergence of Ampere’s law (Equation 4.1), remembering that 9,/
which yields

¢, a typical value for a diode is V, = 1 MV, with a gap of d

thode diameter of 2 cm. Therefore, Jo, = 2.33 kA/cm?, T =
137 Q (see Problem 10).

nd Blodgett solved the same problem in the cylindrical

Figure 4.20. The cathode radius r, can be either on the inside,

the anode radius r, = r, or on the outside, so that r, = r,.

pression for V2§ in Equation 4,99 and the expression for Vej
n for cylindrical geometry, and retaining Equation 4.100 in _
find that the cylindrical analog of Equation 4.103 is

This last equation tells us that nv, is a constant across the gap
convenience, we define J, which is the magnitude of the curren

across the gap,
29 1de_(m)"(n) 7

dr*  rdr | 2e r ) e, 0

(4.105)

[ =env, = constant

although we note that we have reversed the sign of this constant
of the current density. From this set of equations, we can find the
equation governing ¢ between the cathode and anode: :

e-limited (meaning that the electric field at the cathode
 to this equation yields an expression for the current den-
that is similar in form to Equation 4.104:




magnetic field of the beam current can be neglected. However, at high
; the strong azimuthal self-magnetic field of the beam causes electron

hich beam pinching occurs is estimated by equating the Larmor radius
electron at the edge of the beam with the anode-—cathode gap spacing:!4

FIGURE 4.20
Cross-sectional view of the cylindrical Langmuir-Blodgett diode.

oen (kA) =852  14{ V0 (Mv)

d 0.511 (4.108)

- the cathode electrode radius. Generally speaking, pinching would
ster'in an HPM source and is to be avoided. This effect is a factor
irly in low-impedance diodes such as those used in virtual cathode
(see Problem 13).

I( KA Jz 2_33[ [V (Mv)["

z r, (cm)rc (cm)]}’z
P

cm
with Y an infinite series solution with more than one form, dependin
the ratio r,/r, and the desired accuracy of the solution.”? The form of Y
appropriate for HPM diodes is

12 = , I
s ‘a
Y_(T] Z{B,, En[ch
=

e-Charge-Limited Electron Beam Flow in a Drift Tube

ctron beam has been generated, it will pass through a drift tube
to ‘the microwave interaction region. For convenience, let us
he drift region is long enough that we can assume it is effec-
y long. In addition, we assume that the duration of the beam
igh that an equilibrium is set up in which we can ignore time-
ffects. In this case, the space-charge of the beam creates a purely
eld between the beam and the drift tube wall, and we can
 integral of that field to find the electric potential difference
eam and the wall. This potential difference reduces the effective
potential of the beam, an effect referred to as space-charge depres-
energy. Let us calculate the space-charge depression of the
or a thin, annular beam, as shown in Figure 4.21.
ity, we assume that the axial magnetic field is infinifely large
beam is infinitely thin (mathematically, the current density could
by a delta function in radius), with radius 1, equal to the
> thin beam shown in the figure. There is no space-charge .
_bé except at r = 1, s0 inside and oulside the beam, the
en by

where B, = 1, B, = 0.1, B; = 0.01667, B, = 0.00242, and so on (14 tefm
given in the reference). Remember that Equation 4.106a gives the:
density at the cathode of a cylindrical diode; to compute the curre
must multiply by the cathode area, A, = 2nr L, where L is the length
emifting area (see Problems 11 and 12). e

Our treatments of the flow of electrons in either a planar or cyli
diode are predicated on the assumption that the diode voltage is'n
tivistic — ie., V; < 500 kV — so that the nonrelativistic form in E
4.100 applies. In the event that V,; > 500 kV, a relativistic form for the
Child-Langmuir diode was derived by Jory and Trivelpiece:"

12 4
pfkad. 2m g Ve (MV) —0.847
[(em)] 0.511

1df d)_
rdr[r dr]_o (4.109)

Note the identical scaling with the anode-cathode gap width in bo
tions 4.103 and 4.107. The voltage scaling is quite different, howe

_ 6nditionsared dx=0atr=0and ¢ =0 at =
the familiar V¥ scaling at low voltages, while at high voltages I ¢/ atr=0and ¢ = 0 at the wall, r




Anode/drift tube wall, ¢ = 0
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FIGURE 4.21
The potential, ¢, and relativistic factor, v, as a function of radius for electrons in an i
annular efectron beam. Space-charge in the beam depresses the potential to -¢, on the a
electron energy varies with radius across the beam (i.e., it is sheared), with the highest

electrons at the outer edge of the beam. sion, T, is the magnitude of the electron beam current. Note
id term in the brackets on the far left side of this equation

(1)(1') ==, , 0<r < b’j‘}e-the first term is found by differentiating Equation 4.111.

and s

1/2

8.5
2T, g ! (Yo-7,) kKA (4114

@(r)=A+B.€n(r),rb<rSr0 _ 1
: (ro/rb) ! fn(ro/rb) v

It remains to find ¢, in terms of 1, r,, and the space-charge in th b

which depends on the beam current I, and the beam velocity ession, we have used Equation 4.112 to eliminate the space-

term ¢, and the expression for v, in terms of ¥, to find a
tween I, and the actual relativistic factor for the beam elec-
5 less than 7y, — what it would be if there were no space-
In the expression for v,, y, is the effective relativistic factor for th e 55101,

electrons; it is given by plot of I, vs. v,. We see that for each value of I, there could
of %,; in fact, the values of v, to the right of the current
e correct values. Differentiating I, in Equation 4.114 with
find that I, is a maximum for vy, = v;/°, at which value,

vy = (1= 1/v;)

1 (V=g )=y, - E
Yb—l'f'micz(vo %)*Yﬂ o

where —V, is the potential of the cathode from which the beam el
were launched and ¥, is as defined.
Let us eliminate A and B in Equation 4.111. First, ¢ must be cont
across the beam, so that we set ¢(r,) = ¢y, in Equation 4.111. Nex
determine the discontinuity in d¢/dr at 1, by integrating Equati
across the beam: "-

=18} = Ty, (annular) = Eﬁ(:i/r,,)(ﬁs - 1)3"'2 (4.115)

- at low voltages and as V; at large voltages, which is a
0"t_hat in the Child-Langmuir diode. In fact, this is the value
ular beam. One can show that for a beam with a uniform

d¢(r=r;)_d¢(r:rb") e

dr dr £

- S\ 8.5 3/2
! =W°) =L (solid) “Tetn{n/n) (%" -1) (4.116)
b

27,0,




Lne way o neutralize the space-charge fields of the beam, and therel;
obviate the space-charge depression and limiting current, is to prefill
drift tube with plasma. As the electron beam passes through the plasma,’
space-charge fields will rapidly expel enough plasma electrons that the beg;
space-charge will be compensated by the remaining plasma ions. An ad;
tional salutary effect is that the beam quality is improved by the reduci;;
or elimination of radial variations in the electron velocities. The price
pays, of course, is the added complexity of generating the plasma, and:
fact that recombination and further ionization of the plasma by the pe
make the self-electric field time dependent. '

rotational mode, in which the rotational velocity v, of the elec-
guiding centers has the character of an E x B rotation, although
e electrons, on the small scale of a Larmor orbit within the beam,
tundergo cyclotron rotation at Q,, about their guiding centers.

totational mode, in which the electrons as a whole rotate about
am axis at a frequency approximately equal to the cyclotron
nal velocity, Q1. Such beams are also called axis-encircling

4.6.4 Beam Rotational Equilibria for Finite Axial Magnetic Fields

When the axial magnetic field is reduced from very large values, at whj
can effectively be considered infinite, I is reduced as well. Finite -
magnetic fields also cause the beam to rotate in equilibrium, which serv"é
balance the forces on the beam so that the net force vanishes, For convenien
consider a nonrelativistic beam, Using a quite general treatment bage
the fluid equations, one can show that the azimuthal rotational veloci
electrons in a beam traveling in a cylindrical drift tube is given by's -

low: rotational mode is the more commonly seen, although a beam
induced into the fast rotational mode by passing a slow-rotational-
through a magnetic cusp. Axis-encircling beams created in this
d in so-called large-orbit gyrotrons {(see Problem 15).

1/2
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Uff,(r):lgebr 1+ 1—4m€27jdr'r'nd,(r') __
2 eyt o etically Insulated Electron Layers
s usé electron beams. Notably, the magnetron and magnetically
scillator (MILO) employ a magnetically insulated layer of
ed on one side by an electrode at cathode potential. In this
gnetic field is applied parallel to the cathode surface, and
ted from the cathode are deflected by the v x B Lorentz force
o reaching the anode. Accordingly, they remain trapped
ng the cathode, drifting in the ExB direction, parallel to
sitiation is depicted in Figure 4.23.
rion for magnetic insulation of the layer — mneaning that in
e electrons cannot cross the gap to reach the anode — is
‘general arguments based on the conservation of energy
nomentum in the direction of net electron drift. Assume
s-are emitted from the cathode, that there are no system
i¢their direction of drift, and that a time-independent equi-
lished. In the so-called smooth-bore magnetron with an axdal
within a cylindrical geometry with cathode radius T, <
us, the electrons drift azimuthally at v, with their energy
0 thaf.

where Q, = eB,/m is the electron cyclotron frequency of the beam el
in the applied axial magnetic field B, with -e and m the charge ani
of an electron, respectively, and n,, the number density of beam elect
We see that there are two rotational velocities possible for the beam elect
To see their physical significance, consider the case in which the righ
term under the square root in Equation 4.117 is much smaller than uni
that to lowest order in that small quantity '

N
ey = be r

2 ¥
= € [ t Er
Uy = — dr'r'n (1’ =——r
ch
£l ¥ !

In this latter expression, we have used Equation 4.4 to make the repla




