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To complete this derivation, we use Equation 4.20 to find k, in terms
and k, py = 0, /¢ = £,/ (2rc): '

: Between the Power in a Given Mode, P, and the Maximum
o Electric Field at the Wall, E
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We see that as the waveguide dimensions increase, the power-h
capability increases for a constant By ... Also, the wall field for
P decreases as f — f,. -

In Table 4.4, we collect the expressions for the relationships between
E i max for TM and TE medes in rectangular and circular waveguide
arate expressions are required for TE modes in rectangular wavegui
depending on whether one of the field indices n or p vanishes, alt
both cannot vanish simultaneously. The factor of two difference ste
the fact that one of the cosine terms in the expression for B, has a var
argument. One of the most important modes in a rectangular wave
the lowest-frequency TE, ; mode, for which Equation 4.42 reduces to
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(see Problem 4). :

In the case of circular waveguides, E,) ... is the maximum value
The situation for TE modes is somewhat different, since E, vanishe:
cally for p = 0. Therefore, the relation in the table holds only for p::
scaling relationships stand out in all of these expressions. First, the
with fréquency is quite different for TM and TE modes. As f — ' fo.
value of the wall field, the power in the waveguide increases in the
TM modes, while it must decrease for TE modes. Second, in the casé
TM and TE modes, for a fixed value of the wall field, the power i
roughly as the area of the cross section (see Problem 5).

The relationship between the electric field component perpendicul
wall and the power flowing through a waveguide is important iri-the
of high-field breakdown on short timescales. When the length of thy
wave pulse is long enough, or when a high power signal is pulsed
enough at a high duty factor {defined as the product of the pulse rep:
rate and the length of an individual pulse}, the walls come into't
equilibrium, and wall heating becomes an important operational facto
waveguides and cavities. To understand wall heating, we return to th
ysis of the normal-mode fields. In our previous derivations, we 551
that the waveguide walls were perfectly conducting. In such ideal gut

s the smaller of x and ¥, Zo =377 0, and §,; is a Kronecker delta.

flows in an infinitely thin layer at the conductor surface
ngential component of B from penetrating the wall. When
vity o is finite, the situation changes. In general, one would
the problem, taking account of the penetration of the fields
urrents into the walls. Fortunately, waveguide materials of
gh-enough conductivity that we can treat the effect of finite
tion'to the infinite ¢ case, using the fields that we have already
t that circumstance.

ing wall heating, we confine our attention to circular
this geometry is applicable to circular cross-section cavi-
ssue is perhaps most important. Further, as we did when
e the'relationship between wall fields and power, we {reat the
QCE_ES in the most detail, presenting the results for TE modes
tion. First, consider the effect of finite ¢ at the wall. For




