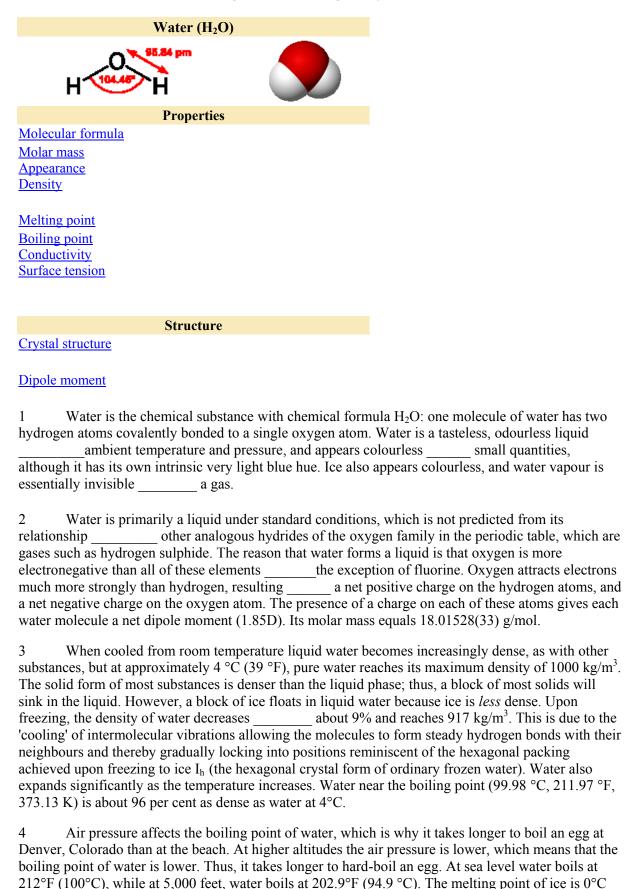
JAF03 Unit 3 Water

Task 1 Do you understand the idioms below?

- 1. I can't seem to get my head above water. Work just keeps piling up.
- 2. Bill got in deep water in algebra class. The class is too difficult for him, and he's almost failing.
- 3. Things were going along quite smoothly until you came along and muddied the water.
- 4. George and I were friends once, but that's all water under the bridge now.
- 5. You can lead a horse to water, but you can't make it drink.
- 6. You can't close the airport because one airline has problems that's just throwing out the baby with the bath water.
- 7. I think you would like working here, and I'm happy to offer you the job. Come on in, the water's fine.


Task 2 Speaking:

Imagine you are at a party with other students from the Faculty of Science. What questions or topics would you discuss in small talk if the party is themed – the subject is 'Water'.

Task 3 Read the quiz below and decide whether the sentences about water properties are true or false:

- 1. Water contracts when it freezes.
- 2. Water has a high surface tension.
- 3. Condensation is water coming out of the air.
- 4. More things can be dissolved in sulphuric acid than in water.
- 5. Rainwater is the purest form of water.
- 6. Sea water is slightly more basic (the pH value is higher) than most natural fresh water.
- 7. Raindrops are tear-shaped.
- 8. Distilled water is water that has many of its impurities removed through the process of boiling and then condensing the steam into a clean container.

Task 4 Read the text, fill in the gaps with suitable prepositions and complete the information chart below (adapted from: www.wikipedia.org)

 $(32^{\circ}F, 273.15^{\circ}K)$ at standard pressure, however, pure liquid water can be supercooled well below that temperature without freezing if the liquid is not mechanically disturbed. It can remain in a fluid state down to its homogeneous nucleation point of approximately $231^{\circ}K$ ($-42^{\circ}C$).

5	Water has a high surface tension of 72.8 mN/m at room temperature, caused	the	
strong	cohesion between water molecules, the highest of the non-metallic liquids. This can be	seen	
when s	small quantities of water are placed a sorption-free (non-adsorbent and non-absorbent)	sorbent)	
surface, such as polyethylene or Teflon, and the water stays together as drops. Just as significantly, air			
trapped	d surface disturbances forms bubbles, which sometimes last long enough to tra	nsfer	
gas mo	plecules to the water.		

6 Pure water does not conduct electricity. Water becomes a conductor once it starts dissolving substances around it.

Read the text again and find synonyms to the following phrases:

Par. 1: relating to the surrounding area;

belonging to or part of the real nature of sth.;

Par. 2: similar in a way to another thing or situation

Par. 3: to stay on or near the surface of a liquid;

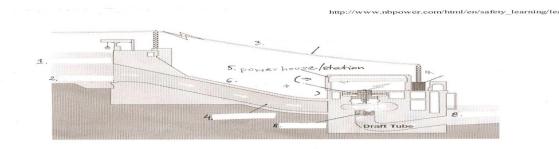
Par. 4: the height of anything above a given planetary reference plane, especially above sea level on earth;

composed of parts or elements that are all of the same kind;

Par. 5: the act or state of uniting, or sticking together;

capable of/tending to suck up or soak up;

Par. 6: to serve as a channel or medium;


to melt, liquefy.

Task 5 Watch the video and complete the script:

(http://www.darvill.clara.net/altenerg/hydro.htm)

170 000 cubic metres of water flow past here every minute at almost	60 km/h, that's enough		
water to fill about a hundred thousand 1	every day. Standing here		
you can actually feel the power of the water. Harnessing that power is what hydroelectric			
stations had been designed to do for over a hundred years on Ontario. In essence, they're			
factories that convert the energy of falling water into the 2	, or		
what is commonly called electricity. Electricity that powers the provi	ince.		
Most hydroelectric stations use either water diverted around the natural			
3, such as a waterfall or rapids or a dam is	built across a river to		
raise the water level and provide the drop needed to create the 4			
the higher level is collected in the forebay. It flows through the plant intake into a pipe called			
the penstock, which 5 to a turbine water wheel at	t the lower water level.		
The water pressure increases as it flows down the penstock. It is this is pressure and flow that			
drives the turbine that is connected to the generator.			
Inside the generator is the rotor that is spun by the turbine. Large 6_	are		
attached to the rotor located within coils of 7	called the stator.		
As the generator rotor spins the magnets, a flow of electrons is created in the coils of the stator.			
This produces electricity that can be stepped up in voltage through the 8,			
and sent across 9			
The falling water, having served its purpose, exits the generating station to the tailrace, where			
it 10 of the river, to continue the cycle	of creating clean,		
renewable energy for Ontario.			

 $Task\ 6\quad Now\ label\ the\ parts\ of\ a\ hydroelectric\ station\ in\ the\ picture\ below,\ using\ the\ information\ from\ the\ listening.$

