JAF03 Unit 5 Robotics

Task 1 Speaking

Imagine you are working on a TV documentary on artificial intelligence. What would be the main issues raised in your film? Whom would you contact to interview and what questions would you ask them? What answers do you think you would get?

Task 2 Meet Stan D. Ardman

Before you listen

Discuss the questions:

- How do you think medical and nursing students practise to perfect their techniques?
- Would you let a medical or nursing student practise on you?

Check the vocabulary:

Worst-case scenario; bodily functions and conditions; treatment; template; severe reaction; complaints; CPR; a bar code; syringe; adverse reaction; reboot; attached

Listening I

Listen to the talk and answer this question:

- Who is Stan D. Ardman and how does he help medical students?

Listen again and complete the information in the sections as given below: Appearance and condition
-
-
What he is
-
-
Simulates
-
-
-
How he works
-
-
-
Pros for medical students
-
-

STRATEGIES

COMPARING CONTRASTING

In the same way, ... While/ Whereas X..., Y...

In comparison, ... In contrast, ...

X is similar to Y in that... Y is different from X because ...

Likewise, ... One difference between X and Y is...

Just as X ..., Y also... Unlike X, Y ...

Similarly, ... X differs from Y in that...

Like X, Y ...

Listening II

- Listen to eight statements about Stan D. Ardman and tick the expressions that you hear in the Strategies box.

- Now listen again and note down the similarities and differences that the speaker mentions.

Similarities Differences

After you listen

Choose the phrases from each list in the box above and compare Stan with a real patient.

Task 3 Can Robots Be Programmed to Learn from Their Own Experiences?

http://www.scientificamerican.com/article.cfm?id=robot-learning

Read the article and complete it with suitable words.

Researchers program robots to see if they can learn a very human trait: common sense

By Julian Smith, March 23, 2009

Image: © ALEXANDER STOYTCHEV

It took just a few decades for computers to from room-size vacuum tube—based machines that cost as much as a house to cheap chip-powered desktop models with vastly more processing power. Similarly, the days of "personal robots"—inexpensive that can help out at home or the office—may be closer than we think. But first, says Alexander Stoytchev, an assistant professor of electrical and computer engineering at Iowa State University in Ames, robots have to be taught to do something we know instinctively: how to learn.
"A truly useful personal robot [must have] the ability to learn on its own from interactions with the physical and social environment," says Stoytchev, whose field of developmental robotics combines developmental psychology and neuroscience with artificial intelligence and robotic engineering. "It should not rely on a human programmer once it is purchased. It must be"
Stoytchev and a team of grad students are software to teach robots to learn about as well as a two-year-old child. Their platform is a humanoid robot that sprouts two 60-pound (27-kilogram) Whole Arm Manipulators (WAM) made by Cambridge, Mass.,—based Barrett Technology, each tipped with a 2.6-pound (1.2-kilogram) three-fingered BarrettHand.
In one set of experiments, the robot was presented with 36 different objects, including hockey pucks and Tupperware. It could five different actions with each one—grasping, pushing, tapping, shaking and dropping—and had to identify and classify them based only on the sounds they made. After just one action the robot had a 72 percent success, but its accuracy soared with each successive action, reaching 99.2 percent after all five. The robot had learned to use a perceptual model to recognize and classify objects—and it could rely on this model to how similar two objects were with only the sounds they made to guide it.
Another set of experiments showed the robot could learn to tell whether or not something was a container. The team presented the machine, topped with a 3-D camera, with objects of different shapes. By dropping a small block on each one and then pushing it, the robot learned to objects either as containers—those that moved together with the block ["co-moved"] more often when pushed—or as non-containers. The robot could then use this knowledge to whether unfamiliar objects could hold things; in other words, it had learned, roughly, how to discern the unique characteristics of a container.
When personal robots finally hit retail chains, they might look something like HERB, the "Home Exploring Robotic Butler" created at an Intel lab in Pittsburgh. It is part of the company's Personal Robotics Project, whose is to make a truly autonomous robotic assistant that can perform routine tasks at human speeds in cluttered environments like homes or offices.

Read the reactions to the article and summarise each writer's idea:

- 1. Why are we teaching robots to learn? Haven't you people seen Terminator!!! We are all gonna die!
- 2. OK, so we can teach robots simple learning algorithms. I was very pleased when I taught one to find its way out of a maze by the shortest route. But remember Einstein taught himself that E=mc² without any form of computer. Just try writing code to do that!
- 3. There is a saying I heard a while back: "a computer never really has an error, it always does exactly what it was programmed to do. The human who programmed it made all the errors." If androids go crazy and kill us all, it's because we programed them with the capacity to do so.

Task 4 Watch the video on the same topic as described in the text above.

Have you learned any new information about the project? What is the ultimate goal of the researchers? http://science.discovery.com/tv-shows/brink/videos/brink-artificial-intelligence-arrives.htm

Task 5

Compare and contrast the robot described in the video and text with a child or Compare and contrast the robot from the video with other robots.