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Some applications of the
hypergeometric and Poisson

distributions

In this chapter we will consider some practical situations where the
hypergeometric and Poisson distributions arise. We will first consider a
technique for estimating animal populations known as capture—recapture.
This, as we shall see, involves the hypergeometric distribution. Poisson
random variables arise when we consider randomly distributed points in
space or time. One of the applications of this is in the analysis of spatial
patterns of plants, which is important in forestry. Finally we consider
compound Poisson random variables with a view to analysing some

experimental results in neurophysiology.

31 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution is obtained as follows. A sample of size 7 is
drawn, without replacement, from a population of size N composed of M
individuals of type 1 and N-M individuals of type 2. Then the number X of
individuals of type 1 in the sampleis a hypergeometric random variable with

probability mass function
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To derive (3.1) we note that there are "

v ways of choosing the sample of
size n from N individuals. The k individuals of type 1 can be chosen from Min
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individuals of type 1 and so (3.1) gives the proportion of samples of size n which

“contain k individuals of type 1.

- The range of X is as indicated in (3.1) as the following arguments show.
Recall that there are N — M type 2 individuals. If n < N — M all members of
the sample can be type 2 so it is possible that there are zero type 1 individuals.
However, if n > N — M, there must be some, and in fact at least n — (N — M),
type 1 individuals in the sample. Thus the smallest possible value of X is the
arger of 0 anid n — N + M. Also, there can be no more than » individuals of
type 1 if n < M and no more than M if M < #. Hence the largest possible value
of X is the smaller of M and n.

distinct samples with k

v ways. Hence there are
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| Figure 3.1 Probability mass functions for hypergeometric distributions with various
values of the parameters N, M and n.
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For the curious we note that the distribution is called hypergeometric
because the corresponding generating function is a hypergeometric series

(Kendall and Stuart, 1958).
The shape of the hypergeometric distribution depends on the values of the

parameters N, M and n. Some examples for small parameter values are shown
in Fig. 3.1. Tables are given in Liebermann and Owen (1961).
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Mean and variance
The mean of X is
nM
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and its variance is

AM(N —n)(N — M)

NN-1 3.2

Var(X)=

Proof Wefollow the method of Moran (1968). Introduce the indicator random
variables defined as follows. Let
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0, otherwise.

Then the total number of type 1 individuals is
N n
= X
NMN !

Each member of the sample has the same probability of being type 1.
Indeed,
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as follows from the probability law (3.1) when k=n=1.
Since
M
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we see that
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To find Var(X) we note that the second moment of X is
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; The expected value of X7 is, from (3.3),
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We now use (3.1) with n =k =2, to get the probability that X =2 when n=2,
This gives
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and there are n(n — 1) such terms in (3.4). Substituting (3.5) and (3.6) in 3.4)

gives
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Formula (3.2) follows from the relation
Var(X) = E(X?) — EXX).

32 ESTIMATING A POPULATION FROM CAPTURE-
RECAPTURE DATA

own. The population may be the
s the fish in a lake or stream. We
nQSa:& A method of doing this
1s are captured, marked in some
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kangaroos or emus in a certain area or perhap
wish to estimate N without counting every 1
is called capture—recapture. Here M individual




[image: image3.jpg]distinguishing way and then released back into the population. Later, after a
satisfactory mixing of the marked and unmarked individuals is attained, a
sample of size n is taken from the population and the number X of marked
individuals is noted. This method, introduced by Laplace in 1786 to estimate
France’s population, is often employed by biologists and individuals in
resource management to estimate animal populations. The method we have
described is called direct sampling. Another method (inverse sampling) is

considered in Exercises 5 and 6.
In the capture—recapture model the marked individuals correspond to

type 1 and the unmarked to type 2. The probability that the number of marked
individuals is k is thus given by (3.1). Suppose now that k is the number of
marked individuals in the sample; then values of N for which Pr {X = k} is very
small are considered unlikely. One takes as an estimate, N, of N that value
which maximizes Pr{X =k}. N is a random variable and is called the
maximum likelihood estimate of N.

Theorem 3.1 The maximum likelihood estimate of V is

e Mn
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where [z] denotes the greatest integer less than z.

Proof We follow Feller (1968). Holding M and n constant we let Pr {X =k}
for a fixed value of N be denoted py(k). Then
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which simplifies to
pulk) _N*—MN—nN+Mn
py-1k) N?*—MN-—nN+kN'
We see that py is greater than, equal to, or less than py. ; according as Mnis
greater than, equal to, or less than kN; or equivalently as N is less than, equal
to or greater than Mn/k. Excluding for now the case where Mn/k is an integer,

the sequence {py, N=1,2,...} is increasing as long as N <Mn/k and is
decreasing when N > Mn/k. Thus the maximum value of py occurs when

]

which is the largest integer less than Mn/k.

~ In the event that Mn/k is an integer the maximum value of py will be P
and Py 1> these being equal. One may then use

Mn Mn

k k

imate of the population. This completes the proof.

Approximate confidence intervals for N

1 situations of practical interest N will be much larger than both M E&. n. Let
us assume in fact that N is large enough to Rmmﬁa 9.« sampling as
“approximately with replacement. If X, approximates X in this scheme, then,

for all i from 1 to

& M -
Pr{X;=1} == 1-Pr{X,=0}
The approximation to X is then given by
2= %
t=1
This is a binomial random variable with parameters n and M/N so that
- M
Pr{X=k}=b E:.M,w 4 k=0,1,...,n
The expectation and variance of & are
s M
EX)= ~= E(X)
= M
Var (X) HMZK.AH -~ ~Var(X).

Furthermore, if the sample size n is fairly large, the distribution of X can be

approximated by that of a normal random variable with the same mean and
variance (see Chapter 6). Replacing N by the observed value, 7, of its maximum
likelihood estimator gives
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where & means ‘has approximately the same distribution’
Ignoring the technicality of integer values, we have
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Using the standard symbol Z for an N(0, 1) random variable and the usual

notation

Pr{Z>z,}=

)

N

we find
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However, § = Mn/X, so we obtain the following approximate result when the
observed number of marked individuals in the recaptured sample is k.

Theorem 3.2 An approximate 100(1 — &)Y confidence interval for the
estimator NV of the population is

2 M
i % <N< # 7
kt gy (R 1-— k=2 (K 1=+

Pr ~]—a

Thus for example, if a 95% confidence interval is required we put
Zyy =Z,025 =196 in this formula.

Discussion

The above estimates have been obtained for direct sampling in the ideal
situation. Before applying them in any real situation an examination of the
assumptions made would be worth while. Among these are:

(i) The marked individuals disperse randomly and homogeneously through-
out the population.
(ii) All marked individuals retain their marks.
(iff) Each individual, whether marked or not, has the same chance of being in

the recaptured sample.
(iv) There are no losses due to death or emigration and no gains due to birth

or immigration.

Some of these assumptions can be relaxed in a relatively simple way (see
Exercise 7). In the approach mentioned earlier called inverse sampling, the
recapturing takes place until a predetermined number of marked individuals is
obtained. For useful refinements of the basic method presented above see

Manly (1984) and references therein; see also Cormack (1968) and the
conference article of the same author (1973) who begins with the following
remarks:

Many of the papers in this volume are concerned with the process of describing the

development of an animal population by a mathematical model. The properties of such
a model can then be derived, either by elegant mathematics or equally elegant
_computer simulation, in order to describe the future state of the population in terms of

certain initial boundary conditions. The model becomes of scientific value when such

predictions can be tested, which requires in turn that the mathematical symbols can be
replaced by numbers. The parameters of the model must be estimated from data of a

type that a biologist can collect about the population he is studying,

For an introductory treatment written for biologists, see Begon (1979).

3.3 THE POISSON DISTRIBUTION

We recall the definition and some elementary properties of Poisson random

. variables.

Definition A non-negative integer-valued random variable X has a Poisson
distribution with parameter 4 > 0 if

e~k
p=Pr{X=k =225l k=012, X))

From the definition of e* as W»»\E we find
0
Y Pr{x=kj=1
k=0
The mean and variance of X will easily be found to be
E(X)=Var(X)=A

The mrmv.o of the probability mass function depends on /. as Table 3.1 and the
graphs of Fig. 3.2 illustrate.

Table 3.1 Probability mass functions for some Poisson random variables

Po by P2 b3 Ps Ps Ps Pa Pg
607 .303 .076 013 002 <.001

.368 .368 184 061 015 003 <.001

135 27 271 .180 .090 .036 012 003 <.001
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