Seminar University of Brno, Dept of Geography, October 2013

From proxy data to large-scale paleo reconstructions; new insights on past and present European summer temperature over the past 2500 years

Prof. Jürg Luterbacher, PhD Department of Geography Justus Liebig University of Giessen

Department of Geography Justus Liebig University of Giessen

- University established 1607, one of the oldest in Germany
- > Approx. 70 km north of Frankfurt
- > > 23000 students
- > Department of Geography was funded in 1864
- > Currently 1000 students (Bachelor, Master, PhD and teachers)
- > 6 Professorships
 - Geomorphology/soil sciences (physical Geography)
 - Climatology (physical Geography)
 - Economy Geography
 - Anthropo Geography
 - Regional Planning
 - Geography didactics and pedagogics

Leading research questions addressed in this seminar

- > How can we reconstruct climate before the instrumental period?
- > How did European summer temperature vary over the past two millennia and how reliable are those reconstructions?
- > What are the natural variations of European summer temperature back to Roman times?
- > Is the current warmth and warming trend exceptional in the context of the past two millennia?
- > What is the influence of human and natural forcing on past European summer temperature?
- > The exceptional warm summers of 2003 and 2010; is there evidence for similar past extremes?

 \rightarrow Importance of Palaeoscience for global change research

Importance of Palaeoscience for Global Change Research

- > Palaeoscience is the study of climate and environmental processes in the past prior to the existence of instrumental records
- > In order to better understand current climate changes and to project future scenarios, knowledge of the past is imperative
- The palaeorecord evidence in concert with modelling of past scenarios provides a quantitative understanding of past Earth System variability and the underlying processes
- > The past does not provide a prescriptive guide to the future but can form the basis for an evaluation of present day trends, future probabilities, uncertainties and likely human consequences

AR5 IPCC 2013: Northern Hemisphere temperature variations back to AD 1

→ NH mean reconstructions do not provide information about seasonal and spatial variations IPCC AR5 2013, chapter 5

Geography

Global summer temperature anomalies 2012

Arctic Sea Ice Extent

Summer temperature change within the instrumental period

Continental temperature change 19th and 20th century

PAGES Initiative, 2000 years of high resolution continental climate reconstructions

Bradley 1999

Types of climatic proxies

	Natural Archives		Societal Archives		
<i>Direct Data</i> - Measurements 			nts	<i>Descriptions</i> - Weather diaries - Natural disasters 	 Measurements Temperature, precipitation, pressure
<i>Indirect or proxy data</i>	Organic Inorganic - Tree rings - Ice cores - Boreholes - Varves	listorical docume	<i>Organic</i> - Phenological data - (Grape) Harvest 	<i>Inorganic</i> - Flood marks - Icing and break-ups - Duration of snow cover 	
			–	<i>Religious Sources</i> - Inscriptions, Paintings	- Rogation processions

Pfister 1999

Early instrumental measurements

Documentary evidence, different sources

- **narrative sources** (annals, chronicles, memories)
- visual daily weather records
- personal correspondence
- newspapers
- scientific papers
- epigraphic records
- economic records (books of accounts, correspondence, about natural disasters)

"MI seren noble DeVs IVste atg Ve afs Iste EEC. Lies Ia. + Va Pont Liex atorne , Ven Late Ve ab a Lito o Mn Is bone DICt Io steer Great Ve Tras In terra eXIstentes -Scornarius ena d'valle fempera

Brazdil et al. 2005 ff; Dobrovolny et al. 2010ff; Pfister et al 2008

Central European summer temperature reconstruction 1500-2000 using documentary & instrumental information

Dobrovolny et al. 2010

Documentary evidence, Grape harvest data \rightarrow past summer temperature (France, Switzerland, Austria)

Chuine et al. 2004

Types of climate proxies

	Natural Archives		Societal Archives		
<i>Direct data</i> - Measurements 			nts	<i>Descriptions</i> - Diaries - Natural Disasters	 Measurements Temperature, precipitation, pressure
<i>Indirect or Proxy Data</i>	<i>Organic</i> - Tree rings 	<i>Inorganic</i> - Ice cores - Boreholes - Varves	listorical docume	<i>Organic</i> - Phenological data - (Grape) Harvest 	<i>Inorganic</i> - flood marks - Icing and break-up - Duration of snow cover
			-	<i>Religious Sources</i> - Inscriptions, Paintings	- Rogation processions

Pfister 1999

Natural archives, Tree rings

Climate information from:

tree ring width; wood morphological changes throughout the growing season (early and late wood; tree density); isotopic components

Tree rings can provide information on summer temperature (Scandinavia/Alps) or precipitation (Mediterranean, UK)

Maximum Late Wood Density derived from northern Scandinavian Pinus sylvestris trees \rightarrow summer temperature reconstruction

Esper, Luterbacher et al. 2012, Nature C C

Summer temperature and precipitation in central Europe BC 500 to today

Schematic diagram of the methodology used to reconstruct past climate

Neukom 2010

Detection and attribution of past and present European summer temperature

- > …is the European temperature variability prior to the 20th century really 'fundamentally a consequence of unforced variability'? (Bengtsson et al., 2006)
 → their argument is based on the consistent variability for short timescales in an unforced AOGCM control simulation and continental reconstruction
- > We apply D&A methods to seasonally reconstructed European land areas back to AD 1500
 - → separate externally driven variability from internal fluctuations
 - \rightarrow Quantify the role of external forcing

Fingerprint method : estimates contribution of forced fingerprint (multimodel mean) to reconstructions

Multiple regression:

Fingerprint $f_i: T_{proxy}(t) = \sum_{i=1}^{n} a_i(f_i(t) + noise) + noise$

1-signal: multimodel mean response (tls estimate, ie variability noise in fingerprint and reconstruction considered)

[3 signal (GHG + aerosol; volcanic; solar): Energy Balance Model simulation in response to forcing i]

- The uncertainty of the fit is estimated by superimposing samples of internal climate variability from the climate model and unexplained variance from the reconstruction
- Estimate of climate variability: from model runs after subtracting a scaled all forcings EBM run; compared to residual in reconstructions

Hegerl, Luterbacher et al. 2011, Nat. Geosci.

Contribution of external forcing to reconstructed European summer temperature

- Role of solar forcing not detectable for whole record, not robust over time
- Post 1970 acceleration of summer warming is unusual and likely caused by anthropogenic influences (Christidis et al. 2011)
- Solar influence on European summer temperatures remains speculative

Response to volcanic eruptions in summer temperature for 17 past eruptions

- \rightarrow Spatial pattern of multi-model volcanic fingerprint can be detected in the first 2 summers
- \rightarrow Similar temperature anomalies as for reconstructions
- \rightarrow Significant summer cooling after volcanoes, strongly expressed 1816 after Tambora

Fischer, Luterbacher et al. 2007; Hegerl, Luterbacher et al. 2011

European summer mean temperature distribution

Summer temperature anomalies 2003 and 2010 (wrt 1961-1990) and 'preconditions'

- \rightarrow Extremly dry in spring and early snow melting period in the Arctic
- \rightarrow strong and fast drying of the soil
- → persistent Omega-situations, subsidence, weak winds and/or warm air advection, strong insolation and reduced latent heat flow (no moisture); downstream floodings in Pakistan

GISS/NASA; Barriopedro et al. 2011

Balance after the hot summers of 2003 and 2010

2003

- >>70000 heat related death
- > Actual total loss: 1300 Mio USD
- Large crop yield loss and shortage of animal feed in widespread Europe
- > Widespread forest fires
- > High fish mortality in central Europe
- > Heat, drought, ozone and fine dust pollution led to health problems
- > Problems with energy supply
- > Record melting of Alpine glaciers Volume loss of 10 %

2010

- >>55000 heat related death
- > Actual total loss: 3600 Mio USD
- > 25% less crop yield in W Russia
- > Widespread forest fires in western Russia
- > 2500 destroyed houses
- > Heat, drought, ozone and fine dust pollution led to health problems
- > Problems with energy supply

(Münchener Re Insurance, 2011; Emergency Control Ministry of Russia)

Possible explanations for the exceptional heat summers of 2003 and 2010

> Controversial discussions

- Stott et al. (2004, Nature) → 'human influence on climate has doubled the risk of such an event'
- > Dole et al. (2011, GRL): 2010 Heatwave was "mainly natural in origin"
- > Rahmstorf und Coumou (2011, PNAS): 2010 heatwave: "with a probability of 80% "the 2010 July heat record would not have occurred" without the large-scale climate warming since 1980, most of which has been attributed to the anthropogenic increase in greenhouse gas concentrations
- > Otto et al. (2012, GRL): based on ensemble experiments, both is possible, depending on the research question

Conclusions

- Europe offers a broad spectrum of different proxy information to reconstruct past climate
- > European summers were warm during Roman & Medieval times. Cooler summers were experienced 14th-19th centuries
- > The current warmth and warming trend are unusual, but not unprecedented in the context of natural climate variability over the past two millennia
- > 2003 & 2010 are unusual, but not unprecedented (± 1K uncertainties) → 1540, a disaster beyond all expectations
- > Good agreement between reconstructions and palaeo models
 → Evidence for a better agreement with the palaeo model ensemble using strong total solar irradiance
- Tropical volcanism trigger changes in dynamics, summer cooling 1 and 2 years after the eruption ('year without a summer')