38 Antarctic Dry Valleys:

- **1. The Antarctic environment and the Antarctic Dry Valleys.**
- 2. Cold-based glaciers and their contrast with wet-based glaciers.
- 3. Microclimate zones in the Antarctic Dry Valleys (ADV) and their implications.
- 4. Landforms on Earth and Mars: A comparative analysis of analogs.
- 5. Biological activity in cold-polar deserts.
- 6. Problems in Antarctic Geoscience and their application to Mars.

The Dry Valleys: A Hyper-Arid Cold Polar Desert

Temperate Wet-Based Glaciers

Cold-Based Glaciers

Antarctic Dry Valleys: Morphological Zonation, Variable Geomorphic Processes, and Implications for Assessing Climate Change on Mars

Antarctic Dry Valleys

- 4000 km²; Mountain topography
 - (2800 m relief).
- Coldest, driest desert on Earth.
- Mean annual temperature: -20° C.
- Mean annual snowfall (CWV):
 - Min. = <0.6 cm; Max. = 10 cm.</p>
 - Fate of snow: Sublimate or melt.
- A hyperarid cold polar desert.

- Topography controls katabatic wind flow:
 - Funneled through valleys, warmed by adiabatic compression.
 - Enhances surface temperatures, increases sublimation rates of ice and snow.
- Bedrock topography governs local distribution of snow and ice:
- Biology sparse: ~1 mm "Antarctic mite"; microscopic nematodes.
- Environment very useful for understanding Mars climate change.

Antarctic Dry Valleys

- 4000 km²; Mountain topography
 - (2800 m relief).
- Coldest and driest desert on Earth.
- Mean annual temperature: -20° C.
- Mean annual snowfall (CWV):
 - Minimum = <0.6 cm; Maximum = 10 cm.</p>
 - Fate of snow: Sublimate or melt.
- Generally a hyperarid cold polar desert.

- Topography controls katabatic wind flow:
 - Funneled through valleys, warmed by adiabatic compression.
 - Enhance surface temperatures, increase sublimation rates of ice and snow.
- Bedrock topography governs local distribution of snow and ice:
- Biology sparse: ~1 mm-sized "Antarctic mite"; microscopic nematodes.
- Environment very useful for understanding Mars climate change.

Antarctic Dry Valleys

- Hyperarid cold polar desert.
- But, significant variations within this climate.

- These variations involve small but important differences:
 - Annual surface temperature (meltwater).
 - Relative humidity.
 - Soil moisture (and type of subsurface ice).
- We have defined three different microclimate zones within the Antarctic Dry Valleys.
- These are useful for understanding Mars climate change.

Microclimate Zones

Upland frozen zone Inland mixed zone Coastal thaw zone

Distribution of surface meltwater

No traditional "active layer" No seregation ice Regions with soil moisture < 3%

< -30 C to -35 C Upland Frozen Zone Discontinuous A. L. Ice and sand wedges Soil moisture variable

Dynamic Active Layer with segregation ice and wedges Soil moisture ~ 30 to > 50%

Origins of subsurface ice? Coastal Zone

Inland Mixed Zone

Distribution of surface meltwater

-8°C (<-30 C) Upland frozen zone

-4°C (-22 C)-2°C (-14°C)Inland mixed zoneCoastal thaw zone

POLYGONS

Upland frozen zone Inland mixed zone

Coastal thaw zone

Sublimation

Sand-wedge

Ice wedge

A. J. Johnsson and E. M. Kakkinen, Earth Sciences Centre, Gothenburg Sweden

Viscous-flow features

Upland frozen zone

Inland mixed zone

Coastal thaw zone

Solifluction lobes

Debris-covered glaciers

Gelifluction lobes

Applications to Mars Debris covered glaciers as analogs for viscous flow features on interior of Crater walls

Crater wall 248 W/ 36 S M04/02881

161 E / 78 S

Crater wall 247 W / 38 S M18/00898

Mullins Debris-Covered Glacier, Beacon Valley, Antarctica

Origin of debris-covered glaciers in upland zone

Protective lag of sublimation till

Fate of debris-covered glacier ice?

Sublimation Polygons

POLYGON AGE: in-situ ashfall

LU1017/EMS 98 13A/pkt. W			J = 0.00049301						
Grains	Ar40/Ar39	Ar38/Ar39	Ar37/Ar39	Ar36/Ar39	Ar39 (moles)	% Ar40*	Ar40*/Ar39K	Age (Ma)	Error (Ma)
1	12.839	0.01792	0.0373	0.01448	3.11E-16	66.55	8.545	7.58	0.08
1	9.972	0.01284	0.0325	0.00422	2.89E-16	87.35	8.711	7.73	0.08
1	11.385	0.01565	0.0565	0.00996	2.99E-16	74.03	8.429	7.48	0.07
2	9.148	0.02338	0.0433	0.00152	5.21E-16	94.93	8.685	7.71	0.08
2	13.401	0.01518	0.0410	0.01518	3.03E-16	66.41	8.900	7.90	0.08
2	10.557	0.01518	0.3368	0.00626	4.56E-16	82.56	8.719	7.74	0.06
								7.69	0.10

Applications to Mars

Sublimation polygons as an analog for basketball-textured terrain on Mars

A. J. Johnsson and E. M. Kakkinen, Earth Sciences Centre, Gothenburg Sweden

Applications to Mars Debris covered glaciers as analogs for viscous flow features on interior of Crater walls

Crater wall 248 W/ 36 S M04/02881

161 E / 78 S

Crater wall 247 W / 38 S M18/00898

OBLIQUITY VARIATIONS AND CLIMATE CHANGE ON MARS

History of Climate Change of Mars: Superposed Geomorphological Climate Indicators

Rock Weathering In Antarctica and Mars

Key Issues in Antarctic Dry Valley Geoscience

- Age of landscapes, surfaces and weathering rates.
- Modes of rock weathering and soil formation.
- Stability of microclimate zones; effects of global warming.
- Debris-covered alpine glaciers: Formation and evolution.
- Sublimation till: Modes of formation and evolution.
- Role of sublimation till in inhibiting vapor diffusion, ice loss.
- Age of ancient ice in subsurface: Oldest ice on Earth?
- Analysis of ancient climate record in buried ice.
- Polygon origin and evolution.
- Implications for Antarctic and global climate change.
- Provide clues to map changing climate on Mars.
- Exobiological studies on Earth, application to Mars.

Sampling for life detection in extreme environments: Antarctic Dry Valleys

- Buried ice ancient microbial communities:
 - Paul Falkowski and Kay Bidle, Rutgers.
- Lipid biomarkers and isotopic ratios from soil profiles:
 - Yongsong Huang, Brown University.
- Amino Acid Racemization (AAR):
 - Alexander Tsapin (JPL)
- Molecular biological and Limulus Amebocyte Lyste (LAL) Analyses:
 - Rebecca Gast, WHOI.
- Ribosomal RNA:
 - Linda Amaral Zettler, MBL.

The Dry Valleys: A Hyper-Arid Cold Polar Desert

