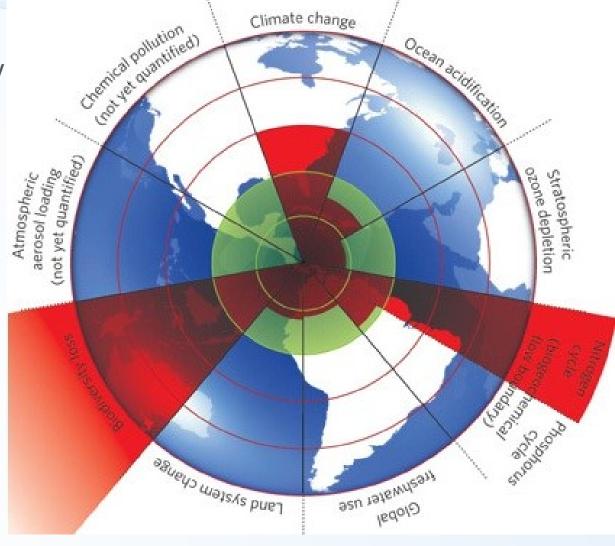


Introduction to Ecotoxicology

linking fundamental science with environmental risk assessment and management

Ludek Blaha, Jakub Hofman, Klara Hilscherova & co.



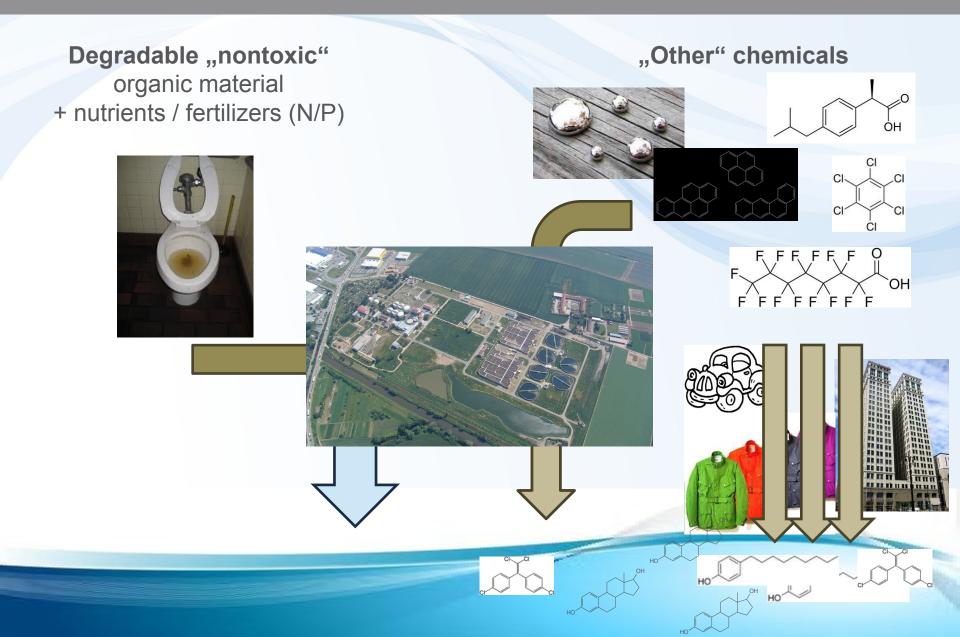
Global anthropogenic threats?

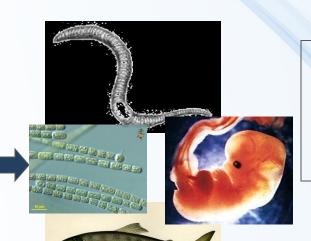
A safe operating space for humanity & the nine planetary boundaries

Rockstrom et al. 2009 (*Ecology and Society* **14**(2): 32; Nature **461**, 472-475)

Environmental pollution

Any examples ???




Contamination of water - chemicals?

CHEMICAL ENTERS THE ENVIRONMENT

Bioavailable fraction

CHEMICAL ENTERS THE ORGANISM

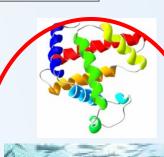
biomonitoring

Toxikokinetics

biotransformation bioactivation excretion / sequestration

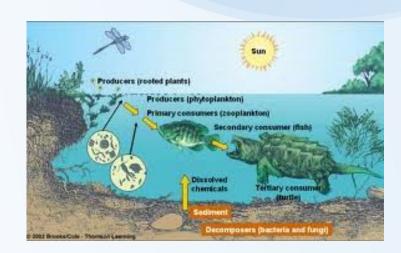
Target site

"EFFECT"


"EXPOSURE"

acute

chronic


Assessment of chemical hazards

...to...

Humans (TOXICOLOGY)

Other organisms (ECOtoxicology)

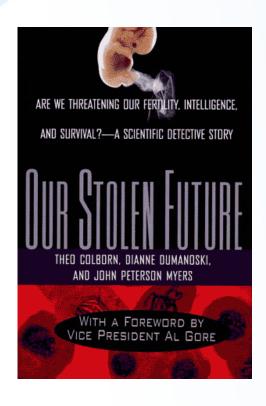
Chemicals in the environment

Do you believe that chemicals in products sold to consumers have been proven safe?

Think again

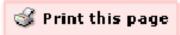
Most chemicals in modern use have simply not been tested for their impacts on human, even very basic effects.

... what about the effects in nature, then?



Chemicals in the environment

- Rats exposed in the womb to a single low dose of a widespread brominated flame retardant become hyperactive and have decreased sperm counts...
- Experiments with dioxin and similar compounds provide support for the assumption that cancer risks mediated by the aryl hydrocarbon receptor are additive. Previously untested for cancer, this assumption underpins a standard way of estimating exposure risks to these compounds. The results reinforce the need to focus health standards on mixtures rather than single compounds.
- At exposure levels within the range experienced by the general public, the phthalate <u>DBP</u> reduces expression of genes necessary for testosterone synthesis in fetal rats...
- Eutrophication of frog ponds is linked to epidemics of frog deformities, because it creates conditions that lead to higher rates of parasitic infections of tadpoles. The parasitic infections in turn disrupt normal development of the tadpoles' limb buds during metamorphosis.



Published online: 21 October 2005; | doi:10.1038/news051017-16

Pollution makes for more girls

The stress of dirty air skews sex ratios in Sao Paulo.

Erika Check

Toxic fumes favour the fairer sex, a group of researchers in Brazil has found.

Jorge Hallak and his team at the University of Sao Paulo turned up the surprising result by studying babies born in their city. They divided the metropolis of 17 million people into areas of low, medium and high air pollution, using test results from air-quality monitoring stations. They then studied birth registries of children born from 2001 to 2003.

The team found that 48.3% of babies were female in the least polluted areas, but 49.3% were female in the dirtiest parts of town. After measuring the ratio of boys to girls born in all the areas, they calculated that 1.180 more babies would have been boys in the pollute.

Babies born in highly polluted areas are more likely to be girls.

© Alamy

calculated that 1,180 more babies would have been boys in the polluted areas if they had the same sex ratios as the cleaner areas. The team reported their findings on 17 October at the American


Major anthropogenic threats – example: waters

Impacts

Major impacts

Loss of biodiversity

Changes in biodiversity

Changes in biodiversity

NATURE (2012) 482: 20

increase in the global population of jellyfish a a catch-all term that covers some 2,000 species of true cnidarian jellyfish, ctenophores (or comb jellies) and other floating creatures called tunicates. But many marine biologists are now questioning the idea that jellyfish have started to overrun the oceans.

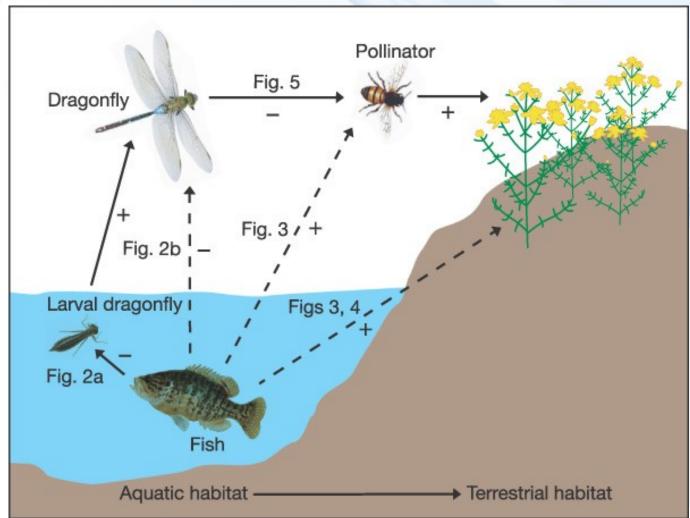
This week, a group of researchers published preliminary results from what will be the most comprehensive review of jellyfish population data? They say that there is not yet anough evi-

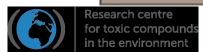
Major impacts

Loss of biodiversity

- Impairment of ecosystem services
 - Unbalanced water cycles
 - Water scarcity
 - Draughts/floods
 - Impaired water quality
 - Drinking waters
 - Bathing waters
 - Toxicants in food chain
 - Shrinking of food supplies

 - Direct → lowering fish amounts
 - Indirect
- → crop yield





Impacts on fish → decreased crop yields

NATURE (2005) 437: 880

Impacts on biota → global effects

Mixing oceans

→ cooling the atmosphere [Nature 447, p.522, May 31, 2007]

Marine life supplies up to 50% of the mechanical energy required worldwide to mix waters from the surface to deeper cool layers

[Dewar, Marine Res 64:541 (2006)]

[Katija a Dabiri, Nature 460:624 (2009)]

Ecotoxicology: ecological hierachy

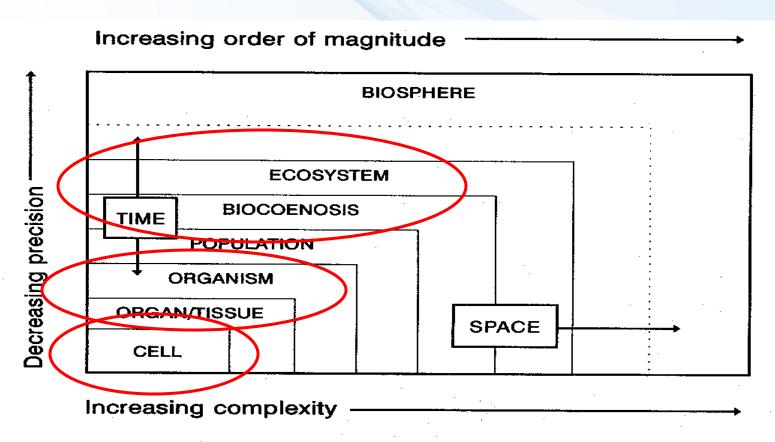
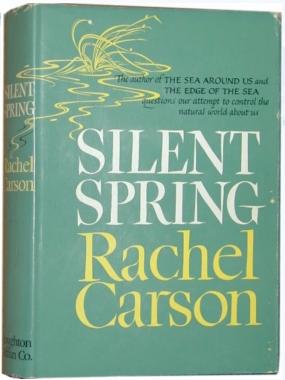
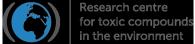


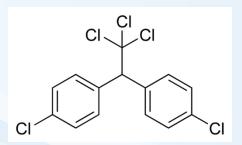
Figure 3.1 Biological levels of organization. The dimensions of time and space are less important for the investigation up to the levels of populations and biocoenoses.

From molecules to ecosystem

... and backwards




1962



© Patuxent Wildlife Refuge, MA, USA

The great expectations held for DDT have been realized. During 1946, exhaustive scientific tests have shown that, when properly used, DDT kills a host of destructive insect pests, and is a benefactor of all humanity.

Pennsalt produces DDT and its prod-

one of the country's largest producers of this amazing insecticide. Today, everyone can enjoy added comfort, health and safety through the insectkilling powers of Pennsalt DDT products... and DDT is only one of Pennsalt's many chemical products which henefic industry, farm and home.

Knox for 1

Med to m

more counfed

protects yes

dangerous is

Knox-Out

and Sprays

then watch

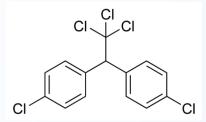
then don't

GOOD FOR FRUITS—Bigger apples, juicier fruits that are free from unsightly worms ... all benefits resulting from

97 Years' Service to Industry • Farm • Home

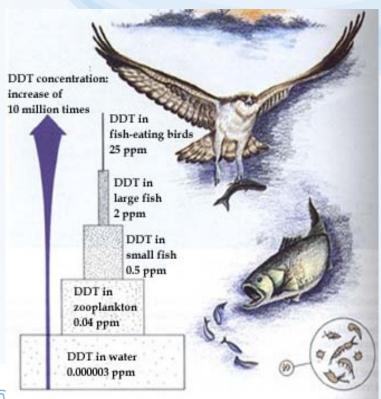
Keex FOR DAIRIES—Up to 20% more objective, ... more butter ... more cheese, ... treats prove greater milk production when dairy cows are protected from the annovance of many insects with DDT insecticides like Knox-Out Stock

GOOD FOR ROW CROPS—25 more barrels of potatoes per acre . . . actual DDT tests have shown crop increases like this! DDT dusts and agrays help truck farmers pass these gains along to you.



PENNSYLVANIA SALT MANUFACTURING COMPANY WIDENER BUILDING, PHILADELPHIA 7, PA.

Bitman et al. Science 1970, 168(3931): 594


Biochemistrybird carbonate dehydratase

In vivo: shell thinning

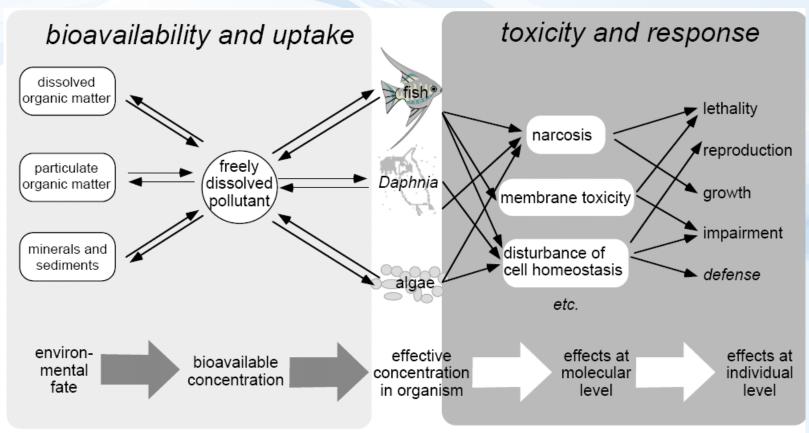
In situ: bioaccumulationbird population decline

ECOTOXICOLOGY by definition

Aim: to maintain the natural structure and function of ecosystems

Definitions:

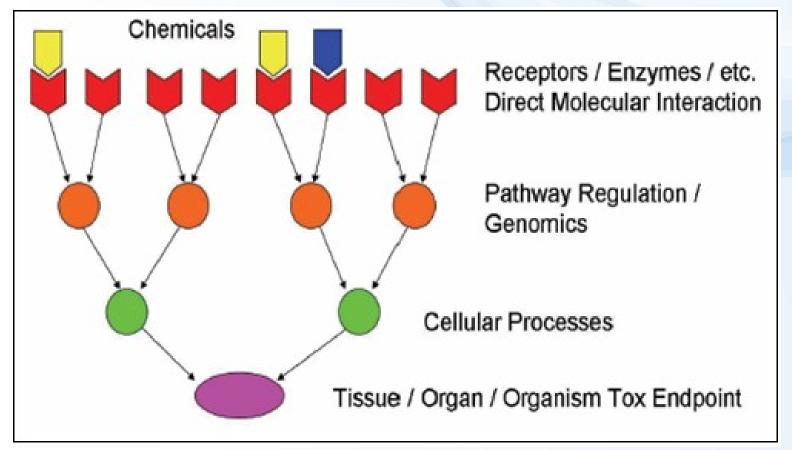
- ecotoxicology is concerned with the toxic effects of chemical and physical agents on living organisms, especially on <u>populations and communities</u> within defined ecosystems; it includes the transfer pathways and their interactions with the environment
- science of contaminants in the <u>biosphere</u> and their effect on constituents of the biosphere, including humans' (Newman & Unger, 2002)
- science that provides critical information on effects of toxic compounds on living organisms which <u>SERVE various practical</u> aims (environmental protection)



Ecotoxic effects

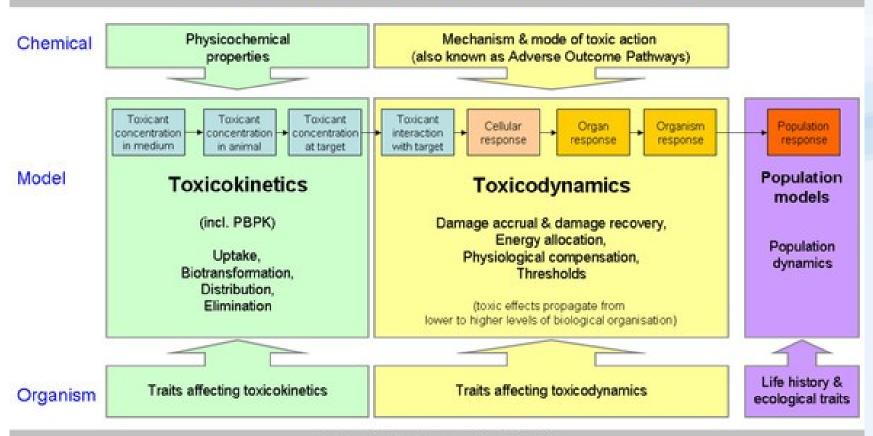
Figure 1 The effective concentration of a pollutant in an organism (e.g. fish, daphnia, algae) or at the target site inside the organism is the link between the environmental fate of a pollutant and its toxic effect.

Escher, B. I., Behra, R., Eggen, R. I. L., Fent, K. (1997), "Molecular mechanisms in ecotoxicology: an interplay between environmental chemistry and biology", *Chimia*, **51**, 915-921.



1) From molecules to individuals

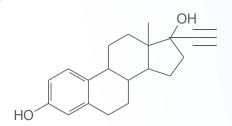
MECHANISMS OF TOXICITY



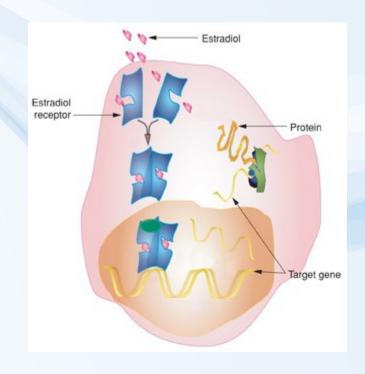
2) From molecules to individuals

ADVERSE OUTCOME PATHWAYS

Mechanistic effect models for ecotoxicology


→ Arrows indicate a causal relationship

See also: Ashauer & Escher JEM (2010), Rubach et al. IEAM (2011), Jager et al. ES&T (2011), Ashauer et al. ET&C (2011)


www.ecotoxmodels.org

AOP Example: ethinylestradiol

Ethinylestradiol

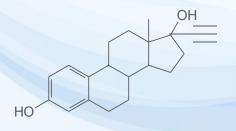
Binds to ESTROGEN RECEPTOR

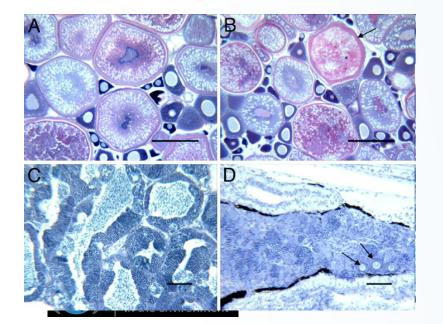
Target genes

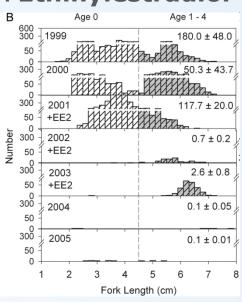
- Proliferation/Apoptosis (sexual organs)
- Synthesis of egg yolk (fish, amphibia)

Effects

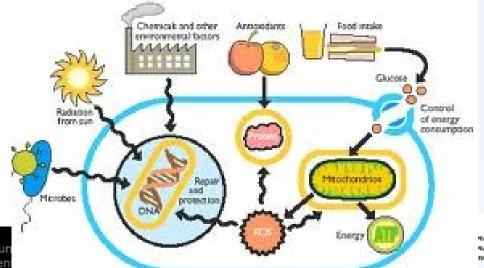
- Females: reproduction regulation
- Males: feminization
 - (+ e.g. cancer promotion, development, immunomodulation)




Kidd, K.A. et al. 2007. <u>Collapse of a fish population</u> following exposure to <u>a synthetic estrogen</u>. *Proceedings of the National Academy of Sciences* 104(21):8897-8901

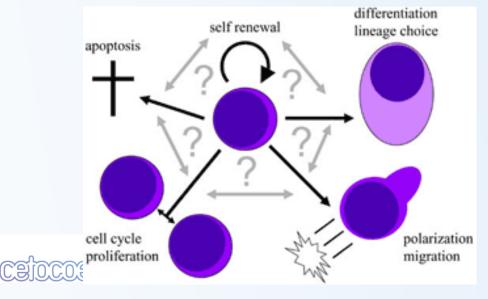


Controls

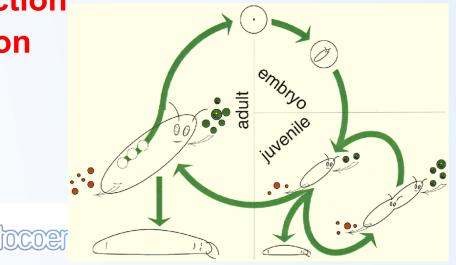

Fork length (cm)

+Ethinylestradiol

Molecular


- Nonspecific effects
 - Hydrophobic interactions with phospholipid membranes (baseline = narcotic toxicity)
 - Direct reactivity: electrophilic compounds → nucleophilic organism (e.g. oxidation of PROTEINS, lipids (membranes), DNA...)
- Specific effects
 - Activation of ER, AR and other "nuclear receptors"
 - Inhibition of enzymes (e.g. CN- inhibits hemes in mitochondria/hemoglobin)
 - Neurotoxicity in nontarget organisms (e.g. Insecticides)

Cellular


- Effects on structure
- Effects on metabolism (maintenance)
- Effects on regulation
 - → Changes in functions (e.g. Ethinylestradiol)
 - → Repair, survival, growth
 - → Death (apoptosis or necrosis)
 - → Proliferation
 - → Differentiation

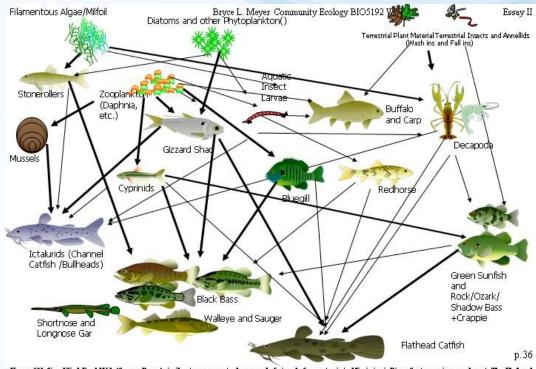
Organism

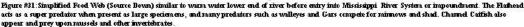
- Effects on structure
- Effects on metabolism (maintenance)
- Effects on regulation
 - → Changes in functions (e.g. Ethinylestradiol)
 - → Repair, survival, growth
 - → Death
 - → Proliferation = Reproduction
 - → Differentiation = Evolution

Population

(... all the organisms that both belong to the same group or species (i.e. can sexually reproduce) and live in the same time within the same geographical area)

- Effects on structure
 - elderly vs. young, males vs. females
- Effects on maintenance & growth
 - Natality, mortality, reproduction fitness





Community & Ecosystem

(... a group of interacting living organisms sharing a populated environment)

- Effects on structure
 - Loss of species, loss of biodiversity
- Effects on functioning
 - (including "ecosystem functions")

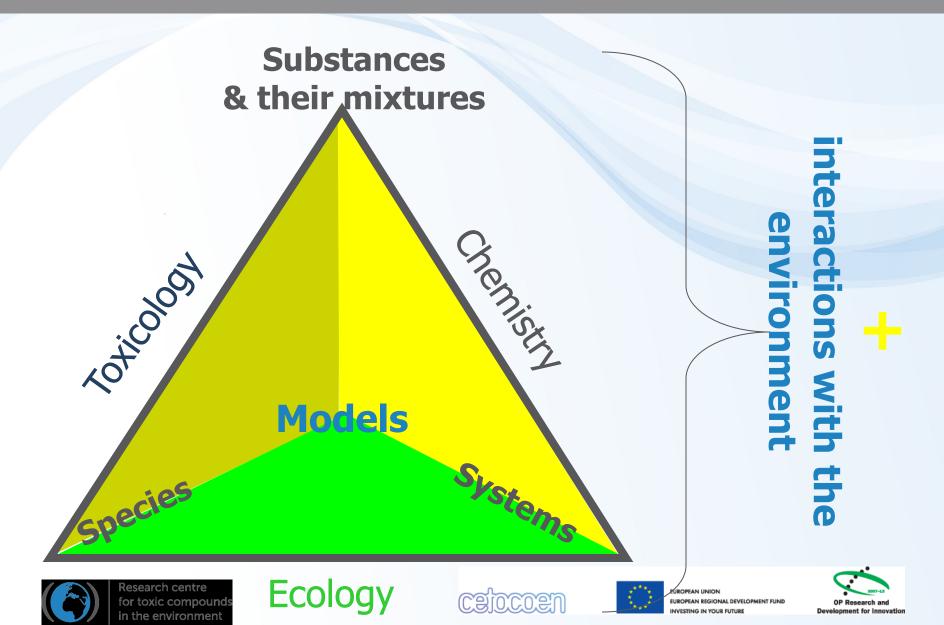
(Eco)toxicology – science of "doses"

Paracelsus (1493 - 1541)

'What is there which is not a poison?

"Cause-effect paradigm"

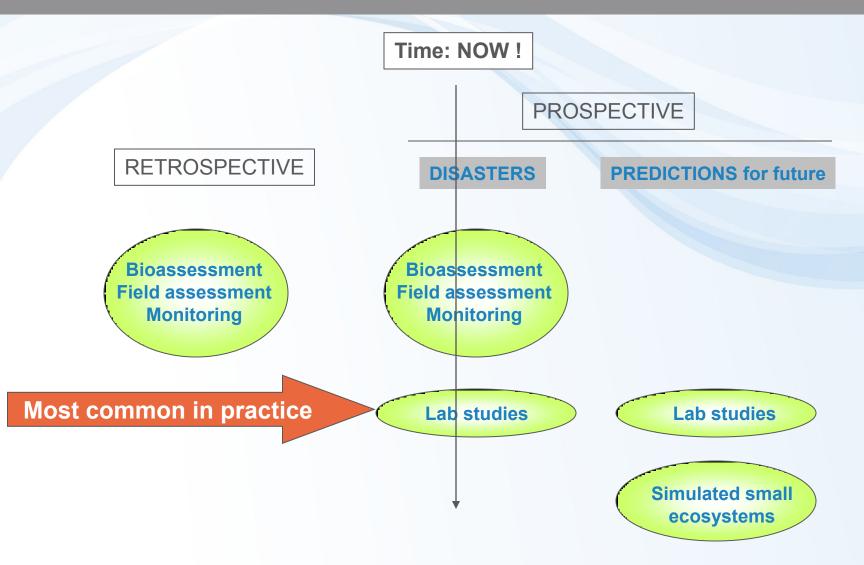
- All things are poison and nothing without poison.
- Solely the dose determines that a thing is not a poison.



ECOTOXICOLOGY – a synthetic science

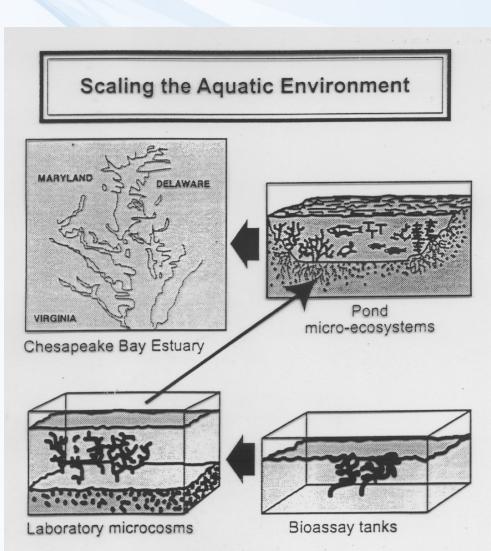
Ecotoxicology – ultimate goal ?

To identify (or predict) safe vs hazardous levels

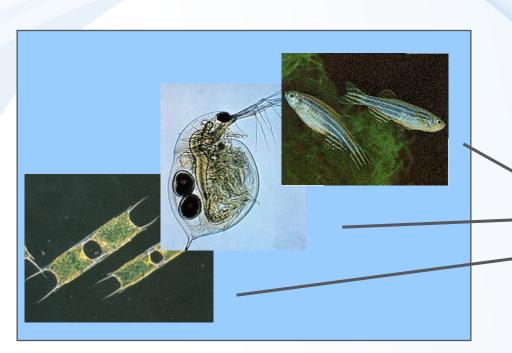


Ecotoxicology: problems and approaches

Testing ecotoxicity – basics

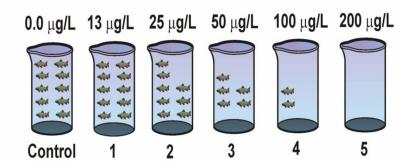

Bioassays

- single / multiple species
- acute / chronic effects
- standardized (practical)vs. experimental (research)


Simulation of the ecosystem

- major trophic levels
 - producers
 - consumers
 - decomposers

Ecotoxicology methods 1) - standardized assays



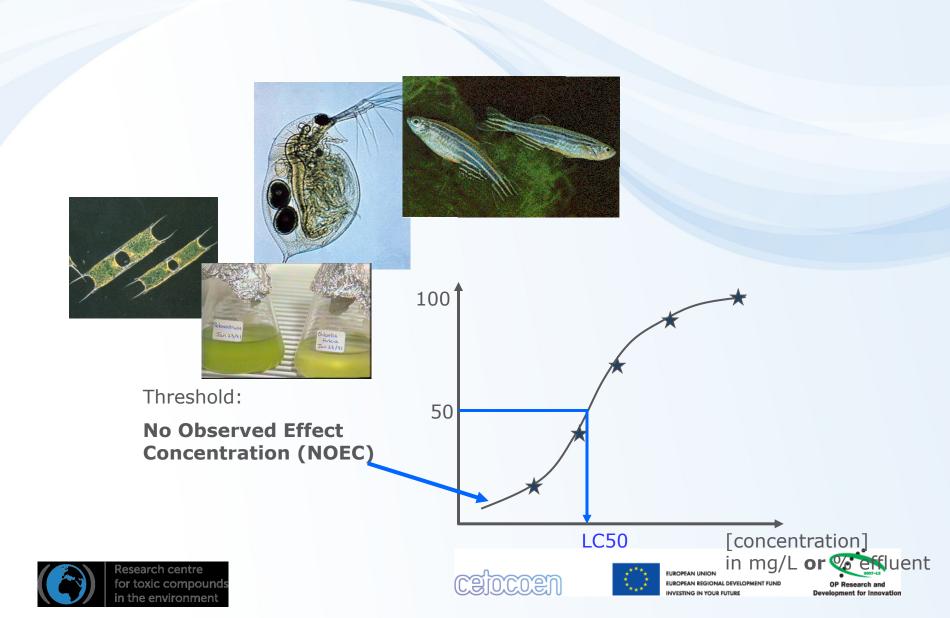
Cu addition

Concentration:

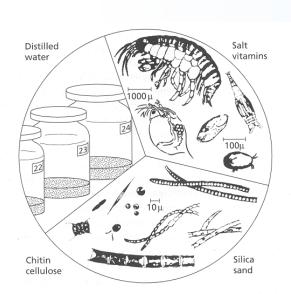
96-hour LC50 = 50 μ g/L

Effect concentrations expressed in total/dissolved Cu

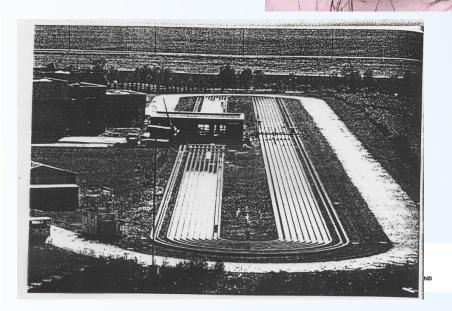
??? Safe concentrations ???



Laboratory ecotoxicology – data and results



Ecotoxicology – methods 2: Micro & Mesocosms


Expensive & time consuming (e.g. Pesticide testing)

Variable results (natural variability ...)

Higher ecological relevancy

Ecotoxicology - methods 3: Field assessment / biomonitoring

- complex issue (geology, climate, chemistry, biology ..) Ecotoxicology mixes with Ecology

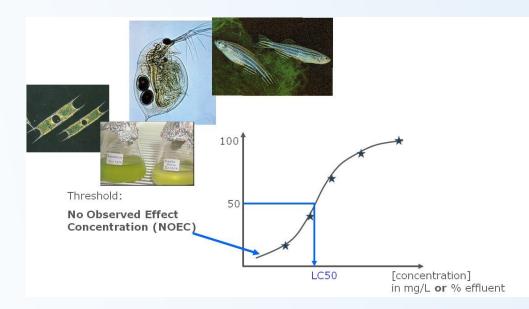
- comparing "contaminated" with "control" sites

Notes on practical testing

- Testing chemicals
 - Traditional / bioassays developed to assess individual chemicals
 - Advantage: Standardized approaches
 - Disadvantage: Limited ecological relevance
 - often acute tests only
 - "too standardized…" (? Less representative ?)
 - does not assess/consider bioavailability
 - no consideration of mixture effects
 - no consideration of specific modes of action
 - no consideration of ecological situation
- Example: Acute (96h) fish toxicity assay with ethanol
 - No deaths (but fish are passive slow swimming) → OK ?
 - Real life: easy prey → population decline

Notes on practical testing

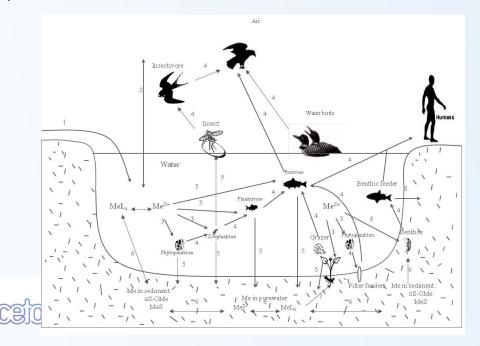
- Testing toxicity of natural contaminated matrices
 - Rather new in ecotoxicology many open challenges
 - Whole effluent toxicity testing (WET)
 - Contact soil toxicity assays
 - More complex and more complicated
 - "cause-effects" often not clear
 - Natural variability in matrices
 - Algal tests nutrients (Nitrogen, Phosporus) >> Toxic compounds


Ecotoxicology in current practice

- Most legislations on chemicals)

 (e.g. REACH, Pharmaceuticals, Pesticides)
 have very simple (basic) requirements
 - EC50 from acute toxicity
 - Of 3 basic assays
 - Algae
 - Daphnia
 - Fish

Ecotox database: www.epa.gov/ecotox



Ecotoxicology in current practice

 How to extrapolate 3 (or few more) EC50 values to get legally binding safe concentration, which is protecting virtually all organisms?

PNEC (Predicted No Effect Concentration) EQS(Environmental Quality Standard)

Extrapolation approaches

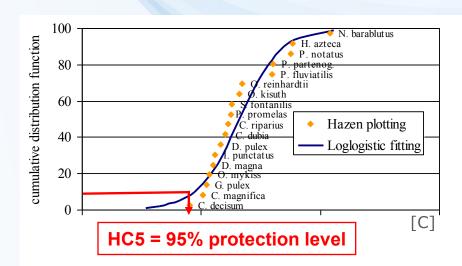
Ecotoxicological data

Assessment / Extrapolation factors

	_
Data	Assessment factor
L(E)C50 short-term toxicity tests	1000
NOEC for 1 long-term toxicity test	100
NOEC for additional long-term toxicity tests of 2 trophic levels	50
NOEC for additional long-term toxicity tests of 3 species of 3 trophic levels	10

PNEC

Extrapolation approaches

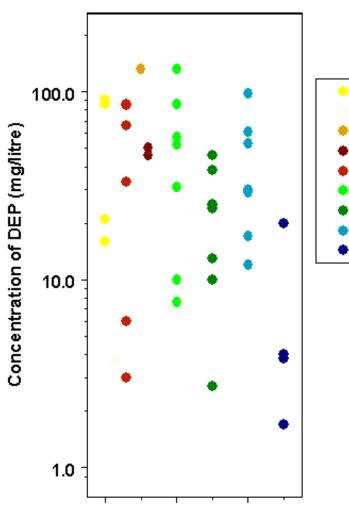

Ecotoxicological data

Assessment / Extrapolation factors

Extrapolation lactors				
Data	Assessment factor			
L(E)C50 short-term toxicity tests	1000			
NOEC for 1 long-term toxicity test	100			
NOEC for additional long-term toxicity tests of 2 trophic levels	50			
NOEC for additional long-term toxicity tests of 3 species of 3 trophic levels	10			
· ·				

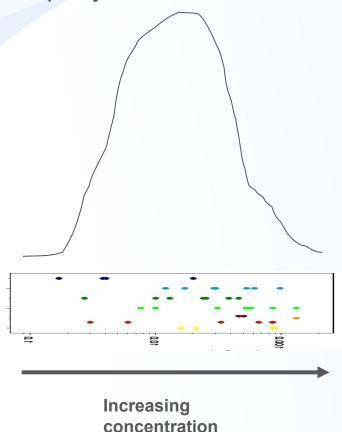
Species sensitivity distribution (SSD)

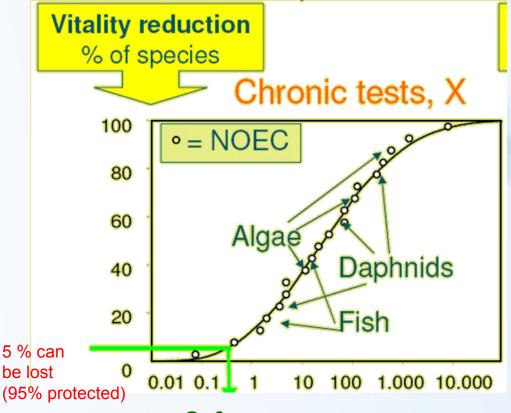
PNEC



Species Sensitivity Distribution

EC50 values for Diethylphthalate


- algae EC50
 algae NOEC
- protozoa EC50
- protozoa NOEC
 - algae marine EC50
 - invertebrate LC50
- invertebrate NOEC
- fish LC50
- fish NOEC



Species Sensitivity Distribution

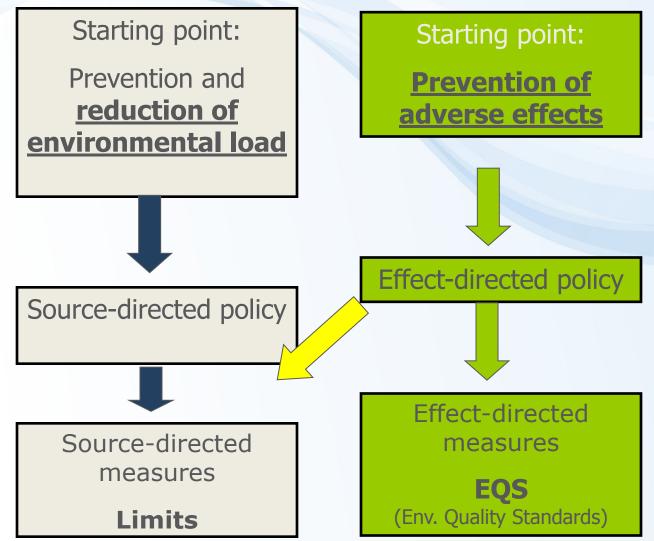
Cummulative distribution of EC50 values

Safe concentration

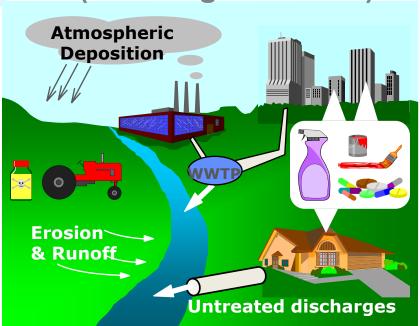
Ecotoxicology

WHAT IS IT GOOD FOR?

SOLVING PRACTICAL PROBLEMS



Environmental policy: Limitations of sources and effects



Cause – effect → Risk assessment

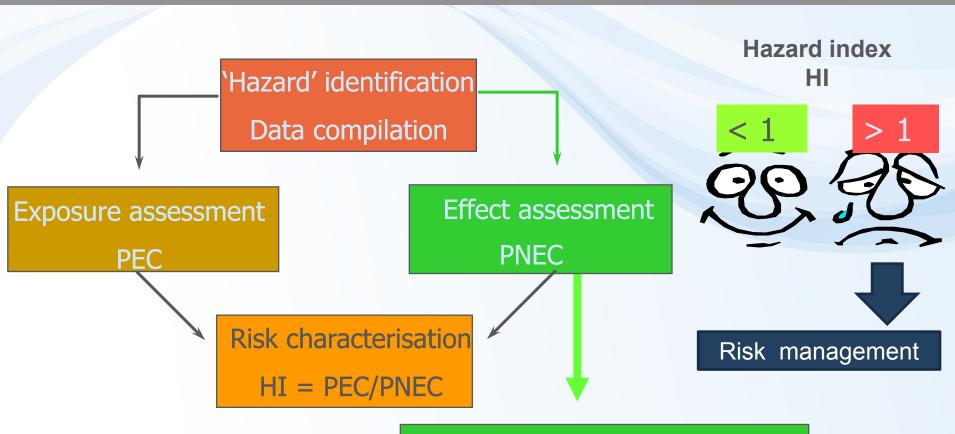
Exposure

(resulting from load)

Effects

(what exposures cause effects

Predicted Environmental Concentration (PEC)



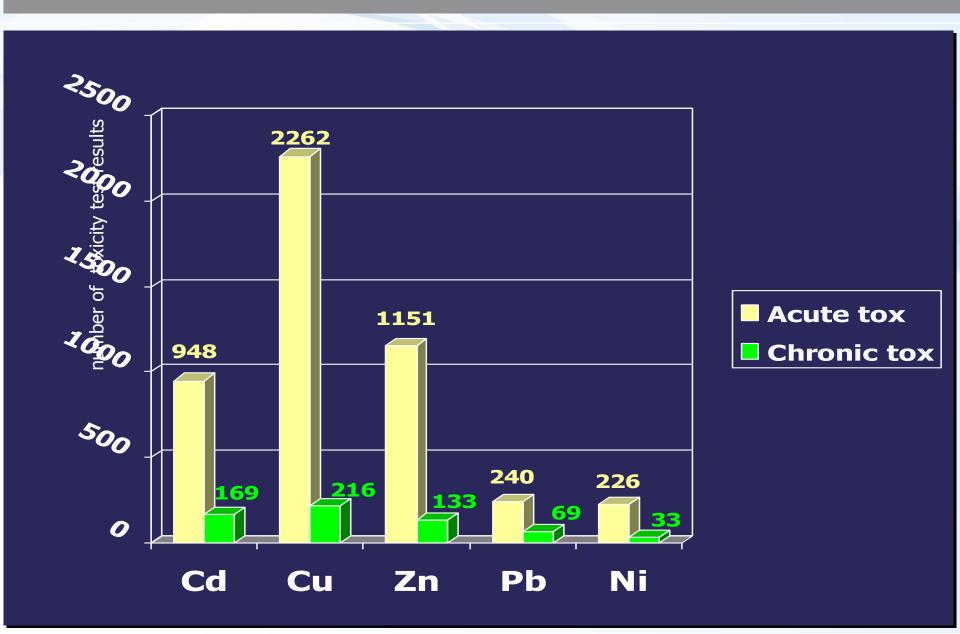
effective concentrations (PNEC)

Risk assessment & management

Environmental quality standards / criteria

UNCERTAINITIES & challenges in ecotoxicology

... stay cautious and critical

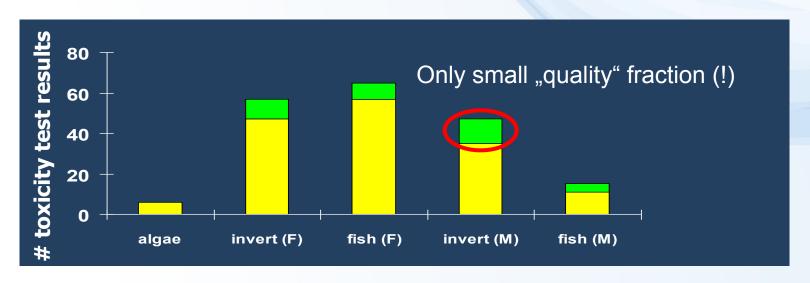


1) Data availability

2) Bioavailability

EQC expressed as total concentrations do not reflect the true environmental risk

- → Bioavailability of chemicals depends on number of factors:
 - physico-chemical
 - pH, hardness, alkalinity, DOM concentration / quality
 - biological factors:
 - · species, uptake route, physiological regulation



3) Data quality

Quality and relevance of the (scientific) data used for EQC derivation of metals, in most cases, POOR!

- Literature search: 156 data points
- Application of QC/QA and acceptance criteria
 [measured, pH and Hum (F), salinity (M)]
- → 34 data points (22 %) used in risk assessment

1) Use non-standardized organisms

- Laboratory aquatic snails, chironomids, soil organisms ...
- Natural sample natural organisms and test ecotoxicity immediately

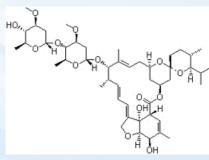
2) Assess parameters important for populations

- Reproduction
- Life cycle effects (including early life stages)

3) Consider natural situations

- Addapt test conditions (temperature?, water hardness? ...)
- Simulate real exposures (e.g. peaks during pesticide spraying)

- 4) Work on development of models answer difficult questions?
 - AOPs (?)
 - E.g. ecological impacts of pharmaceuticals?



4) Work on development of models – answer difficult questions?

- AOPs (?)
- E.g. ecological impacts of pharmaceuticals?

Example - antiparasitic ivermectin

- Used (for example) 2-times per season per sheep/cow
- Kills 100% parasites in sheep
- Released in dung kills 80% larvae of dung flies
- High concentrations in dung (released 2 days post application)
- Fairly persistent in the soil (half-life 30 days)
- May be washed into adjacent streams (highly toxic to water insects)

4) Work on development of models – answer difficult questions?

- AOPs (?)
- E.g. ecological impacts of pharmaceuticals?

Example - antiparasitic ivermectin

- Used (for example) 2-times per season per sheep/cow
- Kills 100% parasites in sheep
- Released in dung kills 80% larvae of dung flies
- High concentrations in dung (released 2 days post application)
- Fairly persistent in the soil (half-life 30 days)
- May be washed into adjacent streams (highly toxic to water insects)

HO, OH H

What are the indirect impacts on soil biota?

- Soil texture and quality? Will plants grow on the pastures?
- Any impacts on bats, birds?
 - Dung flies and aquatic invertebrates serve as food

Practical example for ecotoxicologist

European strategy how to deal with chemicals

EU and risk assessment

- ± 40 Directives or Regulations concerning the evaluation and management of the dangers/risks associated with chemical substances
 - Regulation EEC 793/93 Existing substances
 - Dir. 67/548/EEC New substances
 - Dir. 98/8/EC Biocides / Plant Protection Products
 - Further Directives E.R.A. of new pharmaceuticals

EU and risk assessment

Existing substances

- 100196 substances in EINECS
- 2747 HPVCs (High Production Volume Chemicals)
 - 14% minimum data-set (base-set)
 - 65% less than base-set
 - 21% no toxicity data
- Various priority lists
 - Aquatic hazard (EU Water framework directive)
 - Endocrine disruptors
 - •

REACH Registration, Evaluation and Authorisation of Chemicals

- 27-2-2001: White Paper on the Strategy for Future Chemicals Policy
- 23-10-2003: Commission's proposal REACH
- December 2008: Pre-registration mandatory (all chemicals in EU must be registered at ECHA

European Chemicals Agency

HOME

SIEF REACH

CONSULTATIONS

ECHA CHEM

REACH-IT

CLASSIFICATION

HELP

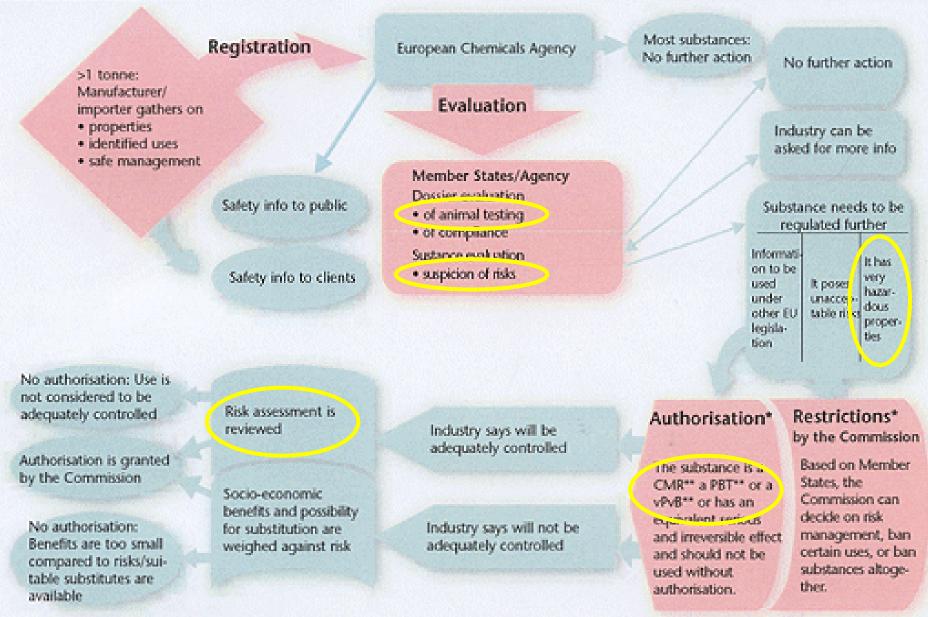
European Chemicals Agency (ECHA)

The Agency, located in Helsinki, Finland will manage the registration, evaluation, authorisation and restriction pressure consistency across the European Union. These REACH processes are designed to provide additional in their safe use, and to ensure competitiveness of the European industry.

In its decision-making the Agency will take the best available scientific and technical data and socio-economic provide information on chemicals and technical and scientific advice. By assessing and approving testing proposanimal testing.

During the first 12 months the Agency is building up its organisation and recruiting personnel to be ready to acc More

EUROPEAN UNION
EUROPEAN REGIONAL DEVELOPMENT FUND
INVESTING IN YOUR FUTURE


Agency

European Chemicals

(http://echa.europa.eu)

REACH: Registration, Evaluation and Authorisation of CHemicals

^{*} Substances do not have to be registered or evaluated to be placed under authorization or restriction. They can be identified in other ways.

[&]quot;Can cause cancer or mutations, or is toxic to reproduction; or is persistent, bio-accumulative and toxic, or very pensistent and very bio-accumulative.

REACH: aims & timing

Major goals

- Protection of man and the environment
- Increase competiveness of EU chemical industry
- Increase transparency
- Avoid fragmentation of market
- Integration with international policies
- Reduction use of test animals

Approach

Industry is responsible – provides data

30000 existing substances

- 0-3 year (2010): all HPVC and CMR substances (~ 3000)
- 4-6 year (2013): all 100-1000 t/y substances
- 7-11 year (2018'): all 10-100 and 1-10 t/y substances

REACH: data type?

- Physico-chemical properties, e.g.:
 - Vapour pressure, boiling point, Kow,...
- Human toxicology, e.g.:
 - Acute and chronic toxicity, skin irritation, carcinogenity,...
- Environment/ Ecotoxicological information, e.g.:
 - Acute and/or chronic toxicity for aquatic organisms, biodegradation, ...

REACH: situation 2010

- Original plan (2007-2010)
 - R.A. for ~ 3000 HPVC and CMRs

- -Situation 2010
 - ~ 200 substances RA status
 - ~ 150 draft RA reports
 - ~ 50 final RA reports

REACH: how many substances

Table 6. Estimated testing needs (% of total number of substances)

Endpoint	Minimum	Average	Maximum
6.3 Skin sensitisation	7486	10293	13728
	(25.5)	(35.1)	(46.8)
6.2 Eye irritation (incl. in vivo)	5923	6910	8182
	(20.1)	(23.5)	(27.9)
6.4.4 In vivo mutagenicity study	6580	6580	6580
	(22.4)	(22.4)	(22.4)
7.1.2 Growth inhibition algae	2638	5277	11466
	(9.0)	(18.0)	(39.1)
7.1.4 Active sludge respiration test	4616	4616	4616
	(15.7)	(15.7)	(15.7)
7.1.1 Short-term Daphnia toxicity	2321	4096	8798
	(7.9)	(14.0)	(30.0)
6.1 Skin irritation/corrosion (inci. in vivo)	1974	3949	5817
	(6.7)	(13.4)	(19.9)
7.2.2.1 Hydrolysis	2691	3425	4518
	(9.2)	(11.7)	(15.4)
6.4.1 Gene mutation study in bacteria	875	2916	6424
	(3.0)	(9.9)	(21.9)
6.4.2 Cytogenicity study in mammalian cells	875	2916	6424
	(3.0)	(9.9)	(21.9)
6.7.2 Development toxicity study	2408	2893	3711
	(8.2)	(9.9)	(12.6)
7.2.1.1 Ready biodegradability test	1574	2624	5752
	(5.4)	(8.9)	(19.6)
6.7.3 Two-generation reproduction toxicity	1665	2135	2699
	(5.7)	(7.3)	(9.2)

REACH: testing

Classification categories	Test requirements in REACH				
	>1t New or prioritised substance		>10t	>100t	
					Reproductive toxicity (a generation test)
Chronic toxicity and cancer	no	no	no	(yes)	
90-day study	no	no	no	(yes)	
28-day study	no	no	(yes)	yes	
Acute toxicity (a second route of exposure)	no	no	yes	yes	
Acute toxicity	no	yes	yes	yes	
Skin allergy	no	yes	yes	yes	
Skin and eye irritation	no	yes	yes	yes	
Mutageneicity (in vitro)	no	yes	yes	yes	
Further ecotoxicity studies (incl long term tests)	no	no	no	yes	
Acute toxicity: fish	no	no	yes	yes	
Acute toxicity: algae	no	yes	yes	yes	
Acute toxicity: Daphnia	no	yes	yes	yes	
Biotic degradation	no	yes	yes	yes	

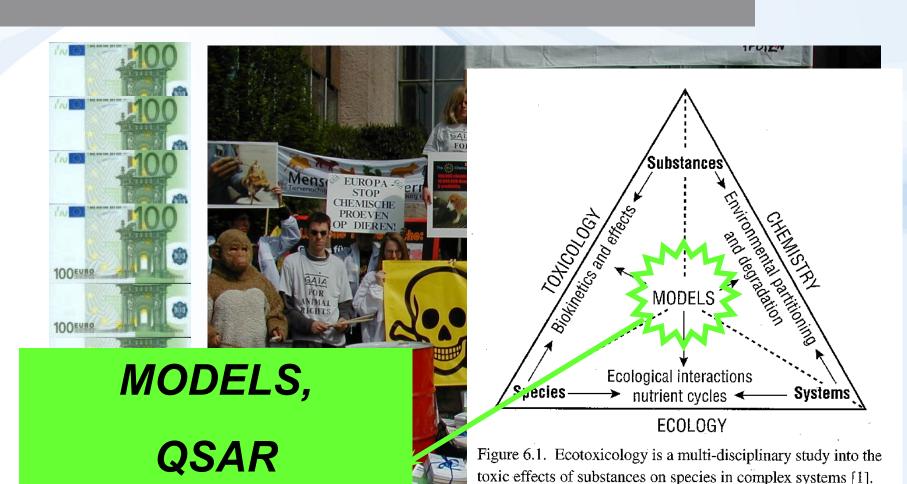
REACH: costs

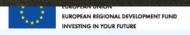
	>1t/y	>10t/y	>100t/y	>1000t/y	Total
Registration costs	€ 100 mn	€ 100 mn	€ 100 mn	€ 200 mn	€ 500 million
Testing costs	€ 150 mn	€ 300 mn	€ 350 mn	€ 450 mn	€ 1250 million
Safety data sheet costs					€ 250 million
Authorisation procedures					€ 100 million
Reduced costs for new substances below 1t etc.					(benefit of € 100 million)
Total testing and registration costs					€ 2, 000 million
Agency fees (paid by chemicals sector)					€ 300 million
Total costs (including Agency fees)					€ 2, 300 million

REACH: testing costs

Table 8. Estimated testing costs for most costly endpoints (Million EURO)

Endpoint	Minimum	Average	Maximum
6.7.2 Development toxicity study	396	476	611
6.7.3 Two-generation reproduction toxicity	293	376	475
6.4.4 In vivo mutagenicity study	129	129	129
6.6.2 Sub-chronic toxicity	76	111	210
6.6.3 Long-term repeated dose toxicity study	44	52	73
(incl. 6.9 Carcinogenicity study)			
6.6.1 Short-term repeated dose toxicity study	13	49	189
6.4.2 Cytogenicity study in mammalian cells	16	52	116
6.3 Skin sensitisation	29	40	54
7.2.1.1 Ready biodegradability test	19	32	71
7.3.2 Accumulation	14	28	67
7.1.2 Growth inhibition algae	13	26	57
6.7.1 Development toxicity screening	12	26	101
7.2.2.1 Hydrolysis	16	21	28




**** * * * *

REACH: test and cost reduction?

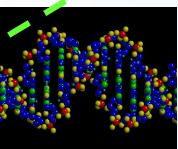
REACH: implications

- Total: 2,8 to 5,6 billion €
- Industry pays
- Test costs (50-60% of total cost):
 - 86% for HH tests
 - 14% for environment tests
 - 0% for analyses
- Manpower and expertise?
 - Tests
 - Risk assessments
 - Evaluations
- Financial and time pressure: danger for 'hazard-based' instead of 'risk-based' approach

Risks of chemicals: a balancing act

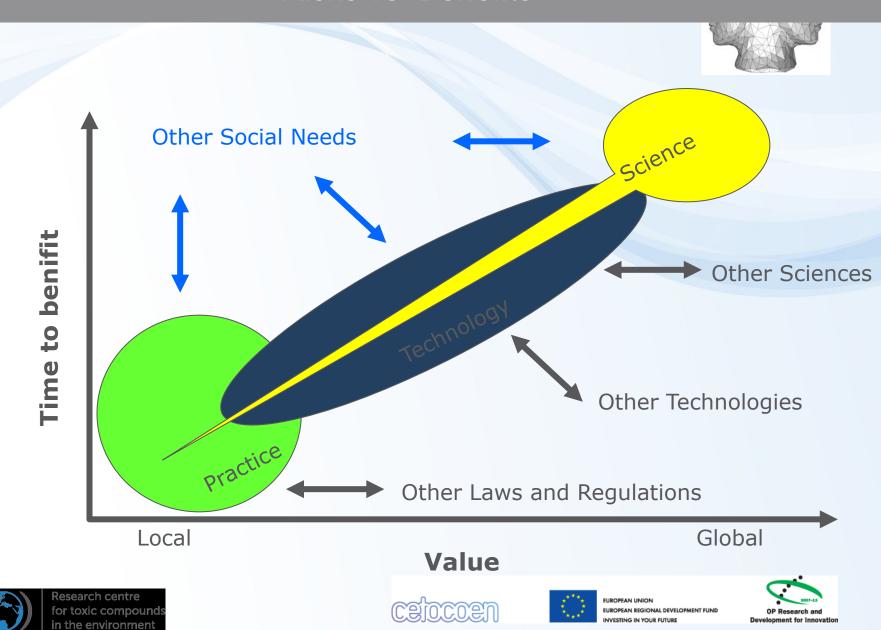
between perception, uncertainties, science and pragmatism?

Final considerations



Ecological risks of chemicals

Cellular and molecular effects



Risks vs. Benefits

Society a balancing act ...

Scientist

Closing remarks

- Ecotoxicology is exciting science!
- Interface: science and society
- Many opportunities
- Science is a hard work
 10% inspiration and 90% "perspiration"
- Be creative: move frontiers
- Keep the purpose in mind
- Be critical: do not accept perceptions as facts
- Speak up: you have something to say!

Introduction to ecotoxicology

Ludek Blaha

blaha@recetox.muni.cz

http://www.recetox.cz

