

BIOMARKERS AND TOXICITY MECHANISMS 03 – Mechanisms @proteins, part 1

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Major mechanisms (modes of action) to be discussed in detail

- Proteins and inhibition of enzymatic activities
- Mitotic poisons & microtubule toxicity
- Ligand competition receptor mediated toxicity
- Membrane nonspecific toxicity (narcosis)
- Toxicity to membrane gradients
- DNA toxicity (genotoxicity)
- Complex mechanisms
 - Oxidative stress redox toxicity
 - Defence processes as toxicity mechanisms and biomarkers detoxification and stress protein induction
 - Toxicity to signal transduction

Proteins and enzyme inhibitions → toxicity mechanisms

Proteins as targets to toxicants

Structure

- primary (sequence of aminoacids, AA),
- secondary, tertiary, quarternary (folding important for functions)

Proteins - large/long - key target for number of toxicants!

= polypeptides - tens to thousands of AA

Peptides (small, "πεπτός, "digested", 2x AA to e.g. 20x AA) may have various functions (e.g. protective - glutathione)

Key functions of proteins

STRUCTURE and PROTECTION CATALYSIS (enzymes)

TRANSFER (information and mas

- receptors, channels, transporter

... student should know examples...

Overview - interactions of small molecules with proteins

(eg beta blockers, 17α-ethinylestradiol)

Antagonist/inhibitor

(eg aspirin, ketoconazole)

(eg fluoxetine, omeprazole)

Note – a few drugs target DNA rather than proteins (eg mitomycin C).

Pro-drug

CATALYTICAL PROTEINS = Enzymes

- Catalysis what is it?
 ... student should know
- Thousands of enzymes (vs. millions of compounds)
 - present in body fluids, membranes, cytoplasm, organelles..
 - ... student should know key examples
- Enzymology science of enzymes
 - includes also interactions of enzymes with small molecules (xenobiotics)

Enzymes vs toxicants

- Interactions that make a chemical compound an enzyme (or protein) inhibitor
 - Competitive vs. non-competitive
 - active site vs. side domains
 - Specific vs nonspecific
 - affinity of the inhibition is determined by the effective concentration (lower the effective concentrations → higher the affinity)
 - Nonspecific inhibitions
 - Most of the chemical toxicants (!)
 - Compound interacts
 with functional groups on
 the surface of the protein (reactive
 toxicity) or affects the environment
 (high osmomolarity, changing pH)

Non-specific interactions & denaturation

Most common interactions (and some examples)

Hydrogen bond disruption lon bonds

alcohols, amines acids (COOH), alkalic compounds (amines)

toxic metals Hg⁺², Pb⁺², Cd⁺², Ag⁺¹ Tl⁺¹,

carbonyls

toxic metals

S-S bonds

See also http://www.elmhurst.edu/~chm/vchembook/568denaturation.html

Kinetics of the enzyme reaction (Michaelis Menten)

Michaelis Menten INHIBITIONS

The kinetics informs about the nature of the interaction!

Enzyme inhibitions by toxicants – overview of key examples

Acetylcholinesterase (organophosphate pesticides)
Microsomal Ca²⁺-ATPase (DDE)
Inhibition of hemes – respiratory chains (cyanides)
d-Aminolevulinic Acid Dehydratase (ALAD) inhibition (lead - Pb)

Inhibition of proteinphosphatases (microcystins)
Glyphosate (roundup) action

Enzyme inhibitions are beyond many other mechanisms

→ see e.g. CELL REGULATIONS etc.

Acetylcholinesterase inhibition by organophosphates

OP's inhibit ACh Esterase

Acetylcholinesterase inhibition by organophosphates (and carbamates)

Nerve gases

Phosphoric acid

'Organophosphate'

$$\bigvee_{N} \bigvee_{S} \bigvee_{O} \bigvee_{CH_3}$$

SARIN / GB NERVE AGENT Isopropoxymethylphosphoryl Fluoride

Insecticides - OPs

Insecticides - Carbamates

Inhibition of Ca²⁺-ATPase by DDE

Ca2+ in cells

- * general signalling molecule (see later)
- * stored in (endo-/sarcoplasmatic reticulum)
- * assures contractility of muscles
- * concentrations regulated by Ca²⁺-ATPase

DDE

- → calcium metabolism in bird eggs
- → egg shell thinning

DDE

Inhibition of hemes – e.g. Haemoglobin, Mitchochondria, CYP450 etc. (cyanide HCN, carbon monooxide – CO)

ALAD inhibition by lead (Pb)

Lead exposure

About 310,000 U.S. children ages 1 to 5 have elevated blood lead levels, which can accumulate over months and years and cause serious health problems.

Effects on children

 Kids absorb up to 70 percent of lead, adults about 20 percent

Often undetected; no obvious symptoms

 Can lead to learning disabilities, behavioral problems, malformed bones, slow growth

 Very high levels can cause seizures, coma, death

Sources

- Lead-based paint, contaminated dust in homes built before 1978
- Drinking water from lead pipes
- Contaminated food
- Soil (lead does not biodegrade, decay)
 - · Toys*

What parents can do 🍣

- Have child screened if there is concern of lead exposure
- Frequently wash child's hands, toys, pacifiers
- Only use cold tap water for drinking, cooking
- Test paint, dust in home if it was built before 1978

*Old toys with lead paint a known risk, but new toys from China now have come under scrutiny

Source: U.S. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services

@ 2007 MCT

Problem mostly in the USA

Ban of Pb-containg petrols

ALAD inhibition by lead (Pb) – inhibition of HAEM (!) synthesis

Inhibitions of PROTEINPHOSPHATASES by microcystins

Microcystins (7x AA – heptapeptides)

Cyanobacterial toxins produced in eutrophied waters (water blooms) up to tons/reservoir

PPases – signalling enzymes (see further)

Glyphosate action

н но—с СН₂ он

N-(phosphonomethyl)glycine

Broad-spectrum herbicide ("RoundUp")

Selective inhibition of ESPs 5-enolpyruvylshikimate-3-phosphate synthase;

(synthesis of aromatic AAs – Tyr, Trp, Phe)

Uptake via leafs - only to growing plants

"Non-toxic" to other organisms (no ESPs in animals, AA-like chemical - rapid degradation)

Structural proteins (CYTOSKELETON) as target for toxicants

Structures of microtubules – dynamic de/polymerization

Visualization of microtubules during cell division – separation of chromosomes

Structure of actin-myosin system

Cytoskeleton – functions

- intracellular transport
- cell replication and division (mitosis:chromosomes)
- muscle movement
- membrane (vesicles) fusion

ACTIN – toxin effects on (DE)POLYMERIZATION

cytochalasin D (fungal toxin)

Phalloidin (death cap - Amanita phalloides)

TUBULIN – toxin effects on (DE)POLYMERIZATION

taxol

