DNA damage and repair

Why is it important to study "DNA damage"?

DNA: the genetic material ensuring

Damage to DNA may

- preservation of the genetic information
- its transfer to progeny
- its transcription and translation into proteins

- lead to change of the genetic information (mutation)
- affect gene expression
- have severe health impacts

DNA damage, mutation, lesion, mismatch...?

 mutation may arise from (among others) DNA damage which is not repaired prior to DNA replication, e.g..

DNA damage, mutation, lesion, mismatch...?

- **mutations arise from unrepaired DNA damage** (or from replication errors)
- damaged DNA is not <u>mutated</u> yet! (damage is usually repaired in time i.e. before replication – lesions and/or mismatches are recognized by the reparation systems)
- DNA with <u>mutated</u> nucleotide sequence does not behave as <u>damaged</u>! All base pairs in such DNA are "OK" (no business for the DNA repair machinery) but the genetic information is (hereditably) altered.

DNA in the cells is permanently exposed to various chemical or physical agents

endogenous - products and intermediates of metabolism
exogenous - environmental (radiation, pollutants)

Most frequent products of DNA damage ("lesions")

interruptions of DNA sugar-phosphate backbone

interruption of the N-glykosidic linkage

single-strand break

double-strand break

abasic sites

reactive oxygen species
action of nucleases
consequence of base damage

spontaneous hydrolysis
 (depurination)
 consequence of base
 damage

Most frequent products of DNA damage ("lesions")

base damage: chemical modifications

alkylation
oxidative damage
deamination
damage by UV radiation
(sunlight)
metabilically activated
carcinogens

➤anticancer drugs

Importance of DNA repair

- estimated number of DNA-damage events in a single human cell: 10⁴-10⁶ per day!!
- only a small number of base pairs alterations in the genome are in principle sufficient for the induction of cancer
- DNA-repair systems must effectively counteract this threat
- in an adult human (10¹² cells) about 10¹⁶–10¹⁸
 repair events per day

DNA repair pathways

- direct reversal of damage
- base excision repair
- nucleotide excision repair
- mismatch repair
- repair of double strand breaks

Direct reversal of DNA damage

• photolyases: repair of cyclobutane dimers

 O6-alkylguanine transferase: reverses O6-alkylguanine to guanine by transferring the alkyl group from DNA to a reactive cysteine group of the protein

Base excision repair

- repair of damage by deamination (U, I), oxidation (8-oxoG), and alkylation
- initiated by DNA glycosylases, which recognize damaged bases and excise them from DNA by hydrolyzing the Nglycosidic bond
- substrate specificity of the glycosylases: developed to repair expectable "errors"?

Enzyme	Most important substrate	AP lyase
UNG	U, 5-OH-U in ss/dsDNA	no
SMUG1	U, 5-OH-U in ss/dsDNA	no
• TDG	U:G, T:G, &C	no
MBD4	U:G, T:G	no
OCG1	8-oxoG:C, fapy	yes
 MYH 	A:8-oxoG	no
NTH 1	ox. pyrimidine, fapy	yes
NEI 1	ox. pyrimidine, fapy	yes
AAG (MPG)	3-MeA, 7-MeG, EA, Hx	no

Nucleotide excision repair

- removes bulky base adducts (such as those formed by UV light, various environmental mutagens, and certain chemotherapeutic agents) from DNA
- broad substrate specificity: dealing with unexpected environmental DNA damaging agents
- excision of the damaged oligonucleotide
- then filling the gap & the sealing break

Mismatch repair

- dealing with replication errors
- polymerases introduce about one erroneous nucleotide per 10⁵ nucleotide; their 3'→5'exonuclease activity decreases incidence of the errors to 1:10⁷
- the MMR contributes to replication fidelity by a factor of 10³ by removal of base-base mismatches, insertions and deletions (hence the resulting incidence of mutations due to erroneous replication is only 1:10¹⁰)
- the system must be able discrimitate between parental and daughter DNA strand!
- MutS binds to mismatches and insertion/deletion loops
- "repairosome" formation, removal of a part of the daughter strand by 5'→3'- exonuclease
- new DNA synthesis and ligation

Repair of double strand breaks

- consequences of DSBs can be very severe (chromosome aberrations)
- two repair pathways:
- homologous recombination: an intrinsically accurate repair pathway that uses regions of DNA homology (such as sister chromatids) as coding information.

Repair of double strand breaks

- consequences of DSBs can be very severe (chromosome aberrations)
- two repair pathways:
- non-homologous end joining: conceptually simple pathway that involves the religation of broken ends (without using a homologous template
- less accurate: may loss of a few nucleotides at the damaged DNA ends

Examples of techniques used to detect DNA damage

 Techniques involving complete DNA hydrolysis followed by determination of damaged entities by chromatography or mass spectrometry

time (min)

Fig. 4. Effect of guanase on bases derived from a formic acid hydrolysate of calf thymus DNA. Samples were a HPLC with UV detection prior to (--) and following (--) guanase treatment as described in Materials and Methods. G, guanine; X, xanthine; T, thymine; A, adenine.

Fig. 1. Reversed-phase HPLC analysis, using electrochemical detection at +600 mV, of a solution containing 500 nM guanine (G) and 40 nM 8-oxoguanine (8-oxoG). Chromatographic conditions were as described in Materials and Methods except the mobile phase was 50 mM sodium acetate, 1 mM EDTA, pH5.1 containing 2% methanol.

³²P-postlabeling: analysis of base adducts

Enzymatic hydrolysis of DNA to 3'-mononucleotides using micrococcal endonuclease and spleen phophodiesterase Np + Np + Np + - - + Xp + Yp + Zp + - -Normal 3 mononucleotides Adducted 3'-mononucleotides Adduct enrichment by selective removal of normal 3'-mononucleotides a) nuclease P1 b) n-butanol extraction Xp + Yp + Zp + - - - - -Radiolabel adducted 3'-mononucleotides with ³²P *pXp + *pYp + *pZp + - - - -Multidimensional thin-layer chromatography of adducts on PEI-cellulose Autoradiography or storage phosphor imaging to determine the distribution of radioactivity on the chromatograms Quantitation of the radioactive areas on the chromatograms

-Np-Np-Np-Np-Xp-Yp-Zpxenobiotic-modified DNA Techniques involving complete DNA hydrolysis followed by determination of damaged entities by chromatography or mass spectrometry

 Monitoring of changes in whole (unhydrolyzed) DNA molecules: electrophoretic and immunochemical techniques

detection of strand breaks:

relaxation (and/or linearization) of plasmid supercoiled DNA

,,comet assay" (dsb)

Fig.2 X-ray calibration 25.6 rads. DNA breaks are Fig.1 Unexposed control. Bundle of DNA (No-Tail) very obvious

Fig.3 Cell Phone level microwave exposure 2hrs 2.45GHz reaching so called safe SAR levels Comet Tail = DNA Damage

"alkaline elution assay" (ssb + alkali-labile sites)

imunochemical techniques

when antibodies against the adducts available

►ELISA

▶In situ techniques

8-oxo guanine detection in situ in kidney tissue