
"Populační ekologie živočichư"
Stano Pekár

Population Ecology

- a major sub-field of ecology which deals with description and the dynamics of populations within species, and the interactions of populations with environmental factors
- expanding field (Price \& Hunter 1995):
- populations 52%, communities 9%, ecosystems 10 \%
- main focus on

- Demography = description of populations that gave rise to Life-history theory
- Population dynamics = describe the change in the numbers of individuals in a population
- populations of member species may show a range of dynamic patterns in time and space
- central question: "WHAT DOES REGULATE POPULATIONS?"

- density independent factors, food supply, intraspecific competition, interspecific competition, predators, parasites, diseases

Utilization

1. Conservation biology

- World Conservation Union (IUCN) uses several criterions (population size, generation length, population decline, fragmentation, fluctuation) to assess species status
- by means of Population viability analysis (PVA) estimates the extinction probability of a taxon based on known life history, habitat requirements, threats and any specified management options

Saiga tatarica
critical: 50% probability of extinction within 5 years
endangered: 20% probability of extinction within
20 years
vulnerable: 10% probability of extinction within
100 years

2. Biological control

- to assess ability of a natural enemy to control a pest
- in 1880 Icerya purchasi was causing infestations so severe in California citrus groves

Rodolia cardinalis (Coccinellidae) eating Icerya purchasi (Hemiptera) that growers were burning their trees

- in winter 1888-1889 Rodolia cardinalis and Cryptochaetum were introduced into California from Australia, growers took the initiative and applied the natural enemies themselves
- by fall 1889 the pest was completely controlled
- Rodolia cardinalis has been exported to many other parts of the world
- the interest of growers and the public in this project was due to its spectacular success: the pest itself was showy and its damage was obvious and critical; the destruction of the pest and the recovery of the trees was evident within months

3. Epidemiology

- to predict the diffusion of a disease and to plan a vaccination
- phocine distemper virus was identified in 1988 and caused death of 18000 common seals in Europe
- during 4 months the disease travelled from Denmark to the UK
- the population of common seals in the UK declined by about half

Observed and predicted epidemic curves for virus in common seals in the UK

4. Harvesting

- to predict maximum sustainable harvest in fisheries and forestry but also used to regulate whale or elephant hunting
- when population is growing most rapidly $(K / 2)$ then part of population can be harvested without causing extinction

Relationship between capture and fishing effort

Panulirus cygnus

Population + environment = population system

Population

- molecules \rightarrow organels \rightarrow cells \rightarrow tissues \rightarrow organs \rightarrow organ systems \rightarrow organisms \rightarrow populations \rightarrow communities \rightarrow ecosystem \rightarrow landscape \rightarrow biosphere
- a group of organisms of the same species that occupies a particular area at the same time and is characterised by an average characteristic (e.g., mortality)
- characteristics:

Individual	\rightarrow	Population
Developmental stage		Stage structure
Age		Age structure
Size		Size structure
Sex		Sex ratio
Territorial behaviour		Spatial distribution

Events \& Processes

Event - an identifiable change in a population
Process - a series of identical events

- rate of a process - number of events per unit time
Event Process

Birth [inds]
Death [inds]
Increment [gram]
Increment [number]
Acquisition of food [gram] Consumption (consumption rate)

Conditions

- inherent characteristics of the evironment (pH , salinity, temperature, moisture, wind speed, etc.)
- not modified by populations
- not consumed by population \Rightarrow no feedback mechanisms
\Rightarrow do not regulate population size
- limit population size

Resources

- any entity whose quantity is reduced (food, space, water, minerals, oxygen, sun radiation, etc.)
- modified (reduced) by populations
- defended by individuals (interference competition)
- regulate population size
- non-renewable resources - space

Renewable resources

- regeneration centre outside the population system \Rightarrow no effect of the consumer (e.g., oxygen, water)
- regeneration centre inside of the population system \Rightarrow influenced by the consumer (e.g., prey)

Enemies

- competitors, predators, parasites, pathogens
- negative effect on the population
- top-down regulation of the population

Population Estimates

Absolute

- number of individuals per unit area
- number of individuals per unit of habitat (leaf, plant, host)
- sieving, sweeping, extraction, etc.

Relative

- number of individuals
- trapping, fishing, pooting

Capture-recapture method - for mobile individuals

- Assumptions:
- marked individuals are not affected and marks will not be lost
- marked animals become mixed in the population
- all individuals have same probability of capture
- capture time must be short

Closed population

- population do not change over sampling period - no death, births, immigration, emigration

Petersen-Lincoln estimator:

N.. number of individuals in population
a.. total number of marked individuals
r.. total number of recaptured marked individuals
n.. total number of individuals recaptured

$$
N_{i}=\frac{a_{i-1} n_{i}}{r_{i(i-1)}} \quad S D=\sqrt{\frac{a_{i-1}^{2} n_{i}\left(n_{i}-r_{i(i-1)}\right)}{r_{i(i-1)}^{3}}}
$$

For small populations Chapman (1951)

$$
\hat{N}_{i}=\frac{\left(a_{i-1}+1\right)\left(n_{i}+1\right)}{r_{i(i-1)}+1}-1 \quad S D=\sqrt{\frac{\left(a_{i-1}+1\right)\left(n_{i}+1\right)\left(a_{i-1}-r_{i(i-1)}\right)\left(n_{i}-r_{i(i-1)}\right)}{\left(r_{i(i-1)}+2\right)\left(r_{i(i-1)}+1\right)^{2}}}
$$

Open population

- changes due to death, births, immigration, emigration
- at least 3 sampling periods

Stochastic Jolly-Seber method
N_{i}.. estimate of population on day i
a_{i}.. number of marked individuals on day i
n_{i}.. total number of individuals captured on day i
r_{i}.. sum of marked and recaptured individuals on day i
Z_{i}.. sum of marked individuals that were recaptured 2 and more days after marking
R_{i}.. sum of recaptured individuals marked later than $1^{\text {st }}$ day
i.. day of capture
j.. day of marking

$$
N_{i}=\frac{M_{i} n_{i}}{r_{i}} \quad \text { where } \quad M_{i}=\frac{a_{i} Z_{i}}{R_{i}}+r_{i} \quad R_{i}=\sum_{k=i+1}^{n} r_{k i} \quad r_{i}=\sum_{j=1}^{i-1} r_{i j}
$$

