Productional Biology: Kinetic Imaging of Plant Chlorophyll Fluorescence

Ladislav Nedbal modified by M. Bartak

Early Fluorescence Imaging Experiment

Kautsky and Hirsch (1931) irradiated a dark-adapted leaf with a blue light and observed it visually through a dark-red glass. Here is a high-tech presentation of what they saw:

Chlorophyll *a* fluorescence competes with photosynthesis for excitation energy

Role #1 of light in plant fluorescence experiments – measuring light

Aim: Excite the fluorescenceemitting pigment molecules without changing the experimental photochemically active object. Fluorescence should be distinguishable from background of the same color.

<u>Achieved by</u> MEASURING light: Typically 10-30µs long flashes repeated with a low frequency that

Role #2 of light in plant fluorescence experiments – actinic light

Aim: Excite the fluorescenceemitting pigment molecules without changing the experimental photochemically active object. Fluorescence should be distinguishable from background of the same color.

<u>Achieved by</u> MEASURING light: Typically 10-30µs long flashes repeated with a low frequency that

Role #3 of light in plant fluorescence experiments – saturating light

<u>Aim:</u> Excite the fluorescenceemitting pigment molecules without changing the experimental photochemically active object. Fluorescence should be distinguishable from background of the same color.

<u>Achieved by</u> MEASURING light: Typically 10-30µs long flashes repeated with a low frequency that

Measuring flashes have little actinic effects

Actinic light is causing fluorescence induction

During the actinic light exposure, the continuous excitation keeps some of the PSII RC's closed

Actinic light is causing fluorescence induction

to F_{PEAK} with mostly closed PSII RC's

from F₀ with open PSII RC's

Induction in a diuron-inhibited leaf

PQ-reducing super pulse

The shutter of the halogen lamp is open typically for 1s

 Q_{A}^{-} Q_{A}^{-} Q_{A}^{-} Q_{A}^{-} Q_{A}^{-} Q_{A}^{-} Q_{A}^{-} Q_{A}^{-} Q_{A}^{-}

During the pulse, PSII RC's are closed by a transient reduction of the plastoquinone pool.

Bio-Sphere2, Tuscon AZ, Nov.29, 2001

Fluorescence in PQ-reducing saturation pulse.

Fluorescence at the end of the pulse

The closure of all PS RC's is reflected by a transient from F_0 to F_M .

Fluorescence before the pulse

Pixel-to-pixel arithmetic image operations

"Cyanobacterial" Chl fluorescence kinetics

• Source: http://www.sciencedirect.com/science/article/pii/S0014579304014991

Microbiology and Molecular Biology Reviews

Campbell D et al. Microbiol. Mol. Biol. Rev. 1998;62:667-683

Imals.ASM.org | Copyright @ American Society for Microbiology. All Rights Reserved.

Chlorophyll fluorescence from ripe lemon fruits

Color photograph

Fluorescence F_M image

Heterogeneous lemon pigmentation

Color photograph

Fluorescence images

Post-harvest lemon damage

Color photograph

Fluorescence images

Phytotoxin response visualized by fluorescence

Sinapis alba 60 h, 2000 mg/l destruxin

Brassica oleracea 60 h, 0-500 mg/l destruxin

Mutant selection

High-light stress sensitivity

Field operation

Microscopic kinetic fluorescence imaging

Bio-Sphere2, Tuscon AZ, Nov.29, 2001