Finite Arithmetic

1. Consider the following finite decimal arithmetic: 2 digits for the mantissa and one digit for the exponent. So the machine numbers have the form $\pm Z . Z \mathrm{E} \pm Z$ where $Z \in\{0,1, \ldots, 9\}$
(a) How many normalized machine numbers are available?
(b) Which is the overflow- and the underflow range?
(c) What is the machine precision?
(d) What is the smallest and the largest distance of two consecutive machine numbers.

Solution:

- We first count the machine numbers. We can form 19 different exponents: $-9,-8, \ldots, 9$. The first digit, before the decimal point, can not be zero, because we consider only normalized numbers, thus we have 9 possibilities for the first digit. Thus in total we have $2 \times 9 \times 10 \times 19=3420$ normalized machine numbers plus the number zero. Therefore the grand total is 3421 machine numbers.
- The largest number is $9.9 \mathrm{E} 9=9^{\prime} 900^{\prime} 000^{\prime} 000$ and the smallest positive number is $1.0 \mathrm{E}-9$. The overflow range is $|x|>9.9 \mathrm{E} 9$ and the underflow range is $0<|x|<1.0 \mathrm{E}-9$.
- The machine precision is the spacing between the numbers in $(1,10)$ thus $\varepsilon=1.1 \mathrm{E} 0-1.0 \mathrm{E} 0=1 \mathrm{E}-1$.
- The largest distance between two machine numbers occurs when the exponent is 9: 9.9E9-9.8E9 $=1 \mathrm{E} 8$. The smallest distance is $1.1 \mathrm{E}-9-$ $1.0 \mathrm{E}-9=1 \mathrm{E}-10$.

2. Compute the condition number when subtracting two real numbers, $\mathcal{P}\left(x_{1}, x_{2}\right):=$ $x_{1}-x_{2}$.

Solution: Perturbing the data slightly as before with multiplication, we obtain

$$
\frac{\left|\left(\hat{x}_{1}-\hat{x}_{2}\right)-\left(x_{1}-x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|}=\frac{\left|x_{1} \varepsilon_{1}-x_{2} \varepsilon_{2}\right|}{\left|x_{1}-x_{2}\right|} \leq \frac{\left|x_{1}\right|+\left|x_{2}\right|}{\left|x_{1}-x_{2}\right|} \varepsilon .
$$

We see that if $\operatorname{sign}\left(x_{1}\right)=-\operatorname{sign}\left(x_{2}\right)$, which means the operation is an addition, then the condition number is $\kappa=1$, meaning that the addition of two numbers is well conditioned. If, however, the signs are the same and $x_{1} \approx x_{2}$, then $\kappa=\frac{\left|x_{1}\right|+\left|x_{2}\right|}{\left|x_{1}-x_{2}\right|}$ becomes very large, and hence subtraction is ill conditioned in this case.
3. When computing the function

$$
f(x)=\frac{e^{x}-(1+x)}{x^{2}}
$$

on a computer then a large errors occur for $x \approx 0$.
(a) Explain why this happens.
(b) Give a method how to compute $f(x)$ for $|x|<1$ to machine precision and write a corresponding Matlab function.

Solution:

(a) for small $x \approx 0$ the expression for $f(x)$ is suffering from cancellation, since $e^{x} \approx 1+x$.
(b) a better expression is obtained by expanding e^{x} in the series:

$$
\begin{aligned}
f(x) & =\frac{e^{x}-(1+x)}{x^{2}} \\
& =\frac{1+x+x^{2} / 2!+x^{3} / 3!+\cdots-(1+x)}{x^{2}} \\
& =\frac{1}{2!}+\frac{x}{3!}+\frac{x^{2}}{4!}+\cdots
\end{aligned}
$$

Thus

```
function y=f(x)
sn=0.5; s=0; t=0.5; k=2;
while sn }\mp@subsup{}{~}{~}=
    k=k+1; s=sn;
    t=t*x/k;
    sn=s+t;
end
y=s;
>> x=1e-6; [(exp(x)-(1+x))/x^2 f(x)]
ans =
    0.500044450291171 0.500000166666708
>> x=1e-7; [(exp (x)-(1+x))/x^2 f(x)]
ans =
    0.488498130835069 0.500000016666667
>> x=1e-8; [(exp(x)-(1+x))/x^2 f(x)]
ans =
```

$0 \quad 0.500000001666667$
4. Write a Matlab function to compute the sine function in a machine-independent way using its Taylor series. Since the series is alternating, cancellation will occur for large $|x|$.
To avoid cancellation, reduce the argument x of $\sin (x)$ to the interval $\left[0, \frac{\pi}{2}\right]$. Then sum the Taylor series and stop the summation with the machine-independent
criterion $s_{n}+t_{n}=s_{n}$, where s_{n} denotes the partial sum and t_{n} the next term. Compare the exact values for $[\sin (-10+k / 100)]_{k=0, \ldots, 2000}$ with the ones you obtain from your Matlab function and plot the relative error.
Solution: We reduce the angle in several steps. First we note the sign of the angle and replace x by $|x|$. Then we reduce the angle modulo 2π so that x is in the interval $(0,2 \pi)$. Then if $x>\pi$ we use the relation $\sin (x)=-\sin (\pi-x)$ to reduce $x \in(0, \pi)$. Finally we use $\sin (x)=\sin (\pi-x)$ to reduce $x \in(0, \pi / 2)$.

```
function y=sinus(x)
% computing the sin using the Taylor series
% reduce angle x to (0,pi/2)
if x<0, v=-1; else v=1; end % remember sign of angle
x=abs(x);
x=mod(x,2*pi); % reduce to (0,2*pi)
if x>pi % reduce to (0,pi)
    v=-v; x=x-pi;
end
if }\textrm{x}>\textrm{pi}/2 % reduce to (0,pi/2
    x=pi-x;
end
s=x; t=x; k=1; % compute Taylor series
while s+t ~}=
    k=k+2; t=-t*x/(k-1)*x/k; s=s+t;
end
y=v*s; % add sign
```

With the script

```
Y= [] ;
for k=0:2000
    x=-10+k/100;
    y=sinus(x);
    ye=sin(x);
    Y = [Y; x abs(y-ye)/abs(ye)];
end
plot(Y(:,1), Y(:,2))
```

we obtain the following figure

