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Nonlinear Euqations

1. Bisection-Algorithm.

(a) Improve the function Bisekt. Your [x,y]=Bisection(f,a,b,tol) should
also compute a zero for functions with f(a) > 0 and f(b) < 0 to a given
tolerance tol. Be careful to stop the iteration in case the user asks for a
too small tolerance! If by the bisection process we arrive at an interval
(a, b) which does not contain a machine number anymore then it is high
time to stop the iteration.

Solution:

function [x,y]=Bisection(f,a,b,tol)

% BISECTION computes a root of a scalar equation

% [x,y]=Bisection(f,a,b,tol) finds a root x of the scalar function

% f in the interval [a,b] up to a tolerance tol. y is the

% function value at the solution

fa=f(a); v=1; if fa>0, v=-1; end;

if fa*f(b)>0

error(’f(a) and f(b) have the same sign’)

end

if (nargin<4), tol=0; end;

x=(a+b)/2;

while (b-a>tol) & ((a < x) & (x<b))

if v*f(x)>0, b=x; else a=x; end;

x=(a+b)/2;

end

if nargout==2, y=f(x); end;

(b) Solve with bisection the equations

a) xx = 50 b) ln(x) = cos(x) c) x+ ex = 0.

Hint: a starting interval is easy to find by sketching the functions in-
volved.

Solution:

a) The function xx is monotonically increasing. Since 11 = 1 and 44 = 256
the values a = 1 and b = 4 can be used for the bisection. The solution
becomes

>> [x,f]=Bisection(@(x) x^x-50,1,4)

x =

3.287262195355581

f =

7.105427357601002e-15



b) Drawing the functions ln(x) and cos(x) we see that their cutting point
is in the interval (0, π/2), thus

>> [x,f]=Bisection(@(x) log(x)-cos(x),0,pi)

x =

1.302964001216012

f =

-2.220446049250313e-16

c) We write the equation ex = −x and from the graph of the two functions
we get the interval (−1, 0) for the solution, so

>> [x,f]=Bisection(@(x) exp(x)+x,-1,0)

x =

-0.567143290409784

f =

-1.110223024625157e-16

2. Find x such that

f(x) =

x∫
0

e−t2dt− 0.5 = 0.

Hint: the integral cannot be evaluated analytically, so expand it in a series
and integrate. Write a function f(x) to evaluate the series.

Since a function evaluation is expensive (summation of the Taylor series) but
the derivatives are cheap to compute, a higher order method is appropriate.
Solve this equation with Newton’s or Halley’s method.

Solution:

Take the series for ex, substitute x = −t2 and integrate to get the expansion

x∫
0

e−t2dt = x− x3

1! 3
+

x5

2! 5
− x7

3! 7
+

x9

4! 9
∓ · · · (1)

For evaluating the series we introduce the expressions

ta := (−1)i−1 x2i−1

(i− 1)!
t := (−1)i

x2i+1

i!

then t = −ta∗x2/i and the partial sum is updated by snew = sold+t/(2∗ i+1).
We will stop the summation when snew = sold. Thus we get

function y = ff(x);

% is used in IntegralExp.m

t = x; snew = x; sold=0; i=0;

while sold ~= snew

i = i+1;

sold = snew;



t = -t*x^2/i;

snew = sold+t/(2*i+1);

end

y = snew;

% Solve \int_{0}^{x} e^{-t^2}dt - 0.5 = 0 with Newton and Halley

% use ff.m to compute Taylor series

%

format compact

format long

disp(’ Newton’)

x = 1; xa=2;

while abs(xa-x)>1e-10

xa=x;

y = ff(x)-0.5; ys = exp(-x^2);

x = x - y/ys

end

disp(’Halley’)

x = 1; xa=2;

while abs(xa-x)>1e-10

xa=x;

y = ff(x)-0.5; ys = exp(-x^2); yss = -2*x*ys;

t = y*yss/ys^2;

x = x - y/ys/(1-0.5*t)

end

>> IntegralExp

Newton

x =

0.329062444950818

x =

0.532365165339031

x =

0.550852862865461

x =

0.551039408434969

x =

0.551039427609027

x =

0.551039427609027

Halley

x =

0.598466410057177

x =

0.551087168834467

x =

0.551039427609074



x =

0.551039427609027

3. Compute the intersection points of an ellipsoid with a sphere and a plane. The
ellipsoid has the equation(x1

3

)2
+
(x2

4

)2
+
(x3

5

)2
= 3.

The plane is given by x1 − 2x2 + x3 = 0 and the sphere has the equation
x21 + x22 + x23 = 49

(a) How many solutions do you expect for this problem?

(b) Solve the problem with the solve and fsolve commands from Maple.

(c) Write a Matlab script to solve the three equations with Newton’s method.
Vary the initial values so that you get all the solutions.

Solution:

(a) The intersection of the plane with the sphere is a circle and with the
ellipsoid we get an ellipse. The intersection points are therefore the inter-
sections of a circle with an ellipse. We expect thus in general 4 different
solutions. Looking at the equations we notice that with a solution x also
−x is a solution. Thus if we have found two different solutions then the
two remaining solutions are given by changing the signs.

(b) With the Maple commands

eqs:={(x1/3)^2+(x2/4)^2+(x3/5)^2=3,x1-2*x2+x3=0,x1^2+x2^2+x3^2=49};

solve(eqs,{x1,x2,x3});

we obtain

x1 = − 31634

247975

(
RootOf

(
−3621220 Z 2 + 63268 Z 4 + 50197225

))3
+

180746

49595
RootOf

(
−3621220 Z 2 + 63268 Z 4 + 50197225

)
,

x2 = − 15817

247975

(
RootOf

(
−3621220 Z 2 + 63268 Z 4 + 50197225

))3
+

230341

99190
RootOf

(
−3621220 Z 2 + 63268 Z 4 + 50197225

)
,

x3 = RootOf
(
−3621220 Z 2 + 63268 Z 4 + 50197225

)
Using the numerical solver Maple delivers only one solution

fsolve(eqs,{x1,x2,x3});

{x1 = −3.101446015, x2 = −3.977629342, x3 = −4.853812670}

(c) Programming in Matlab Newton’s algorithm we obtain



% Computing the intersection points

% of an ellipsoid, a sphere and a plane

k=0;

xold=[0,0,0]’;

x=[-4 1 6]’ % x=-[-4 1 6]’ % for neg solution

% x=[1 1 1]’ % x=-[1 1 1]’

while norm(x-xold)>1e-12*norm(x)

xold=x; k=k+1;

f=[(x(1)/3)^2+(x(2)/4)^2+(x(3)/5)^2-3

x(1)^2+x(2)^2+x(3)^2-49

x(1)-2*x(2)+x(3)];

J=[2*x(1)/9 x(2)/8 2*x(3)/25

2*x(1) 2*x(2) 2*x(3)

1 -2 1];

h=-J\f; x=x+h; norm(h)

end

k,x

With the starting vector x = [1, 1, 1] we get convergence in 8 steps:

x =

1

1

1

ans =

1.414125519548956e+01

ans =

6.353644140517445e+00

ans =

2.186622967262920e+00

ans =

3.581210720347850e-01

ans =

1.070558121458718e-02

ans =

9.718696508742296e-06

ans =

8.014862832469677e-12

ans =

1.199111836538749e-15

k =

8

x =

3.101446014850100e+00

3.977629342271496e+00

4.853812669692894e+00

The quadratic convergence is visible from the printout of the norm of the
correction vector h. Using the starting vector x = [−4, 1, 6] we converge
to the second solution in 4 steps



x =

-4

1

6

ans =

2.872708652671924e-01

ans =

7.067873458438775e-03

ans =

5.582183986704225e-06

ans =

4.059746603817636e-12

k =

4

x =

-3.781770586037488e+00

1.010696349931241e+00

5.803163285899970e+00

4. Modify the fractal program by replacing f(z) = z3 − 1 with the function

f(z) = z5 − 1.

(a) Compute the 5 zeros of f using the command roots.

(b) In order two distinguish the 5 different numbers, study the imaginary
parts of the 5 zeros. Invent a transformation such that the zeros are
replaced by 5 different positive integer numbers.

Solution: We first compute the zeros of z5− 1. The coefficients of the polyno-
mial z5 − 1 are

p=[1 0 0 0 0 -1]

With the function roots we can compute the zeros

>> W=roots(p)

W =

-0.809016994374948 + 0.587785252292473i

-0.809016994374948 - 0.587785252292473i

0.309016994374947 + 0.951056516295152i

0.309016994374947 - 0.951056516295152i

1.000000000000000 + 0.000000000000000i

If we multiply the imaginary part by 2 we get

>> 2*imag(W)

ans =

1.175570504584946



-1.175570504584946

1.902113032590305

-1.902113032590305

0

Now we can add 3 and round the result to get

>> round(2*imag(W)+3)

ans =

4

2

5

1

3

n=1000; m=30;

x=-1:2/n:1;

[X,Y]=meshgrid(x,x);

Z=X+1i*Y; % define grid for picture

for i=1:m % perform m iterations in parallel

Z=Z-(Z.^5-1)./(5*Z.^4); % for all million points

end; % each element of Z contains one root

a=10;

image(round(2*imag(Z)+3)*a);


