Nonlinear Euqations

1. Bisection-Algorithm.
(a) Improve the function Bisekt. Your $[\mathrm{x}, \mathrm{y}]=$ Bisection ($\mathrm{f}, \mathrm{a}, \mathrm{b}, \mathrm{tol}$) should also compute a zero for functions with $f(a)>0$ and $f(b)<0$ to a given tolerance tol. Be careful to stop the iteration in case the user asks for a too small tolerance! If by the bisection process we arrive at an interval (a, b) which does not contain a machine number anymore then it is high time to stop the iteration.
Solution:
```
function [x,y]=Bisection(f,a,b,tol)
% BISECTION computes a root of a scalar equation
% [x,y]=Bisection(f,a,b,tol) finds a root x of the scalar function
% f in the interval [a,b] up to a tolerance tol. y is the
% function value at the solution
fa=f(a); v=1; if fa>0, v=-1; end;
if fa*f(b)>0
    error('f(a) and f(b) have the same sign')
end
if (nargin<4), tol=0; end;
x=(a+b)/2;
while (b-a>tol) & ((a < x) & (x<b))
        if v*f(x)>0, b=x; else a=x; end;
        x=(a+b)/2;
end
if nargout==2, y=f(x); end;
```

(b) Solve with bisection the equations
a) $x^{x}=50$
b) $\ln (x)=\cos (x)$
c) $x+e^{x}=0$.

Hint: a starting interval is easy to find by sketching the functions involved.

Solution:

a) The function x^{x} is monotonically increasing. Since $1^{1}=1$ and $4^{4}=256$ the values $a=1$ and $b=4$ can be used for the bisection. The solution becomes

```
>> [x,f]=Bisection(@(x) x^x-50,1,4)
x =
    3.287262195355581
f =
b) Drawing the functions \(\ln (x)\) and \(\cos (x)\) we see that their cutting point is in the interval \((0, \pi / 2)\), thus
```

>> [x,f]=Bisection(@(x) log(x)-cos(x),0,pi)
x =
1.302964001216012
f =
-2.220446049250313e-16

```
c) We write the equation \(e^{x}=-x\) and from the graph of the two functions we get the interval \((-1,0)\) for the solution, so
```

>> [x,f]=Bisection(@(x) exp(x)+x,-1,0)
x =
-0.567143290409784
f =
-1.110223024625157e-16

```
2. Find \(x\) such that
\[
f(x)=\int_{0}^{x} e^{-t^{2}} d t-0.5=0
\]

Hint: the integral cannot be evaluated analytically, so expand it in a series and integrate. Write a function \(f(x)\) to evaluate the series.

Since a function evaluation is expensive (summation of the Taylor series) but the derivatives are cheap to compute, a higher order method is appropriate. Solve this equation with Newton's or Halley's method.

\section*{Solution:}

Take the series for \(e^{x}\), substitute \(x=-t^{2}\) and integrate to get the expansion
\[
\begin{equation*}
\int_{0}^{x} e^{-t^{2}} d t=x-\frac{x^{3}}{1!3}+\frac{x^{5}}{2!5}-\frac{x^{7}}{3!7}+\frac{x^{9}}{4!9} \mp \cdots \tag{1}
\end{equation*}
\]

For evaluating the series we introduce the expressions
\[
t a:=(-1)^{i-1} \frac{x^{2 i-1}}{(i-1)!} \quad t:=(-1) \frac{i^{2 i+1}}{i!}
\]
then \(t=-t a * x^{2} / i\) and the partial sum is updated by \(s_{\text {new }}=s_{\text {old }}+t /(2 * i+1)\). We will stop the summation when \(s_{\text {new }}=s_{\text {old }}\). Thus we get
```

function y = ff(x);
% is used in IntegralExp.m
t = x; snew = x; sold=0; i=0;
while sold ~}= sne
i = i+1;
sold = snew;

```
```

 t = -t*x^2/i;
 snew = sold+t/(2*i+1);
 end
y = snew;
% Solve \int_{0}^{x} e^{-t^2}dt - 0.5 = 0 with Newton and Halley
% use ff.m to compute Taylor series
%
format compact
format long
disp(' Newton')
x = 1; xa=2;
while abs(xa-x)>1e-10
xa=x;
y = ff(x)-0.5; ys = exp(-x^2);
x = x - y/ys
end
disp('Halley')
x = 1; xa=2;
while abs (xa-x)>1e-10
xa=x;
y = ff(x)-0.5; ys = exp(-x^2); yss = - 2*x*ys;
t = y*yss/ys^2;
x = x - y/ys/(1-0.5*t)
end
>> IntegralExp
Newton
x =
0.329062444950818
x =
0.532365165339031
x =
0.550852862865461
x =
0.551039408434969
x =
0.551039427609027
x =
0.551039427609027
Halley
x =
0.598466410057177
x =
0.551087168834467
x =
0.551039427609074

```
```

x =
0.551039427609027

```
3. Compute the intersection points of an ellipsoid with a sphere and a plane. The ellipsoid has the equation
\[
\left(\frac{x_{1}}{3}\right)^{2}+\left(\frac{x_{2}}{4}\right)^{2}+\left(\frac{x_{3}}{5}\right)^{2}=3 .
\]

The plane is given by \(x_{1}-2 x_{2}+x_{3}=0\) and the sphere has the equation \(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=49\)
(a) How many solutions do you expect for this problem?
(b) Solve the problem with the solve and fsolve commands from Maple.
(c) Write a Matlab script to solve the three equations with Newton's method. Vary the initial values so that you get all the solutions.

\section*{Solution:}
(a) The intersection of the plane with the sphere is a circle and with the ellipsoid we get an ellipse. The intersection points are therefore the intersections of a circle with an ellipse. We expect thus in general 4 different solutions. Looking at the equations we notice that with a solution \(\mathbf{x}\) also \(-\mathbf{x}\) is a solution. Thus if we have found two different solutions then the two remaining solutions are given by changing the signs.
(b) With the Maple commands
```

eqs:={(x1/3)^2+(x2/4)^2+(x3/5)^2=3,x1-2*x2+x3=0,x1^2+x2^2 2+x3^2=49};
solve(eqs,{x1,x2,x3});
we obtain

```
\[
\begin{aligned}
x 1= & -\frac{31634}{247975}\left(\operatorname{RootOf}\left(-3621220 \_Z^{2}+63268 \_Z^{4}+50197225\right)\right)^{3} \\
& +\frac{180746}{49595} \operatorname{RootOf}\left(-3621220 \_Z^{2}+63268 \_Z^{4}+50197225\right), \\
x \mathcal{Q}= & -\frac{15817}{247975}\left(\operatorname{Root} \text { Of }\left(-3621220 \_Z^{2}+63268 \_Z^{4}+50197225\right)\right)^{3} \\
& +\frac{230341}{99190} \operatorname{RootOf}\left(-3621220 \_Z^{2}+63268 \_Z^{4}+50197225\right), \\
& x 3=\operatorname{RootOf}\left(-3621220 \_Z^{2}+63268 \_Z^{4}+50197225\right)
\end{aligned}
\]

Using the numerical solver Maple delivers only one solution
\[
\begin{aligned}
& \text { fsolve(eqs, }\{\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3\} \text { ); } \\
& \qquad\{x 1=-3.101446015, x 2=-3.977629342, x 3=-4.853812670\}
\end{aligned}
\]
(c) Programming in Matlab Newton's algorithm we obtain
```

% Computing the intersection points
% of an ellipsoid, a sphere and a plane
k=0;
xold=[0,0,0]';
x=[$$
\begin{array}{lll}{-4}&{1}&{6}\end{array}
$$],% % x=-[$$
\begin{array}{lll}{-4}&{1}&{6}\end{array}
$$], % for neg solution
% x=[$$
\begin{array}{lll}{1}&{1}&{1}\end{array}
$$], % x=-[$$
\begin{array}{lll}{1}&{1}&{1}\end{array}
$$],
while norm(x-xold)>1e-12*norm(x)
xold=x; k=k+1;
f=[(x(1)/3)^2+(x(2)/4)^2+(x(3)/5)^2-3
x(1)^2+x(2)^ 2+x(3)^2-49
x(1)-2*x(2)+x(3)];
J=[2*x(1)/9 x(2)/8 2*x(3)/25
2*x(1) 2*x(2) 2*x(3)
1 -2 1];
h=-J\f; x=x+h; norm(h)
end
k,x

```

With the starting vector \(\mathbf{x}=[1,1,1]\) we get convergence in 8 steps:
```

x =
1
1
1
ans =
1.414125519548956e+01
ans =
6.353644140517445e+00
ans =
2.186622967262920e+00
ans =
3.581210720347850e-01
ans =
1.070558121458718e-02
ans =
9.718696508742296e-06
ans =
8.014862832469677e-12
ans =
1.199111836538749e-15
k =
8
x =
3.101446014850100e+00
3.977629342271496e+00
4.853812669692894e+00

```

The quadratic convergence is visible from the printout of the norm of the correction vector \(\mathbf{h}\). Using the starting vector \(\mathbf{x}=[-4,1,6]\) we converge to the second solution in 4 steps
```

x =
-4
1
6
ans =
2.872708652671924e-01
ans =
7.067873458438775e-03
ans =
5.582183986704225e-06
ans =
4.059746603817636e-12
k =
4
x =
-3.781770586037488e+00
1.010696349931241e+00
5.803163285899970e+00

```
4. Modify the fractal program by replacing \(f(z)=z^{3}-1\) with the function
\[
f(z)=z^{5}-1
\]
(a) Compute the 5 zeros of \(f\) using the command roots.
(b) In order two distinguish the 5 different numbers, study the imaginary parts of the 5 zeros. Invent a transformation such that the zeros are replaced by 5 different positive integer numbers.

Solution: We first compute the zeros of \(z^{5}-1\). The coefficients of the polynomial \(z^{5}-1\) are
\(\mathrm{p}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & -1\end{array}\right]\)
With the function roots we can compute the zeros
```

>> W=roots(p)
W =
-0.809016994374948 + 0.587785252292473i
-0.809016994374948-0.587785252292473i
0.309016994374947 + 0.951056516295152i
0.309016994374947-0.951056516295152i
1.000000000000000 + 0.000000000000000i

```

If we multiply the imaginary part by 2 we get
```

>> 2*imag(W)
ans =

Now we can add 3 and round the result to get

```
>> round(2*imag(W)+3)
ans =
    4
    2
    5
    1
    3
n=1000; m=30;
x=-1:2/n:1;
[X,Y]=meshgrid(x,x);
Z=X+1i*Y; % define grid for picture
for i=1:m % perform m iterations in parallel
    Z=Z-(Z.^5-1)./(5*Z.^4); % for all million points
end;
    % each element of Z contains one root
a=10;
image(round (2*imag(Z)+3)*a);
```


