Prof. W. Gander
Masaryk University Fall 2014

Least Squares

1. Determine the parameters a and b such that the function $f(x)=a e^{b x}$ fits the following data

$$
\begin{array}{c|cccccc}
x & 30.0 & 64.5 & 74.5 & 86.7 & 94.5 & 98.9 \\
\hline y & 4 & 18 & 29 & 51 & 73 & 90
\end{array}
$$

Hint: If you fit $\log f(x)$ the problem becomes very easy!
Solution: Taking the logarithm of the function we get

$$
\ln y=\ln a+b x
$$

With the unknown $c=\ln a$ the least squares problem becomes

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 30.0 \\
1 & 64.5 \\
1 & 74.5 \\
1 & 86.7 \\
1 & 94.5 \\
1 & 98.9
\end{array}\right)\binom{c}{b} \approx\left(\begin{array}{l}
\ln 4 \\
\ln 18 \\
\ln 29 \\
\ln 51 \\
\ln 73 \\
\ln 90
\end{array}\right) . \\
& \mathrm{x}=[30.0,64.5,74.5,86.7,94.5,98.9]^{\prime} ; \\
& \mathrm{y}=\left[\begin{array}{ll}
\mathrm{l} \\
\mathrm{~A}=[\operatorname{lones}(\operatorname{size}(\mathrm{x})), \mathrm{x}]
\end{array}\right. \\
& \mathrm{b}=\log (\mathrm{y}) ; \\
& \mathrm{p}=\mathrm{A} \backslash \mathrm{~b} \\
& \mathrm{a}=\exp (\mathrm{p}(1)) \\
& \mathrm{b}=\mathrm{p}(2)
\end{aligned}
$$

The solution is

$$
b=0.04524310648 \text { and } c=0.00789262406 \Rightarrow a=1.00792752 .
$$

2. Consider the plane in \mathbb{R}^{3} given by the equation

$$
x_{1}+x_{2}+x_{3}=0 .
$$

Construct a matrix P which projects a given point on this plane. Hint: consider first the orthogonal complement of the plane.
Solution: The normal of the plane is $\mathbf{n}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and the orthogonal complement is therefore $A x=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) x$. Because $\mathbb{R}^{3}=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{\top}\right)$ we have to compute the projector $P_{\mathcal{N}\left(A^{\top}\right)}=I-A A^{+}$.

$$
A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}=\frac{1}{3}(1,1,1)
$$

$$
\Rightarrow \quad P=I-A A^{+}=I-\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

3. Given the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 6 \\
1 & 3 & 7 \\
1 & 4 & 8 \\
1 & 5 & 9
\end{array}\right)
$$

Compute a Householder matrix P such that

$$
P A=\left(\begin{array}{lll}
\sigma & x & x \\
0 & x & x \\
0 & x & x \\
0 & x & x
\end{array}\right)
$$

It is sufficient to determine σ and the Householder-vector \mathbf{u}.
Solution: $P=I-\mathbf{u u}^{\top}$ with $\|\mathbf{u}\|_{2}=\sqrt{2}$.
$\mathbf{u}=\frac{\mathbf{x}-\sigma \mathbf{e}_{1}}{\sqrt{\|\mathbf{x}\|_{2}\left(\left|x_{1}\right|+\|\mathbf{x}\|_{2}\right)}}, \quad \mathbf{x}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), \quad \sigma=-\|\mathbf{x}\|_{2}=-2 \quad$ (avoid cancellation)
Thus

$$
\mathbf{u}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
3 \\
1 \\
1 \\
1
\end{array}\right), \quad P \mathbf{x}=\mathbf{x}-\mathbf{u}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\frac{1}{\sqrt{6}}\left(\begin{array}{l}
3 \\
1 \\
1 \\
1
\end{array}\right) \frac{6}{\sqrt{6}}=\left(\begin{array}{c}
-2 \\
0 \\
0 \\
0
\end{array}\right)
$$

4. Consider the plane in \mathbb{R}^{3} given by the equation

$$
2 x_{1}-2 x_{3}=0 .
$$

Construct a matrix $P \in \mathbb{R}^{3 \times 3}$ which reflects a given point at this plane (computes the mirror image).
Solution: The normal vector of the plane is

$$
\mathbf{u}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Since $\|\mathbf{u}\|_{2}=\sqrt{2}$ the solution is given by the Householder matrix

$$
P=I-\mathbf{u u}^{\top}=I-\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

5. Let the measured points $\left(t_{k}, y_{k}\right)$ for $i=k, \ldots, m$ be given. We want to fit the function $f(a, b)=a e^{b t}$ such that

$$
\sum_{k=1}^{m}\left(a e^{b t_{k}}-y_{k}\right)^{2} \longrightarrow \min
$$

using the Gauss-Newton method. Write up the system of equations for the first iteration step.

Solution: We want to solve the nonlinear least squares problem $\mathbf{f}(\mathbf{x}) \approx 0$ where

$$
f_{i}(\mathbf{x})=x_{1} e^{x_{2} t_{k}}-y_{k}, \quad k=1, \ldots, m
$$

For Gauss-Newton we expand $\mathbf{f}(\mathbf{x}+\mathbf{h}) \approx \mathbf{f}(\mathbf{x})+J \mathbf{h}$ with the Jacobian

$$
J=\left(\begin{array}{cc}
\vdots & \vdots \\
\partial f_{i} / \partial x_{1} & \partial f_{i} / \partial x_{2} \\
\vdots & \vdots
\end{array}\right)=\left(\begin{array}{cc}
\vdots & \vdots \\
e^{x_{2} t_{k}} & x_{1} t_{k} e^{x_{2} t_{k}} \\
\vdots & \vdots
\end{array}\right)
$$

The system of equations for the correction \mathbf{h} is a linear least squares problem

$$
\left(\begin{array}{cc}
e^{x_{2} t_{1}} & x_{1} t_{1} e^{x_{2} t_{1}} \\
\vdots & \vdots \\
e^{x_{2} t_{m}} & x_{1} t_{m} e^{x_{2} t_{m}}
\end{array}\right)\binom{h_{1}}{h_{2}} \approx-\left(\begin{array}{c}
x_{1} e^{x_{2} t_{1}}-y_{1} \\
\vdots \\
x_{1} e^{x_{2} t_{m}}-y_{m}
\end{array}\right)
$$

