
Prof. W. Gander Masaryk University Fall 2014

Linear Equations

1. Write a function x=forwards(L,b) to solve the system Lx = b with the lower
diagonal matrix L by forward substitution using the SAXPY variant.

Solution:

function x=forwards(L,b)

% FORWARDS forwardsubstitution in Lx=b

% solution of exercise

n=length(b);

for i=1:n;

x(i)=b(i);

b(i+1:n)=b(i+1:n) -x(i)*L(i+1:n,i);

end

x=x(:);

2. Consider the linear system Ax = b with

A =


1 2 −2 −6
−3 −1 −2 α
−4 3 9 16

5 7 −6 −15

 b =


1
1
1
1

 .

The element a24 = α has been lost. Assume, however, that before when α was
available, the solution with Matlab turned out to be

> x=A\b

x =

1.0e+15 *

0.7993

-0.3997

1.1990

-0.3997

Can you determine with this information the missing integer matrix element
α = a24?

Solution: The computed solution is large, it solves numerically

Ax = b.

If we divide both sides by 1.1990 ∗ 1.0e+15 we get with

A


0.6666
−0.3334

1.0000
−0.3334

 =
1

1.1990
b× 10−15 ≈ 0

Thus

xh =


0.6666
−0.3334

1.0000
−0.3334

 =


2/3
−1/3

1
−1/3


is a solution of the homogeneous system Ax = 0 ! Inserting xh in the second
equation we obtain

−3 · 2/3 + 1/3− 2− α/3 = 0

and thus α = −11.

3. Use the function EliminationGivens to investigate if the two lines g and h
intersect. If they don’t intersect, compute their distance.

g : x =

1
2
2

 + r

1
3
1

 , h : x =

 3
−7
2

 + s

 3
−1
−3

 ,

Solution:

% lines in 3d

% g:

P=[1 2 2]’;

d1=[1 3 1]’;

% h:

Q=[3 -7 2]’;

d2=[3 -1 -3]’;

% Equate g and h to find intersection

A=[d1 -d2]; b=Q-P;

% Solve for parameters with EliminationGivens

% p=[r,s]’

[p,distance]=EliminationGivens(A,b)

Residual=b-A*p

NormResidual=norm(Residual)

closestPoints=[P+p(1)*d1, Q+p(2)*d2]

dist=norm(P+p(1)*d1-(Q+p(2)*d2))

p =

-2.1500

-0.4500

distance =

4.9497

Residual =

2.8000

-2.1000

3.5000

NormResidual =

4.9497

closestPoints =

-1.1500 1.6500

-4.4500 -6.5500

-0.1500 3.3500

dist =

4.9497

Note that after the solution with Givens the norm of the residual is nonzero.
This means that the lines do not intersect. The norm of the resulting residual
is the distance between the nearest points on the lines. Using the parameter
solutions we construct the nearest points and check that the distance is the
same.

4. Consider the linear system of equations Ax = b with the matrix

A =


2 −1

−1 2
. . .

. −1
−1 2

 (1)

and choose b such that the exact solution is the vector [1:n].

Write an experimental program for n = 1000 using first the Jacobi method.
Perform 100 Jacobi iteration steps and estimate the spectral radius using
uk+1 = M−1Nuk and ρ ≈ ‖uk+1‖/‖uk‖.
Compare the estimated spectral radius to the true one.

Then compute with the estimated spectral radius according to the theory of
David Young the optimal over-relaxation parameter ω and continue for 100
more iteration steps with SOR.

Compute in each step the true error ek = x−xk and store its norm in a vector.
Finally use semilogy and plot the error norm as a function of the iteration
steps. You should notice a better convergence with SOR.

Solution: The Matlab program is straightforward:

clear,clf,clc

format long e

% define the matrix and the splitting

n=1000

h=ones(n-1,1);

M=2*eye(n); N=diag(h,-1)+diag(h,1); A=M-N;

% define exact solution and right hand side

xe=[1:n]’; b=A*xe;

% 100 Jacobi Iteration steps

% store error in rr

rr=[];

x=zeros(size(xe)); %start vector

xnew=M\(N*x+b);

u=xnew-x; % difference

x=xnew;

for k=1:100

xnew=M\(N*x+b);

unew= xnew-x;

rho=norm(unew)/norm(u);

x=xnew;

u=unew;

rr=[rr, norm(x-xe)];

end

rhoestimate=rho;

rhoex=max(abs(eig(M\N)));

disp(’convergence rate Jacobi’), [rhoestimate rhoex]

% optimal over relaxation parameter

omega=2/(1+sqrt(1-rhoestimate^2));

omegaex=2/(1+sqrt(1-rhoex^2));

disp(’optimal over relaxation parameter’)

[omega omegaex]

xx=x; rrx=rr; % save values after Jacobi

% Now continue with SOR with estimates rho

D=M; L=-tril(N); U=-triu(N);

for k=1:100

xnew=(D+omega*L)\((-omega*U+(1-omega)*D)*x+omega*b);

unew= xnew-x;

rho=norm(unew)/norm(u);

x=xnew;

u=unew;

rr=[rr, norm(x-xe)];

end

semilogy(rr)

hold

drawnow;

pause

% Now continue with SOR with exact rho

x=xx; rr=rrx; omega=omegaex;

for k=1:100

xnew=(D+omega*L)\((-omega*U+(1-omega)*D)*x+omega*b);

unew= xnew-x;

rho=norm(unew)/norm(u);

x=xnew;

u=unew;

rr=[rr, norm(x-xe)];

end

semilogy(rr,’r’)

We obtain the following results:

estimated exact
ρ 0.992546479945137 0.999995075056662
ω 1.782743042711722 1.993742739997419

We see that SOR clearly improves convergence. The upper curve is the result
with the estimated ρ, the lower with the exact value. The over-relaxation
factor ω with the exact ρ is much closer to 2 and the convergence is better.

5. Solve the same system using the conjugate gradient method. Modify our
function CG such that the norm of the error is stored for every step. For this
you need to add the exact solution to the input parameter list.

[x,Errors]=conjgradient(A,b,x0,xexact,m);

(a) Apply 200 steps of CG and plot the norm of the errors and compare it
to SOR.

(b) Plot the error and the residuals for m = 1000

Solution:

(a) The modified function becomes

function [x,Errors]=conjgradient(A,b,x0,xexact,m);

%

x=x0; r=b-A*x; p=r;

Errors=norm(x-xexact);

oldrho =r’*r;

for k=1:m

Ap = A*p;

alpha(k) = oldrho/(p’*Ap);

x = x+alpha(k)*p;

r = r-alpha(k)*Ap;

rho= r’*r;

beta(k) = rho/oldrho;

oldrho=rho;

p = r+beta(k)*p;

Errors=[Errors, norm(x-xexact)];

end

and the main program is

clear,clf,clc

format long e

% define the matrix and the splitting

n=1000

h=ones(n-1,1);

M=2*eye(n); N=diag(h,-1)+diag(h,1); A=M-N;

% define exact solution and right hand side

xe=[1:n]’; b=A*xe;

x0=0*xe;

m=200;

[x,Errors]=conjgradient(A,b,x0,xe,m);

semilogy(Errors)

The resultin plot of the error is

The error decreases more rapidly than with SOR.

(b) If we perform 1000 steps we get the plot

We see that for this matrix CG behaves essentially like an explicit method
– it needs n = 1000 steps to converge. The matrix of the linear system
is tridiagonal and all its eigenvalues are simple.

CG converges well as an iterative method with a good preconditioner.
The preconditioner should cluster the eigenvalues of the matrix. Then
we get fast convergence.

6. A linear system with the matrix (1) could be preconditioned with the matrix

M =


1 −1

−1 2
. . .

. −1
−1 2

 = FF> with F =


1

−1 1
. . .

.

−1 1



Suppose you are solving the preconditioned system F−1AF−>(F>x) = F−1b
with CG. How many iteration steps are at most necessary? Justify your claim
by applying Corollary 2.1.

Solution: The corollary states that if A has only m ≤ n different eigenvalues,
then CG converges in at most m steps.

Since FF> = A−N where N = e1e
>
1 is a rank one matrix, we get by replace

the matrix A by
F−1AF−> = I + F−1NF−>

a rank one modification if the identity matrix. This matrix has only two
different eigenvalues. Thus CG will solve the preconditioned system

F−1AF−>y = F−1b

in two steps.

We verify this with a numerical example.

format compact

n=10

A=2*eye(n)-diag(ones(n-1,1),1)-diag(ones(n-1,1),-1);

xe=[1:n]’; b=A*xe; % generate system with solution

F=eye(n)-diag(ones(1,n-1),-1);

[Y,R] = CG(F\A/F’,F\b,0*xe,2) % solve preconditioned system

x=F’\Y % transform variables

n =

10

Y =

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 0 -1.0000

0 5.5000 10.0000

R =

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

0 -5.5000 0

11.0000 0 0

x =

0 5.5000 1.0000

0 5.5000 2.0000

0 5.5000 3.0000

0 5.5000 4.0000

0 5.5000 5.0000

0 5.5000 6.0000

0 5.5000 7.0000

0 5.5000 8.0000

0 5.5000 9.0000

0 5.5000 10.0000

Indeed we notice that the residual is zero after two steps and that we obtain
the exact solution.

