
C2110 UNIX and programming 6th lesson -1-

C2110 UNIX and programming

Petr Kulhánek, Jakub Štěpán

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science
Masaryk University, Kotlářská 2, CZ-61137 Brno

CZ.1.07/2.2.00/15.0233

6th Lesson

C2110 UNIX and programming 6th lesson -2-

Contents

 Scripts

• Scripts vs. programs

• Program compilation

• Running sample script and program

Variables

• Setting and removing variables

• Variables and processes

• String types

C2110 UNIX and programming 6th lesson -3-

Scripts

 Scripts vs. programs

 Program compilation

 Running sample script and program

C2110 UNIX and programming 6th lesson -4-

Programs vs. Scripts

Source code

program

input

output

Compilation
script interpreter

input

output

Program is machine instruction file
processed directly by processor. It is
created by procedure called compilation
from source code.

Compiled languages:

 C/C++
 Fortran

Script is text file containing commands
and special constructions, these are
processed by interpreter of scripting
language.

Skripting languages:

 bash
 gnuplot
 awk
 JavaScript
 PHP

C2110 UNIX and programming 6th lesson -5-

Programs vs Scripts, ...

No recompilation
Program can generate and
run self running code

Poor optimization
Slower processing

Easy optimization
Fast processing

Recompilation needed
Self run code not available

Source code

program

input

output

Compilation
script interpreter

input

output

C2110 UNIX and programming 6th lesson -6-

How to write programs and scripts
Scripts are text files – thus any text editor can be used, that enables saving pure text
(without any format metadata).

Text editors:
 vi
 kwrite
 kate
 gedit

For complex programs and scripts development environments can be used – IDE
(Integrated Development Enviroment). IDE contains next to editor extra tools as: project
manager, debugger and more. Usually for more advanced and complex languages:
JavaScript, Python, PHP, etc.

IDE:

 Kdevelop

 qtcreator

 NetBeans

 Eclipse

C2110 UNIX and programming 6th lesson -7-

Program in C

#include <stdio.h>

int main(int argc,char* argv[])

{

 printf("This is C program! \n");

 return(0);

}

Compilation

$ gcc program.c -o program

Source code

Running program

$./program

C language compiler Program name

file program needs permission to execute

C2110 UNIX and programming 6th lesson -8-

Program in Fortran

program Hello

 write(*,*) 'This is Fortran program!'

end program

$ gfortran program.f90 -o program

$./program

Compilation

Source code

Running program

Fortran language compiler Program name

file program needs permission to execute

C2110 UNIX and programming 6th lesson -9-

Script in Bash

#!/bin/bash

echo 'This is Bash script!'

Running script

interpret Bash file script.bash does not need permissions to execute

Script

$ bash script.bash

C2110 UNIX and programming 6th lesson -10-

Script in gnuplot

#!/usr/bin/gnuplot

set title "This is gnuplot script!"

plot sin(x)

pause -1

interpret gnuplot

Script

$ gnuplot skript.gnuplot

Running script

file script.bash does not need permissions to execute

C2110 UNIX and programming 6th lesson -11-

Exercise

1. Create four directories with names task01, task02, task03, task04

2. From directory /home/kulhanek/Data/programs copy program.c ,
program.f90, skript.bash, a skript.gnuplot to particular directories you
created in 1.

3. Compile source codes of language C and Fortran. Run compiled programs.

4. What is size of compiled program in C language? Open program file in text
editor, what is inside?

5. Run scripts skript.bash a skript.gnuplot.

C2110 UNIX and programming 6th lesson -12-

Running scripts

1) Un-direct running
 We run interpreter and as its argument we put script name.

 $ bash my_bash_script_name

 $ gnuplot my_gnuplot_script_name

 Scripts does not need permission x (executable).

2) Direct running
 We run directly script (shell runs interpreter automatically).

 $./my_bash_script

 $./muj_gnuplotu_script

 Scripts must have x (executable) set and interpreter (first script line).

C2110 UNIX and programming 6th lesson -13-

Interpreter specification

#!/bin/bash

echo “This is bash script!"

#!/usr/bin/gnuplot

set xrange[0:6]

plot sin(x)

pause -1

Script in bash Skript in gnuplot

#!/absolute/path/to/interpreter/of/script

Interpreter specification (first script line):

 If no interpreter is specified, then system shell interpreter is used.

 Interpreter is ignored in case of un-direct running.

C2110 UNIX and programming 6th lesson -14-

Interpreter specification

#!/usr/bin/env interpreter

If absolute path may be changed over time (for example by using software modules), it
may be specified dynamically:

Interpreterhas to be in system path of variable
PATH.

#!/usr/bin/env bash

echo “This is bash script!"

#!/usr/bin/env gnuplot

set xrange[0:6]

plot sin(x)

pause -1

Script in bash Script in gnuplot

C2110 UNIX and programming 6th lesson -15-

Exercise

1. Change access permissions to files skript.bash a skript.gnuplot (command
chmod).

2. Make sure that scripts can be run directly.

3. What happens when we use interpreter bash for script skript.gnuplot?

C2110 UNIX and programming 6th lesson -16-

Variables

Variable setting and unsetting

Variables and processes

 String types

C2110 UNIX and programming 6th lesson -17-

Variables

In Bash language variable is named memory place, that contain value. Variable value is
always of type string (test).

Variable set:

 $ VARIABLE_NAME=value

 $ VARIABLE_NAME="value with spaces"

Access to variable value:

 $ echo $VARIABLE_NAME

Unsetting of variable:

 $ unset VARIABLE_NAME

Overview of all variables:

 $ set

No space between variable name and =

C2110 UNIX and programming 6th lesson -18-

Variables and processes

Variables

Process: pid, ppid

Process: pid, ppid

Variables

Parent process

child process

Each process has own space for variables
and its values.

Child process when started gets copy of exported variables
and its values from parent process. These variables can be
changed by any way or remove them and new variables can
be defined too. All these changes are not visible to original
variables in parent process and are deleted when child
process finishes.

Export proměnné:

 $ export VARIABLE_NAME

 $ export VARIABLE_NAME= "value"

export

export with assignment

C2110 UNIX and programming 6th lesson -19-

Strings
In Bash llanguage there are four string types:

• no quotes
A=pokus

B=*

C=$A

• with quotes
A="pokus hokus"

B="* $A"

• single quote (apostrophe)
A='pokus hokus'

B='* $A'

• backward single quote (backward apostrophe)

A=`ls –d`

B=“number : `ls | wc –l`"

Expands to list of files and directories in current
working directory (advanced constructions can be
used)

Value of variable A is inserted

Value of A is inserted but no expansion is done (star
is in quotes)

Text is saved in exact way, no variable insertion, no
expansion is done.

Variable contains value with 2 words separated by space

To place where are backward
apostrophes, command output is
inserted

C2110 UNIX and programming 6th lesson -20-

Variables and special symbols
Text expansion order:

Input text (string)

Variable expansion

intermediate

Special characters
expansion (wildcards)

result

Expansion is not done,
if text is in double
apostrophes ""

Expansion is not done,
if text is in single
apostrophes ''

C2110 UNIX and programming 6th lesson -21-

Commands for exercise
more prints text from file or standard input by pages (appropriate to view long

texts)

less similar to more with extended functionality (for example movement to both
directions in text)

xargs runs command with arguments that are from standard input. Appropriate to
create long argument list.

grep prints lines from files or standard input that match given search PATTERN

Examples:

 $ set | more

 lists existing variables and functions by pages

 $ cat *.txt | less

 prints contents of all files with extension .txt by pages

 $ cat directory_list.txt | xargs mkdir

 creates directories with names according to contents of file

directory_list.txt

 $ grep AHOJ file.txt

 prints particular lines from soubor.txt, that contain text AHOJ

C2110 UNIX and programming 6th lesson -22-

Exercise

1. Set variable A to value 55.

2. Print value of variable A (command echo)

3. List all variables. Is there variable A (try to use command less and more)?
4. Use command grep and print line containing variable A record. Select

search pattern independent on variable value.

5. Print all variables with name beginning with A (grep ^TEXT).

6. Change variable A value to "this is long string".

7. Print value of variable A.

8. Unset variable A.

9. Make sure it is unset (use procedure as in 4).

10. Set variables A, B and C as on previous page 19. Check their values by set
or echo.

11. Create file directories.txt, with words pokus1, pokus2, pokus3 on
separate lines. Use command xargs to create directories of same names.

