
C2115 Practical Introduction to Supercomputing    5th Lesson  -1- 

C2115 Practical Introduction to 
Supercomputing 

Petr Kulhánek, Jakub Štěpán 
 

kulhanek@chemi.muni.cz 
 

National Centre for Biomolecular Research, Faculty of Science  
Masaryk University, Kotlářská 2, CZ-61137 Brno 

CZ.1.07/2.2.00/15.0233 

5th Lesson  



C2115 Practical Introduction to Supercomputing    5th Lesson  -2- 

Contents 

 Exercise LIII.3 solution 
 input, matrix multiplication 
 

 Result explanation 
 computer architecture and its bottlenecks 
 

 Optimized libraries usage 
 BLAS, LAPACK, LINPACK, result comparison 



C2115 Practical Introduction to Supercomputing    5th Lesson  -3- 

Exercise LIII.3 solution 

 Input, matrix multiplication 
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Exercise LIII.3 

1. Write program, that dynamically allocates two dimensional array A of size n x n. Items 
will be initialized by random numbers from range <-10 ;20>. Print array to terminal. 

2. Create two separate arrays (matrices) A and B of size n x n. Initialize arrays in same way 
as in previous exercise. Write code for matrix A and B multiplication, save result to 
matrix C.  

3. How many floating point operations will be done during matrix multiplication? 
Measure time necessary for matrix multiplication (do not include matrix initiation and 
creation). Calculate approximate processor power in MFLOPS from operation number. 

4. Calculate processor performance for different matrix A and B sizes. Create graph for 
values of n in range 10 to 1000. 
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Matrix multiplication 

A(n,m) B(m,k) C(n,k) 

x = 
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Matrix multiplication 

A(n,m) B(m,k) C(n,k) 

x = 
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Resulting C matrix item is scalar product of vectors given by i-th row of matrix A and j-th 
column of matrix B  
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Matrix multiplication, program 
subroutine mult_matrices(A,B,C) 
 

  implicit none 

  double precision    :: A(:,:) 

  double precision    :: B(:,:) 

  double precision    :: C(:,:) 

  !--------------------------------------- 

  integer             :: i,j,k 

  !------------------------------------------------------------------- 
 

  if( size(A,2) .ne. size(B,1) ) then 

    stop 'Error: Illegal shape of A and B matrices!' 

  end if 
 

  do i=1,size(A,1) 

    do j=1,size(B,2) 

      C(i,j) = 0.0d0 

      do k=1,size(A,2) 

          C(i,j) = C(i,j) + A(i,k)*B(k,j) 

      end do 

    end do 

  end do 
 

end subroutine mult_matrices 
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Number of operations 

 

  do i=1,size(A,1) 

    do j=1,size(B,2) 

      C(i,j) = 0.0d0 

      do k=1,size(A,2) 

          C(i,j) = C(i,j) + A(i,k)*B(k,j) 

      end do 

    end do 

  end do 

N * N * N * (1 + 1) = 2*N3 

Expect that matrices A and B are square matrices of NxN size: 

Computing measures computational performance as number of FLOPS  (FLoating-point 
Operations Per Second), that is how many floating point operations are done in second. 
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Results 
wolf21: gfortran 4.6.3, optimization O3, Intel(R) Core(TM) i5 CPU 750  @ 2.67GHz 

  N     NR       NOPs             Time        MFLOPS  

----- ----- ---------------- ---------------- ------- 

   50 50000      12500000000        6.1843858  2021.2 

  100   500       1000000000        0.5200334  1923.0 

  150    50        337500000        0.1760106  1917.5 

  200    50        800000000        0.4280272  1869.0 

  250    50       1562500000        0.8440533  1851.2 

  300    50       2700000000        1.4640903  1844.1 

  350    50       4287500000        2.3441458  1829.0 

  400    50       6400000000        5.7083569  1121.2 

  450    50       9112500000        5.9363708  1535.0 

  500    50      12500000000       10.3366470  1209.3 

  550     1        332750000        0.6880417   483.6 

  600     1        432000000        1.1600723   372.4 

  650     1        549250000        1.8601189   295.3 

  700     1        686000000        2.5881615   265.1 

  750     1        843750000        3.2762032   257.5 

  800     1       1024000000        3.8522377   265.8 

  850     1       1228250000        4.7883034   256.5 

  900     1       1458000000        5.6963577   256.0 

  950     1       1714750000        6.5044060   263.6 

 1000     1       2000000000        7.9444962   251.7 

Legend: 
N – matrix size 
NR – number of iterations 
NOPs – Floating Point operations 
Time – runtime in seconds 
MFLOPS – performance 
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Results 
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Results 

Significant  
performance drop 
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Results explanation 

 Computer architecture 

 Bottlenecks 
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Architecture, general overview 

CPU 

North bridge 

South 
bridge 

USB 

Mouse, keyboard 

Real time clock 

BIOS 

Graphics 
system 

Memory 

Memory controller 

Peripheries with fast access over 
PCI Express 

Network (ethernet) Sound 

PCI bus 

Memory controller becomes part 
of new processors 

SATA controller 
Hard drives 
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Architecture, bottleneck 

CPU 

Memory 

Memory controller 

Bottleneck: data transfer rate between memory and CPU is usually slower then speed that 
CPU processes data. 
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Hierarchy memory model 
Memory 

L3 L2 
L1 

L1 

CPU 

Fast cache memory (cache), various levels with different access rates. 

wolf21 – transfer rates (memtest86+, http://www.memtest.org/) 

Type Size  Rate 

L1 32kB 89 GB/s 

L2 256 kB 35 GB/s 

L3 8192 kB 24 GB/s 

Memory 8192 MB 12 GB/s 
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Hierarchy memory model 

L3 L2 
L1 

L1 

CPU 

If problem size exceeds CPU cache 
memory size, then transfer rate 
between CPU and physical memory 
becomes speed limiting factor. 

N=600 
600x600x3x8 = 8437 MB 

A,B,C   double precision 

Type Size  Rate 

L1 32kB 89 GB/s 

L2 256 kB 35 GB/s 

L3 8192 kB 24 GB/s 

Memory 8192 MB 12 GB/s 

Memory 

Fast cache memory (cache), various levels with different access rates. 

wolf21 – transfer rates (memtest86+, http://www.memtest.org/) 
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Optimized libraries usage 

 BLAS 

 LAPACK 

 LINPACK 

 Result comparison 
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Linear algebra libraries 
BLAS 
The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building 
blocks for performing basic vector and matrix operations. The Level 1 BLAS perform scalar, 
vector and vector-vector operations, the Level 2 BLAS perform matrix-vector operations, 
and the Level 3 BLAS perform matrix-matrix operations. Because the BLAS are efficient, 
portable, and widely available, they are commonly used in the development of high quality 
linear algebra software, LAPACK for example. 
  
LAPACK 
LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous 
linear equations, least-squares solutions of linear systems of equations, eigenvalue 
problems, and singular value problems. The associated matrix factorizations (LU, Cholesky, 
QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as 
reordering of the Schur factorizations and estimating condition numbers. Dense and 
banded matrices are handled, but not general sparse matrices. In all areas, similar 
functionality is provided for real and complex matrices, in both single and double 
precision. 

http://netlib.org 
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Optimized libraries 
Optimized libraries BLAS and LAPACK 
 

 optimized by hardware producer 
 ATLAS  http://math-atlas.sourceforge.net/ 
 MKL   http://software.intel.com/en-us/intel-mkl 
 ACML  http://developer.amd.com/tools/cpu-development/ 

amd-core-math-library-acml/ 
 cuBLAS https://developer.nvidia.com/cublas 
 

Optimized libraries FFT (Fast Fourier Transform) 
 

 optimized by hardware producer 
 MKL   http://software.intel.com/en-us/intel-mkl 
 ACML  http://developer.amd.com/tools/cpu-development/ 

amd-core-math-library-acml/ 
 FFTW  http://www.fftw.org/ 
 cuFFT  https://developer.nvidia.com/cufft 
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Matrix multiplication using BLAS 
subroutine mult_matrices_blas(A,B,C) 
 

  implicit none 

  double precision    :: A(:,:) 

  double precision    :: B(:,:) 

  double precision    :: C(:,:) 

!---------------------------------------------------------- 
 

  if( size(A,2) .ne. size(B,1) ) then 

    stop 'Error: Illegal shape of A and B matrices!' 

  end if 
 

  call dgemm('N','N',size(A,1),size(B,2),size(A,2),1.0d0, & 

  A,size(A,1),B,size(B,1),0.0d0,C,size(C,1)) 
 

end subroutine mult_matrices_blas 

Compilation: 
 

$ gfortran -03 mutl_mat.f90 -o mult_mat -lblas 
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Naive vs. optimized solution 
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Naive vs. optimized solution 

~10x 
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Summary 

It is always appropriate to use existing library to solve 
problem, because these are usually highly hardware 
optimized. 


