Atomová spektrometrie - optika

Vítězslav Otruba

Optika

Geometrická optika Pracuje s čistě geometrickými představami Zanedbává vlnovou a kvantovou povahu světla

Vlnová optika Elektromagnetická teorie světla Světlo se šíří pomocí elektromagnetických vln

Kvantová optika Uvažuje kvantovou povahu záření Světlo je vyzařováno po kvantech (fotonech)

Geometrická optika

Základní předpoklady geometrické optiky

- V homogenním izotropním prostředí se světlo šíří přímočaře
- Světlo se šíří nezávisle na tom, zda prostorem prochází i jiné světlo (jedním bodem může procházet nekonečně mnoho paprsků aniž by se ovlivňovaly)
- Na rozhraní dvou prostředí se světlo odráží pod týmž úhlem, pod kterým dopadá
- Při průchodu do jiného prostředí se světelné paprsky lámou podle Snellova zákonu lomu (n=sinα/sinβ)
- Chod paprsků je záměnný a každý paprsek může svou cestu proběhnout i opačně

Definice světelného paprsku

- Nejjednodušší představa světlo se šíří ze zdroje podél přímek (paprsky) Fermatův princip (1679): v opticky stejnorodém prostředí se světlo šíří přímočaře, tj. mezi dvěma danými body po nejkratší dráze (v nehomogenním prostředí se šíří od bodu k bodu s různým indexem lomu).
- Paprsek světla: je dráha, podél níž je v daném optickém systému přenášená světelná energie od jednoho bodu k druhému.

Zákon odrazu

- Podle Fermatova principu se světlo šíří po nejkratší dráze
- Užitím tohoto předpokladu porovnáme 3 možné dráhy paprsku odrážející se od zrcadlové plochy
- Porovnáním trojúhelníků je nejkratší cesta mezi body A a B při jednom odrazu od zrcadlové plochy přes bod D, který je uprostřed bodů A a B.

Zákon odrazu

Je–li světlo odráženo od povrchu, rovná se úhel odrazu úhlu dopadu, α = β

Zákon lomu světla (Snellův zákon)

Dvě prostředí s různými indexy lomu n a n', oddělená rozhraním (světlo se v prostředích šíří různou rychlostí v=c/n a v'=c/n'). Z Fermantova principu je možné odvodit, že $sin\alpha/v=sin\beta/v'a$ Snellův zákon $nsin\alpha = n'sin\beta$

Rozklad světla hranolem

Disperze hranolu:

 $\frac{\Delta\delta}{\Delta\lambda} = \frac{2\sin\frac{\varphi}{2}}{\sqrt{1 - n^2\sin^2\frac{\varphi}{2}}} \frac{\Delta n}{\Delta\lambda}$

Rozlišovací schopnost:

$$R = B \frac{\Delta n}{\Delta \lambda}$$

Př.: R = 4200 Pro flintové sklo, B = 100mm λ = 400 nm ϕ = 60°

Hranolový spektroskop

Spektrograf Q 24 (Carl Zeiss Jena)

Odraz na kulové ploše

prof. Otruba

Sférická (otvorová) vada zrcadla

Paprsky, procházející v blízkosti optické osy, jsou odráženy do ohniska, paprsky vzdálenější od osy jsou odráženy mimo ohnisko. Jejich obalová plocha se nazývá kaustika.

Bodové zobrazení zrcadly

- Zobrazení bodu v nekonečnu parabolickým zrcadlem do ohniska
- Zobrazení bodu v jednom ohnisku eliptické rotační plochy do druhého ohniska

Excentrické (off axis) zrcadlo

- Je-li světelný zdroj umístěn mimo optickou osu, nejsou oražené paprsky rovnoběžné
- Je-li světelný zdroj umístěn v ohnisku a pro odraz je použita část zrcadla ležící mimo jeho vrchol jsou odražené paprsky rovnoběžné

Zobrazení tenkou spojnou čočkou

Optické vady

- Monochromatické vyskytují se i při průchodu jednobarevného světla: otvorová vada, astigmatismus, koma, zklenutí, zkreslení
- Barevné vady (chromatické) jsou způsobeny různým indexem lomu pro různé barvy světla: barevná vada zvětšení a barevná vada polohy

Otvorová vada (sférická, kulová)

- Pro okrajové části čočky leží ohnisko blíže k čočce než pro paprsky blíže k optické ose. U rozptylky je průběh kulové vady opačný. Korekce je možná např. nekulovou plochou čočky nebo vhodnou kombinací spojky a rozptylky.
- Na vedlejším schématu je přehled rozložení světla ve skutečném paprskovém kuželu u systému s otvorovou vadou.

Astigmatismus

Paprsky v meridiálním řezu (A_0A_1) se protínají v bodě A', paprsky v sagitálním řezu (B₀B₁) se protínají v jiném bodě B". Paprsky druhého řezu vytvářejí v těchto bodech obraz bodu P ve tvaru úsečky ($B_0 B_1$), příp. (A_0A_1) . Mezi oběma těmito body leží rovina optimálního zaostření (B₁′).

Koma

 Jméno koma odpovídá zobrazení bodu jako kruhové plošky se zužujícím se zakončením (jako obraz komety)

Zkreslení

- Změna zvětšení k okrajům obrazu má za následek i změnu tvaru zobrazovaných předmětů.
 - a) zvětšení roste k okrajům – poduškovité zkreslení
 - b) zvětšení klesá k okrajům obrazu – poduškovité zkreslení
 - c) objektiv bez zkreslení

Zklenutí pole

- Předmět AB je zobrazen na zakřivené ploše A'B'.
- Ostrý obraz je rozložen na rotační ploše a nelze jej zobrazit ostře na rovině. Při přeostření je možné dosáhnout ostrosti buď ve středu obrazu nebo na okrajích.

Asférické systémy

- a obyčejná čočka deformuje vlnoplochu, deformaci lze odstranit asférickým členem
- b obdobná situace je u objektivu, kde vlnoplocha je deformována složitěji

Vlnová optika

Rovinná postupná vlna se sinusovým průběhem

Záření je elektromagnetické vlnění, které se šíří prostředím rychlostí v = $(\epsilon\mu)^{-\frac{1}{2}}$, pro neferomagnetická prostředí pak v = $c_0\epsilon_r^{-\frac{1}{2}}$, kde c_0 je rychlost šíření záření ve vakuu.

Elektromagnetické spektrum

prof. Otruba

Světlo jako vlnění - difrakce

Youngův interferenční experiment

Dochází k difrakci monochromatického záření na štěrbině S₀, která působí jako bodový zdroj světla o polokulových vlnoplochách. Po dopadu na stínítko B je světlo difraktováno na štěrbinách S₁ a S₂. Světelné vlny postupující z těchto štěrbin se vzájemně překrývají a interferují Na stínítku C vzniká interferenční obrazec maxim a minim.

Schema Youngova experimentu

Při interferenci koherentního světelného vlnění o vlnové délce λ vzniká interferenční maximum v bodech, pro které je splněna podmínka $\Delta I = k\lambda$; pro $k = 0, 1, 2 \dots$

Interferenční minimum naopak nastává, když je splněna podmínka $\Delta I = (2k-1)\lambda/2$; pro k = 1, 2 ...

Veličina k udává řád interferenčního maxima (minima).

Štěrbina a dvojštěrbina

K ohybu na štěrbině dochází díky konečné šířce štěrbiny, sčítají se paprsky ze všech bodů štěrbiny. Na dvojštěrbině (Youngův experiment) dochází k interferenci mezi oběma štěrbinami a k ohybu paprsků v rámci jedné štěrbiny

 30°

60°

 90°

Mřížkové spektrum pro různý počet vrypů

prof. Otruba

Optická mřížka

Paprsky jdoucí ze štěrbin difrakční mřížky ke vzdálenému bodu P jsou přibližně rovnoběžné. Dráhový rozdíl mezi každými dvěma sousedními paprsky je $dsin\Theta$, kde Θ je úhel, vyznačený na obrázku. Pro maxima(čáry) platí: d*sin*Θ=mλ, m=0,1,2...

Diffraction orders

The longer the wavelength, the larger its diffraction angle in nonzero orders.

Rozložení intenzity vytvořené difrakční mřížkou s velkým počtem štěrbin má tvar úzkých píků, kde m udává řád píku. Obrazem na stínítku (b) jsou úzké proužky (čáry).

Jednoduchý mřížkový spektroskop

Mřížkové spektrum vodíku

Rozlišovací schopnost mřížky

Tři mřížky

Mřížka echelle

- Tato mřížka tvoří přechod mezi Michelsonovou stupňovou mřížkou ("echelon") a mřížkou "echelette", která soustřeďuje světlo do úhlu, ve kterém leží jen spektrum určitého řádu.
- Rozlišovací schopnost: R=mN, m=2t ⁄/λ
 Př.: λ=500 nm, N=500, t´=0,05 mm →R=100 000

Zkřížená disperze a echelle mřížka

Interferometer Fabry-Perot

- A the Fabry-Perot interferometer has two parallel, highly reflective mirrors separated by an air gap several millimeters to several centimeters in width.
- Light of wavelength λ constructively interferes when the following relationship is satisfied:

$m\lambda = 2d\cos\theta$

 where *m* is the order and θ is the angle of the incoming light.

R=mN

$$N \cong \frac{2,56\sqrt{R_0}}{1-R_0} \quad R_0 = \text{reflectance}$$

Example: $R_0 = 0.98$; N = 127; m = 40 000; R = 5.10⁶

Interferenční filtr na průchod

br. 8.10 Interferenčný filter na prechod -4 – zväzok dopadajúcich, 1'-4' – zväzok prepustených, 1"-4" – zväzok odraz - hrúbka

Dvojitý monochromátor

Obr. 3.9 Optické schéma monochromátoru GDM-1000. 1 – vstupní štěrbina, 2 a 7 dutá zrcadla, 5 – pevná štěrbina pro omezení rozptýleného záření, 3 a 8 – rovinné mřížky, 9 – korekční čočka, 10 – výstupní štěrbina, 11 – modulátor záření.

Kvantová optika

Foton

Energie fotonu:
 $E = hv = \frac{h}{\lambda_0}$ Hmotnost fotonu:

$$m = \frac{h\nu}{c_0^2} = \frac{h}{\lambda_0 c_0^2}$$

- Foton $\lambda_0 = 570$ nm (v = 5,26.10¹⁴ Hz) m = 3,9.10⁻³⁴ kg (m_e= 9,1.10⁻³¹kg) E = 2,1 eV E = 170 kJ.mol⁻¹
 - $E = 2,82.10^{-25} J$

Foton jako diskrétní částice

- Záření černého tělesa: Teplotní závislost vyzařování a jeho spektrální rozložení
- Fotoelektrický jev: Foton vyráží elektrony
- Comptonův jev: Foton "rozptyluje" elektrony

Vlnový balík (klubko)

Představa existence vlnových klubek souvisí s tím, že světlo se nechová jako monochromatické vlnění. Monochromatické světlo neexistuje, takové světlo charakterizujeme střední vlnovou délkou λ_{0} a příslušným oborem $\Delta\lambda$. Délka vlnového balíku:

$$\delta = \frac{\lambda^2}{\Delta \lambda}$$

Einsteinova rovnice fotoelektrického jevu

Příklad: draslík, A_v= 2 eV nutná pro emisi elektronu

$$h\nu = \frac{m_0 v^2}{2} + A_v$$

Fotoelektrický jev

- Vnější fotoelektrický jev se vyznačuje tím, že záření dopadající na polovodičový krystal vyvolá elektronovou emisi, tzn. že elektrony (fotoelektrony) vystupují z krystalu.
- Vnitřní fotoelektrický jev se vyznačuje tím, že při dopadu záření volné nosiče nevystupují z krystalu, ale změní svou energii (energetickou hladinu). Tak se elektrony z valenčního pásu polovodiče dostanou do vodivostního pásu a způsobí vlastní vodivost polovodiče (generace párů elektron — díra).
- Vnitřní fotoelektrický jev ve spojení s působením elektrických nebo magnetických polí v polovodiči můžeme dále dělit na fotonapěťový (fotovoltaický) jev, fotomagnetoelektrický jev, fotovodivostní jev apod.

Vnější fotoelektrický jev - fotonka

- Elektrony opustí katodu (nastane fotoefekt), až jim foton předá svou energii, s jejíž pomocí jsou teprve schopny překonat okraj myšlené nádoby (kovu), v níž jsou uzavřeny.
- Energie fotonu: E = hv
- Podmínka vzniku fotoefektu:

 $A < h\nu$

Vnitřní fotoelektrický jev - fotodioda

Foton pronikne horní vrstvou polovodiče, v oblasti p-n přechodu je absorbován a vygeneruje pár elektron – díra. Tímto procesem, kterému se říká vnitřní fotoefekt, vznikne elektrický fotoproud. Důležitou roli zde hraje i závislost absorpce na λ .

Optika spektrometrů

Disperzní moduly

- Prvním disperzním prvkem byl hranol. V současnosti se používá ve specifických konstrukcích (např. zkřížená diperze)
- Difrakční mřížka z periodických paralelních vrypů či linií na rovném nebo konkávním podkladu způsobující periodické změny amplitudy a fáze dopadají světelné vlny je základním difrakčním prvkem dnešních spektrometrů.
- Interferometry pracují ve vysokých řádech spektra (100 – 100 000). Vyznačují se obvykle extrémním R (až 10⁸) a malým Δλ (nm – pm).

Historie disperzních prvků

Spektrální přístroj

- Spektrometr slouží k separaci záření podle vlnových délek a k měření emise spektrálních čar. Jako disperzní členy se používají mřížky na odraz. V současné době jsou komerčně vyráběny 3 typy spektrometrů:
- spektrometry s rovinnou mřížkou montáže Czerny-Turner nebo řidčeji Ebert-Fastie;
- spektrometry s konkávní mřížkou, nejčastěji montáže Paschen-Runge;
- spektrometry s mřížkou typu echelle a děličem spektrálních řádů (hranol).

Součásti spektrometru s rovinnou mřížkou

- osvětlovací soustava,
- vstupní (primární) štěrbina,
- zrcadlový objektiv kolimátoru
- rovinná mřížka, (u spektrometru s konkávní mřížkou místo rovinné zastává mřížka současně funkci kolimátorového a kamerového zrcadla),
- zrcadlový objektiv kamery,
- výstupní štěrbina,
- detektor

Monochromatorprinzip (Schnitt senkrecht zu den Spalten). ES — Eintrittsspalt der Breite b_1 ; K — Kollimatoroptik; D — Dispersor; F — Fokussierungs- oder Kameraoptik; AS — Austrittsspalt der Breite b_2 ; a — Aperturbreite

Rytá mřížka

Typical specifications	
Spectral range : Groove density : Efficiency :	200 nm to 100 µm 1800 lines/mm down to 20 lines/mm 70 % at the blaze wavelength

Holografická (interferenční) mřížka

Příprava holografických mřížek – nejprve se exponuje fotorezist interferenčním obrazcem laserových paprsků a poté následuje povrchová úprava s tvarováním profilu vrypů iontovým leptáním.

Holografická mřížka profilovaná iontovým leptáním

Blaze profile of an holographic grating blazed by ion etching (STM microscope).

Optická mřížka "echelette"

Zrcadlovým odrazem na delších stěnách vrypu je možné soustředit téměř všechno světlo do určitého, požadovaného úhlu (odlesk, blaze).

$$\sin\beta = \frac{m\lambda}{2a\cos\frac{\varphi}{2}}$$

Mezní hustota vrypů mřížky

 Mezní vlnová délka, při které ještě dochází k difrakci je určena počtem čar na mm a odpovídá maximální hodnotě úhlů dopadu a difrakce 90°, potom:

$$1 + 1 = \sin \alpha + \sin \beta = k \cdot n \cdot \lambda_{\max} \cdot 10^{-6}$$

$$\lambda_{\max} = 10^6 \frac{2}{k \cdot n}$$

S mřížkou 2400 mm⁻¹ lze dosáhnout teoreticky spektrálního rozsahu do 830 nm, s mřížkou 3600 mm⁻¹ 550 nm, s mřížkou 2400 mm⁻¹ ve 2. řádu nebo s mřížkou 4800 mm⁻¹ v 1. řádu 415 nm a s mřížkou 3600 mm⁻¹ ve 2. řádu 275 nm. Ve skutečnosti je úhel dopadu vždy menší než 90° a maximální dosažitelná vlnová délka je kratší než teoretická hodnota.

Disperze monochromátoru s rovinnou mřížkou

Používá se reciproká lineární disperze (nm/mm):

 $\frac{d\lambda}{dx} = \frac{10^{6} \cos \beta}{k \cdot n \cdot f} = \frac{\lambda \cdot \cos \beta}{(\sin \alpha + \sin \beta) \cdot f}$ kde f je ohnisková délka kamery spektrometru a β je difrakční úhel.

Nejlepší, tedy nejnižší reciproké lineární disperze je dosaženo pro velké úhly *α*, *β* a velkou ohniskovou vzdálenost kamerového objektivu

Montáž Czerny-Turner

Plane Grating

ICP spektrometr s monochromátorem Czerny-Turner

Montáž Paschen-Runge

- Nejpoužívanější montáž s konkávní mřížkou.
- Výhody: pouze jedna odrazná plocha, bez optiky na průchod – výhoda ve VUV.
- Nevýhody: silný astigmatizmus

GD spektrometr s PM detekcí

ICP-OES Spectro Cirros

ICP-OES spektrometr JY Ultrace

Kombinace sekvenčního spektrometru (Czerny-Turner) a polychromátoru Paschen-Runge s fotonásobičovou detekcí pro simultánní měření na vybraných čarách. Pro měření ve vzdálenější viditelné oblasti a blízké IR (alkalické kovy) pomocná mřížka.

Osvětlovací optika monochromátoru

Mřížka echelle

- Tato mřížka tvoří přechod mezi Michelsonovou stupňovou mřížkou ("echelon") a mřížkou "echelette", která soustřeďuje světlo do úhlu, ve kterém leží jen spektrum určitého řádu.
- Rozlišovací schopnost: R=mN, m=2t ⁄/λ
 Př.: λ=500 nm, N=500, t´=0,05 mm →R=100 000

Zkřížená disperze a echelle mřížka

Echellogram

wavelength

Echellogram

Echelle spektrometr PU 7450

Spektrometr s s echelle mřížkou

Sluneční spektrum (mřížka echelle se zkříženou disperzí s druhou mřížkou)

Detektory

Historie detektorů

Citlivost fotodetektoru

 Citlivost fotodetektoru je poměr výstupní veličiny (většinou proud) k veličině záření dopadající na detektor. Z hlediska spektrálního složení záření dopadajícího na detektor se rozlišuje *integrální citlivost* S_{φe} a *monochromatická spektrální citlivost* S_{λ:}

$$S_{\Phi e} = \frac{I_{\Phi}}{\Phi_{e}} \quad [A.W^{-1}; A; W] \qquad S_{\lambda} = \frac{I_{\lambda}}{\Phi_{\lambda}} \quad [A.W^{-1}; A; W]$$

Kvantová účinnost detektoru pro danou vlnovou délku je definována jako poměr počtu emitovaných nosičů náboje na počet fotonů, které dopadly na detektor:

$$\eta_{\gamma} = \frac{N_e}{N_{h\nu}}$$

Fotokatody (vnější fotoelektrický jev)

- Multialkalické fotokadody typu Sb-Na-K-Cs (S20) – nejpoužívanější
- Monoalkalické antimonidy typu Cs-Sb
- Bialkalické antimonidy Sb-Na-K
- Pro dlouhovlnnou oblast Ag-O-Cs (S1)
- Monokrystaly polovodičů GaAs-Cs-Rb, InP-Cs-O apod.
- "Solar blind" pro UV, VUV (RbTe, CsTe) a FUV oblast spektra (KBr, CsI)

Násobiče elektronů

Fotokatody s emisí elektronů do vakua se používají především ve spojení s násobiči elektronů, i když teoretcky je vlastnost fotodetektoru dána fotokatodou, tedy ve fotonásobičích (A, B) a kanálových násobičích (C), používaných v intenzifikovaných plošných detektorech (ICCD).

Fotonásobič (PM)

Je vakuová fotonka kombinovaná se zesilovacím prvkem založeném na sekundární emisi elektronů z dynod. Proti fotonce se dosahuje lepšího poměru signál/šum a nezávislost na kmitočtu do stovek MHz. PM je schopen detekovat jednotlivé fotony (viz čítače fotonů) a pracovat v širokém rozsahu intenzity vstupního záření.

Kanálové fotonásobiče - CPM

- Channel Photo Multiplier jsou robustní detektory se semitransparentní fotokatodou napařenou na vnitřní straně vstupního sklíčka fotonásobiče
- Konstrukce CPM umožňuje detekovat každý dopadající foton, a CPM tak mají zcela výjimečnou citlivost při zachování širokého dynamického rozsahu a linearity se zesílením v řádu až 10⁹
- CPM má až 3x nižší temný proud než PMT

Fotodiody

- Fotodiody se realizují nečastěji jako PIN diody z křemíku, příp. dalších polovodičů. V polovodiči vzniká při absorpci fotonu dvojic nosičů nábojů (elektron-díra), které difundují k příslušným elektrodám. Důležitou roli hraje závislost absorpce na vlnové délce záření.
- Přednosti fotodiod:

Velký dynamický rozsah, až 11 řádů

Vynikající poměr signál/šum pro vysoké signály

Technologie výroby integrovaných obvodů v pevné fázi

Možnost integrace až milionů diod do jednoho elektronického celku

Nábojově vázané obvody (charge couple devices, CCD)

Každá z integrovaných diod generuje fotoproud, úměrný ozáření diody. Tento se integruje v kapacitách, spojených s diodami. Kapacity fungují jako analogové paměti. Akumulované náboje se postupně čtecími obvody převádí na vstup operačního zesilovače, na jehož výstupu dostáváme postupně napěťové impulzy odpovídající velikosti náboje u jednotlivých diod. Celý cyklus se opakuje 10 -100 000 x za vteřinu.

Činnost CCD detektoru

Schema pixelu CCD

Akumulace náboje

Čtení

Segmented detectors (SCD)

prof. Otruba

Plošné CCD detektory

 CCD – integrovaný obvod s vazbou nábojem (charge-coupled device) je tvořen matricí křemíkových fotodiod. Jednotlivě senzory jsou uspořádány v řadách a postupně po řadách se zpracovávají vzniklé elektrické náboje na jednotlivých senzorech. První řada se načte do paměti, pak do výstupního zesilovače a data jsou pak převedena do digitální podoby.

Plošný detektor CID

wavelength

CMOS detektory (Complementary Metal Oxide Semiconductor)

každá elementární buňka má vlastní obvody pro odvedení a měření vygenerovaného náboje. Jednotlivé CMOS buňky pak fungují víceméně nezávisle. Speciální obvody pro každou buňku jsou nutné, neboť je třeba odfiltrovat náhodný (šumový) náboj, který je jiný u každé elementární buňky.

CMOS detektory

Kanálkový násobič (microchannel plate, intensifier)

Mikrokanálkový zesilovač obrazu

