How to visualize genes and their products

Genomics Lectures

Kamil Růžička FGP CEITEC MU

Outline

- reporter genes
- promoter fusions
- visualizing proteins
- visualizing RNA
- dynamics of protein imaging: FRAP, photoactivable proteins, FLIM, FCS

Promoter activity monitoring

promoter

here can be reporter

terminator

1-10 kb prior to ATG

LacZ, GUS Luciferase GFP

Reporter genes

- LacZ, GUS
- Luciferase
- GFP

some need external substrate, some not

LacZ, GUS – rhapsody in blue

(in case of GUS – X-Gluc)

LacZ/ GUS:

worm, mouse – LacZ, plants - GUS

Luciferase

(used principle of bioluminiscence) What's difference between flurescence and luminiscence?

Luciferase

How does fluorescence work?

How does a fluorescence microscope work?

Stokes shift

How does a confocal microscope work?

What are advantages of confocal microscopy?

Live imaging

GFP discovery - Nobel Prize 2008

Osamu Shimomura Martin Chalfie Roger Tsien

Fluorescent proteins on the market (Tsien's fruits)

Excitation and emission

Multicolored fluorescent protein image (neurones)

Promoter-GFP

Promoter activity monitoring

choice of suitable reporter

- LacZ, GUS
- Luciferase
- GFP

accessibility, sensitivity, accuracy...

Promoter activity monitoring

• LacZ, GUS

- easy assay, also on sections, easy imaging
- substrate must diffuse, kills the organism
- Iuciferase
 - good quantification, very sensitive, no autophluorescence
 - substrate must diffuse, special machine, dark

• GFP

- good sensitivity, colocalization with other dyes/promoters possible, no substrate needed
- only in vivo, autophluorescence, thin transparent sample

Luminiscent mouse better than phluorescent mouse

In Vivo Comparison of Bioluminescence and Fluorescence (I.M.)

- Fluorescent signal is limited by tissue autofluorescence
- The bioluminescent signal level is ~300x lower, yet the signal to background is 160x higher

Bioluminescence

Background flux ~ 2.6 x 10³ p/s Signal flux ~ 2.8 x 10⁶ p/s Signal/background ~ 1100 Min. detectable cells ~ 900

Background flux ~ 1.2 x 10⁸ p/s · Signal flux ~ 8.3 x 10⁸ p/s · Signal/background ~ 6.7 Min. detectable cells 150,000

Left: 1 x 10⁶ HeLa-luc/PKH26 cells Right: 1 x 10⁶ HeLa-luc cells

Fluorescence

Promoter activity monitoring

ightarrow

Promoter activity monitoring

<u>Pros:</u>

- easy to clone, easy to visualize
- "always works"
- can be used in less accessible organs

<u>Cons:</u>

- limited information about gene product (mRNA, protein etc)
- needs cloning and transformation
- neglects regulatory elements (introns, UTRs etc.)

Translational GFP fusions

N-terminal fusion

promoter	here can be GFP	your gene	terminator

C-terminal fusion

		here can	
promoter	your gene	be GFP	terminator

fusion inside the coding sequence

GFP and membrane proteins

It is good to have GFP tag localized inside the cell (plants)

Expression of isoforms

Not the best option available – can you guess?

5'.

Kriechenbaumer et al 2011

Isn't this better?

Expression of isoforms

Fluorescent protein fusion

Pros:

 \bullet

Cons:

Fluorescent protein fusion

Pros:

in vivo imaging

Cons:

- not always functional
- transformation needed
- transparent material (you can sometimes fix GFP signal, however)
- sometimes GFP artifacts (tag doesn't allow proper targeting)

Why to visualize all this stuff

Nakajima et al, Nature 2001

Why to visualize all this stuff

promoter

translational

- 1 epidermis
- 2 cortex
- 3 endodermis
- 4 stele

Why to visualize all this stuff

BANG! SHR moves from stele to endodermis

Nakajima et al, Nature 2001

Protein immunolocalization

Most favorite animals: -rabbit (too many rabbits) -mouse (low volume) -goat -chicken -rat -sheep -donkey -guinea pig

2ndary: antirabbit from no-rabbit, antimouse from no-mouse, etc.

Protein immunolocalization immunolocalization - fluorescently

Protein immunolocalization immunolocalization

Fluorescent dyes conjugated to 2ndary (examples):

- FITC (obsolete)
- CY3, CY5
- Alexa (488, 568, 633)
Fluorescent Dyes and Proteins

500

www.zeiss.com/microscopy

400

400

500

600

600

700 nm

700 nm

Protein immunolocalization

Pros:

- •

Cons:

- •

Protein immunolocalization

Pros:

- no need to clone or transform or cross
- direct (if no tag used)
- allows sectioning (less accessible tissues)

Cons:

- fixed material only
- excellent antibodies only, sometimes tricky

GFP tag partially retains PIN1 in endoplasmic reticulum (-> artifact)

PIN1-GFP

anti-PIN1

Protein localization - immunogold immunolocalization - immunogold

electron microscope

Immunogold collocalization

- Pros:
- direct
- nothing can beat the resolution

Cons:

- very tricky (few labs, mainly specialized)
- huge experience for interpretation needed
- immunogold colocalization only theoretical?

Can we visualize postranslational modifications?

Also RNA can be visualized

Localization of mRNA RNA hybridization *in situ*

Visualization of mRNA RNA hybridization *in situ*

Pros

- classical technique in developmental biology
- no transgenes needed

Cons

- tedious, tricky, no success guaranteed
- only on fixed samples

For shorter RNAs (miRNA etc.):

LNA probes needed

Also mRNA can be visualized in vivo

Ash1 mRNA localized to the tip of the daughter cell

λN₂₂ system – RNA imaging in vivo

nuclear localization signal

viral RNA binding protein

Also mRNA can be visualized in vivo

Drawbacks of λN₂₂ system - we have SPINACH

blue-DNA

green-RNA

Paige et al. 2012

Other vegetables than SPINACH

Paige et al. 2012; Song et al. 2014

Transport among compartments

Alberts et al. 2008

Advanced confocal techniques

(slightly) Advanced confocal techniques

- FRAP
- photoactivatable FP
- FCS

Fluorescence Recovery After Photobleaching

region of interest (ROI)

FRAP

you can quantify fluorescence.. (ImageJ is our friend)

🕯 Image J 📃 🗖 🔀				
		cess Analyze Plugins		
	ン 🦯 ム	+ 🔨 A 🔍 🖑 🖋	Dev Stk 🔏 🕹	ð 🗡 💦 😕
Freehand selections				
		mean	min	max
	А	90.404	49	113
	С	8.556	3	8
	D	39.934	19	63

iFRAP inverse FRAP

iFRAP – dissociation of premRNA from specles

FRAP derivatives FLIP Fluorescence Loss After Photobleaching

continuous bleaching here

- bleaching process is repeated during the experiment
- for studying general protein turnovers in compartments
- is there a fraction of protein which does not leave the bright green patches?

FRAP derivatives FLAP <u>F</u>luorescence Localization after Photobleaching

 two fluorochromes on one protein- one bleached, non bleached as control

Perhaps better scheme than previous

CFP not bleached

,YFP bleached

c prebleach
d after bleach
e
f

RED=CFP-YFP

Dunn et al. 2002

FRAP - advantages

- not only proteins (also other dyes)
- tells you more than simple life imaging movie

FRAP – pitfalls

- your cells are moving
- high energy needed to bleach the ROI
 long time needed to bleach
 - can damage your material
- usually only one ROI can be observed time consuming
- for gourmets perhaps awkward (although more reliable and robust)

Photoactivable fluorescent proteins

aquaporin PIP2 undergoes lateral difussion

Photoactivable proteins

Copyright © (2005) Nature Publishing Group Nature Reviews | Molecular Cell Biology

Dronpa, Kaede, Eos – probably most popular

Photoactivable proteins

Advantages: -elegant, can be convincing

Disadvantages: -very weak signal -each material needs optimization

Remarks

- your material is 3D
- protein *de novo* synthesis in some experiments (e.g. cycloheximide stops translation)

<u>Fluorescence</u> <u>Life</u> <u>Time</u> Imaging <u>Microscopy</u>

Fluorochromes

- excitation spectra
- emission spectra
- unique lifetime

FLIM - applications

FLIM - applications

Lifetime sensitive to almost everything:

- pH
- ionic strength
- solution polarity
- other fluorochrome

Protein-protein interactions (FRET-FLIM) (other lecture)

FLIM

indeed, salt changes fluorophore life time (American cockroach glands)

Trautmann et al. PicoQuant Application note 2013

FLIM - discrimination of autofluorescence

Dovzhenko, Trautmann, PicoQuant Application note 2013

FLIM - discrimination of autofluorescence

Dovzhenko, TrautmannPicoQuant Application note 2013

- need to have experience
- need to have special module on your confocal

FCS

Fluorescence Correlation Spectroscopy

It is counted, how many times the fluorescent molecule comes through the focal plane.

Autocorrelation analysis: the way how to discriminate the diffusions speeds of particles.

Schwille und Haustein

FCS (FCCS) fluorescence cross-correlation spectroscopy

$$G_{CC}(\tau) = \frac{\langle I_A(t) \cdot I_B(t+\tau) \rangle}{\langle I_A(t) \rangle \langle I_B(t) \rangle} - 1$$

control membrane bound GFP and RFP (crosscorrelation curve)

free GFP and RFP

FCCS

control membrane bound GFP and RFP (crosscorrelation curve)

channel crosstalk threshold

1.014

control membrane bound GFP and RFP (crosscorrelation curve)

1.012 С 1.010 -1.008 G(t) 1.006 1.004 1.002 -Res x10³ 1.000 1.0 -1.0 0.1 0.001 0.01 τ[s]

receptor with two labels

channel crosstalk threshold

receptor with two labels

the crosscorelation curve is above threshold -> EGFR protein dimerizes

Liu et al., 2007

special confocal module and objectives needed

interpretation tricky

Literature

- Paige et al., RNA Mimics of Green Fluorescent Protein, Science 333, 642-646, 2011 (SPINACH and other vegetables)
- <u>https://www.micro-shop.zeiss.com/index.php?s=452278238ae52c&l=en&p=de&f=f&a=d</u> (comprehensive and broad list of phluorochromes)
- <u>http://www.illuminatedcell.com/</u> nicely done pages about plant cell imaging
- Ishikawa-Ankerhold et. al. Advanced Fluorescence Microscopy Techniques FRAP, FLIP, FLAP, FRET and FLIM, Molecules 2012, 17, 4047-4132
- Sambrook & Russell Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press; 3rd edition (January 15, 2001), 13.5 pounds weight
- Ctirad Hofr Pokročilé biofyzikální metody v experimentální biologii (přednáška)