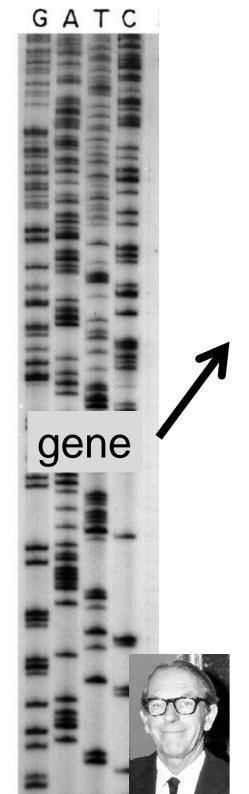
CG020 Genomika Bi7201 Základy genomiky

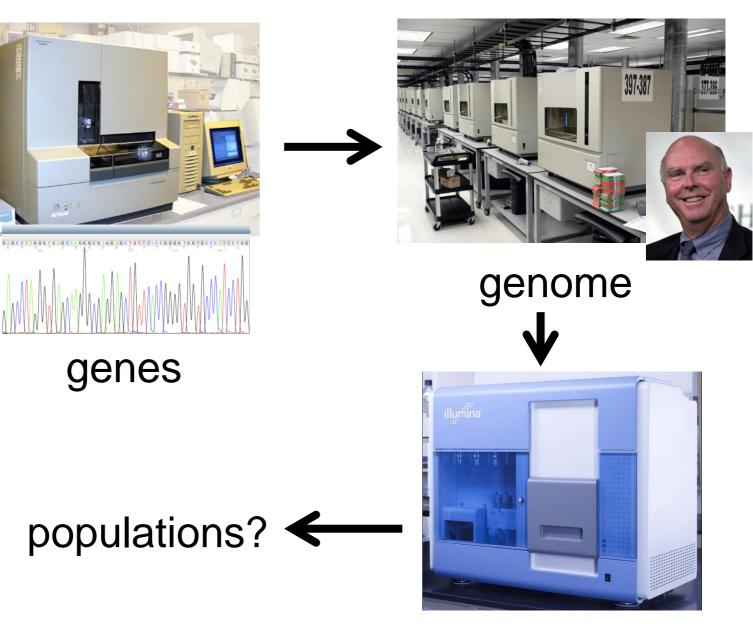
High throughput approaches Systems biology

Kamil Růžička

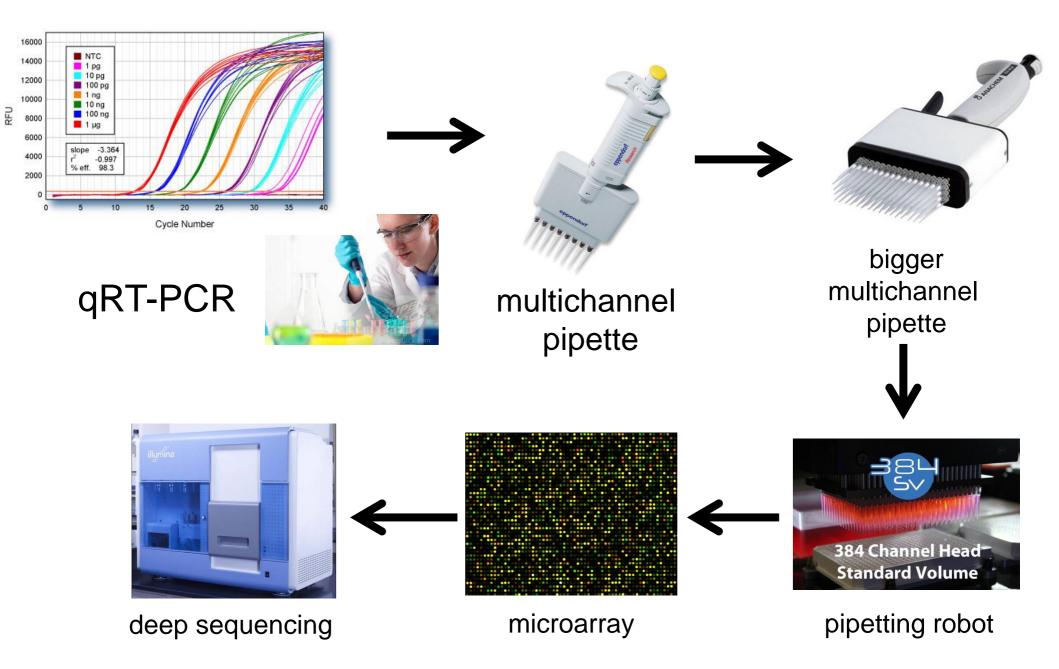
Funkční genomika a proteomika rostlin,


Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut (CEITEC), Masarykova univerzita, Brno kamil.ruzicka@ceitec.muni.cz, www.ceitec.muni.cz

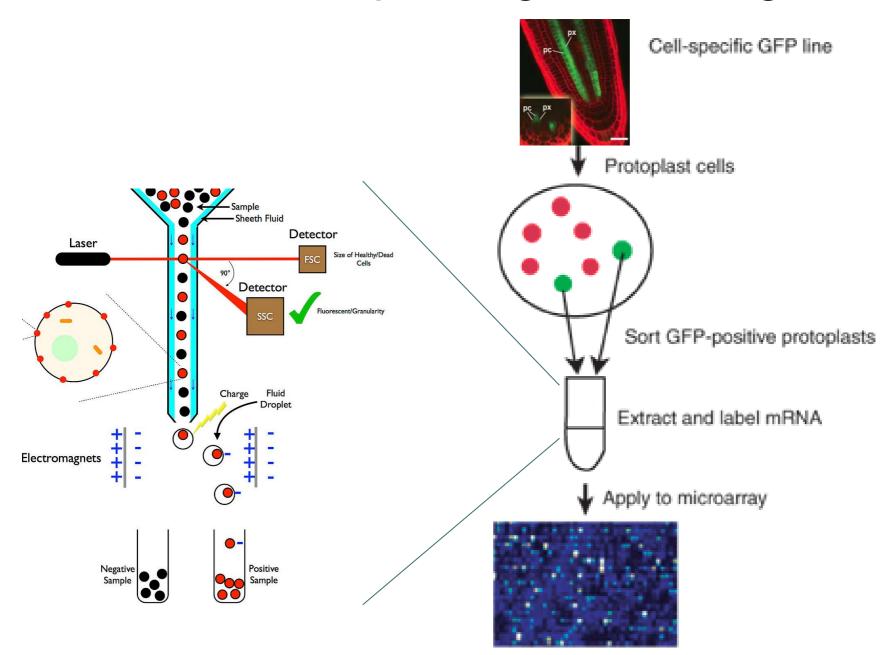
Přehled


- High throughput biology
 - Automation
 - Omics
 - Transcriptomics and high throughput transcriptomics
 - High throughput interactomics and how to read it
 - High throughput of anything
 - 1000(+1) genomes, GWAS
 - ENCODE
- Little about Systems biology
 - Omics
 - Holism and modules
 - Gene regulation in E. coli
 - Negative autoregulatory loops
 - Robustness of negative autoregulatory networks
 - Positive autoregulatory networks

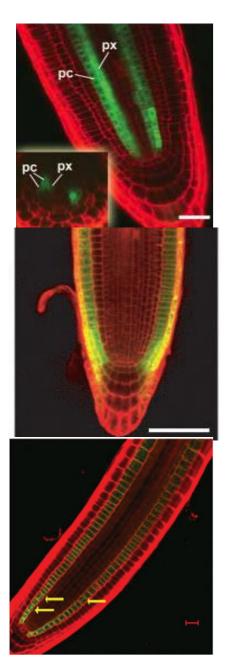
Examples of automation in human history

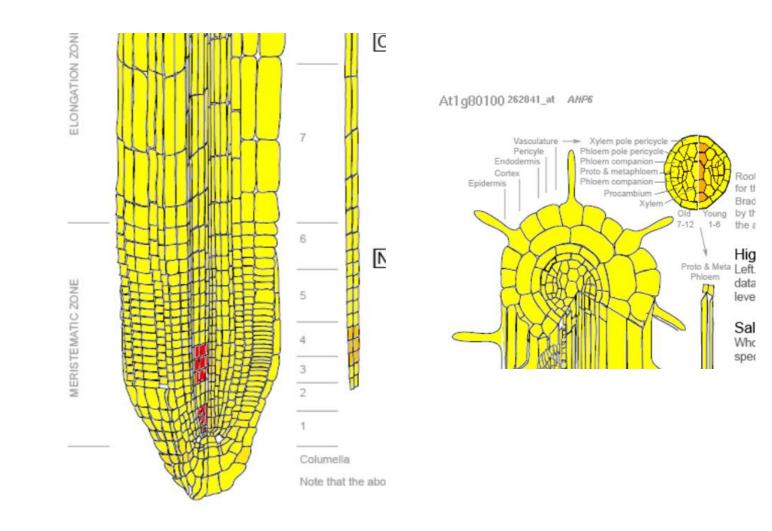


High throughput sequencing



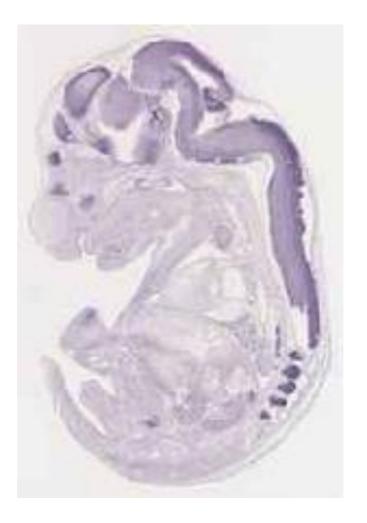
genomes


Automation in transcriptomics

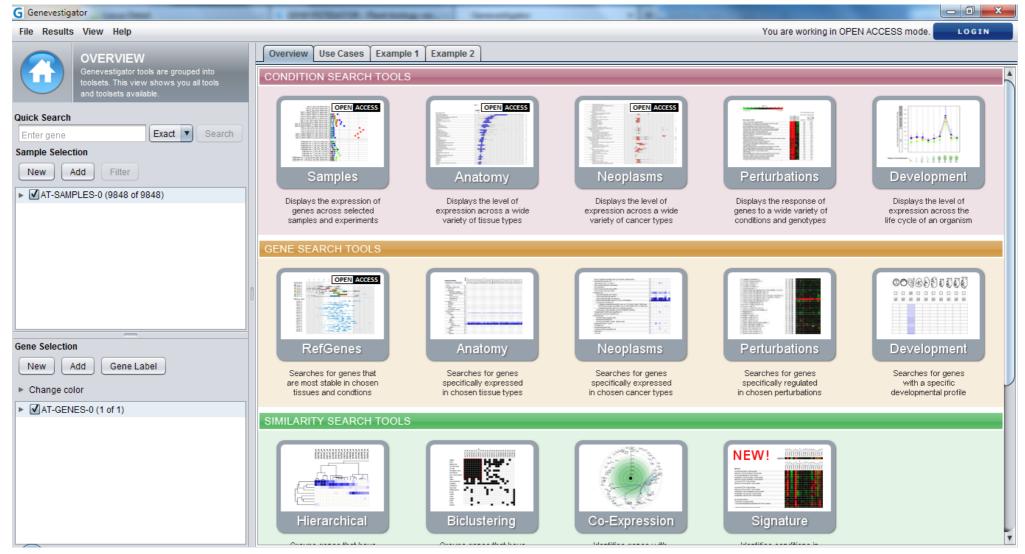


Protoplasting/cell sorting

eFP browser


http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi

FI(2)D gene in Drosophila embryos


insitu.fluitfly.org

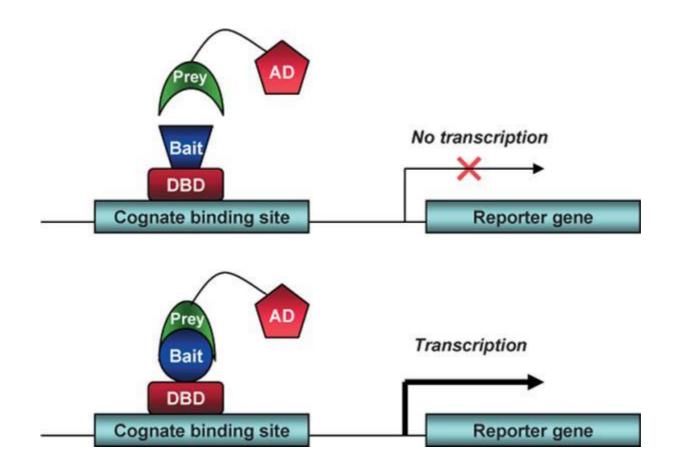
KIAA1841 in mouse expressed in neurons

emouseatlas.org

Genevestigator – check your gene's transcriptome networks

Arabidopsis and also other species for academic users free

Database of protein families in plants


Species 3	Tools	> Info	> Help	Contact Us	
					📃 phytozomel
			Hypothetical Viridiplanta	e gene	
			Cluster 38695089. 139 men	nbers:	
Mes Rco Lus P	Ptr Mtr Pvu Gma	Csa Ppe Mdo Eve Ath	Alv Cru Bra Tha Cpa Gra Tca (Csi Ccl Far Vvi Stu Slv Mau	Aco Sbi Zma Sit Pvi Osa Bdi Ppa
5 4 6 8	8 2 9 9	2 3 3 2 3	3 3 3 4 4 4 4	3 2 6 5 3 4 3	2 4 3 4 10 4 4 1
Classification ?	Find related	l families 📔 Alig	n family members Get	Data 🛛 Display options	,)
nclassified					
Iclassified					
Genes in this far	nily Euno	tional Annotation	Multiple Sequence Alignmer	nt ? Family History	
Sonoo in ano la	inty Func	donar / uniotadon	Induspie coquence / agrinter	i anny motory	
1 10 1175 011					
ownload the HTML]	[show all merr	ibersj			
ultiple sequence all	ignment for Phyt	cozome family 386950	89 (founding members only)		
:o: 45999.m000017	MPPCT			CNM-GEAGAFEMNDEWWY	
a: Pp1s79 126V6.1	MRRCL	MLTGGOFYDVLC			IAMPPLIFEIIAFNNPYTMNNR-LIAA
a: LOC Os01q58860.1		MITGSENVOUVE			YAVPVLIFDMVSTNNVYKMNGR-LIAA
di: Bradi2q52640.1		MIIGSEVIQVVE			
					YAVPVLIFHMVSTNDPYAMSGR-LIAA
na: GRMZM5G859099_	101	MI PGSAVYHVVE			YAVPVLIFHMVSTNDPYHMNER-LIAA
i: Sb03g037350.1		MIPGSAVYHVVE	AMAPLYTAAVLGYASVR		
i: Pavirv00058255m		MIPGSAVYHVVE	AMAPLYTAAVLGYASVR	IL <mark>K</mark> A F – S DE QC <mark>A G</mark> INHF VA L Y	YAV <mark>P</mark> VLIFHMVST <mark>NDPYHMNER</mark> -LIAA
t: Si003879m		MI PGSAVYHVVE	AMAPLYTAAVLGYASVR	IL <mark>K</mark> AF – S <mark>DE QC</mark> A <mark>G</mark> INHF VAL Y	YAV <mark>P</mark> VLIFHMVSS <mark>NDPY</mark> HMNE <mark>R</mark> -LIAA
i: Pavirv00041833m		MI PGSAVYHVVE	AMAPLYTAAVL GYASVR	IL <mark>K</mark> AF – S <mark>DE QC</mark> A <mark>G</mark> INHF VAL Y	YAV <mark>P</mark> VLIFHMVSTN <mark>DPY</mark> HMNE <mark>R</mark> -LIAA
a: evm.model.supercont	tig 127.48	MIGIKDLYCVLT	AVVPLYVTMFLAYASVK	IWNIF-SPDQCAGIN R FVAII	LAV <mark>PLLSFEFISRINPYRMNLL-</mark> FLAA
i: GSVIVT01031663001		MISIKDLYGVLS	AVVPLYVTMFLAYASVKW	WNVF-SPDOCAGINRFVAIE	FAI <mark>PLLSFEVISRINPYKMDFL-</mark> FIAA
: Potri.014G146800.1		MISIEDLYGVLC	AVVPLYVTMFLAYASVK		FAVPLLSMEFISRINPYKMDLL-FMAA
a: Gorai.011G156600.1		MIGIKDLYSWLT			FAVPLLS FE FVS RIN PY KM DLL - FLAA
a: Thecc1EG020308t1		MICIKDI VONIT	AVVPLYVIMFLAYASVK		FAVFLLSFEFVSRINFIKMDLL-FLAA
a: Thecc 1EG0203061					TVPLLSFLFVSKINPIKMDLL-FLAA TVPVLSFHFISQNNPYKMDTM-FIIA
u: Carubv10020056m		MITGNEFYKVMC	AMT <mark>PLYFAMFVAYG</mark> SV <mark>K</mark> M		FAV <mark>PILSFHFISQNNPYKMDTM-FILA</mark>
y: 895597		MITGNEFYTVMC	AMAPLYFAMFVAY <mark>G</mark> SV <mark>K</mark> M		
h: AT1G77110.1		MITGNEFYTVMC	AMAPLYFAMFVAY <mark>G</mark> SV <mark>K</mark> V		FAVPVLSFHFISQNNPYKMDTM-FILA
a: Thhalv10018345m		MITGSEFYKVMC	AMT <mark>PLYFAMFVAYGSV</mark> KV	W <mark>K</mark> IF-TAEQCSGIN <mark>R</mark> FVSVE	
a: Bra015694		MITGSEFYKVMC	– – – – A MA <mark>P</mark> L Y FAM F V A Y <mark>G S</mark> V <mark>K</mark> V	W <mark>K</mark> IF-TA <mark>EQC</mark> S <mark>GINR</mark> FVSVE	FAVPILSFHFISQNN <mark>PYKMD</mark> MM-FIIA
gu: mgv1a004829m		MISTNDFYNVMC	SMVPLYFAMLVAYASVK	IW GIF - S PEQCS GINR FVAVE	FAV <mark>PVLSFHFISQNNPYQMDTK</mark> -FILA
ma: Glyma14g27900.1		MITGEDLYKVMC	AMVPLYFAMLVAYGSVKW	CKMF-TPDOCSGINRFVAVE	FAV <mark>PVLSFHFISMNNPYOMDAR</mark> -FIVA
man enymaninger out. I	I				

great for conservation of splicing events etc.

http://www.phytozome.net/

Yeast two-hybrid (Y2H) summary

protein-protein interaction hunt

High throughput yeast two hybrid for various organisms

(2009)

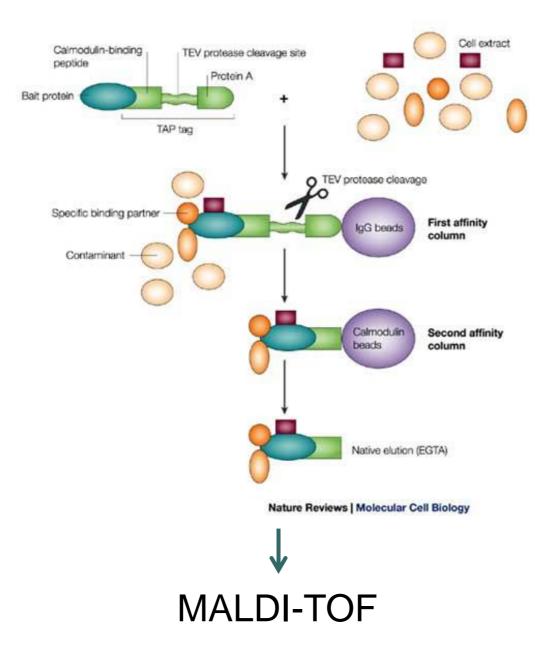
articles

A comprehensive analysis of protein–protein interactions in *Saccharomyces cerevisiae*

(2000)

Peter Uetz*†, Loic Giot*‡, Gerard Cagney†, Traci A. Mansfield‡, Richard S. Judson‡, James R. Knight‡, Daniel Lockshon†, Vaibhav Narayan‡, Maithreyan Srinivasan‡, Pascale Pochart‡, Alia Qureshi-Emili†§, Ying Li‡, Brian Godwin‡, Diana Conover†§, Theodore Kalbfleisch‡, Govindan Vijayadamodar‡, Meijia Yang‡, Mark Johnston†||, Stanley Fields†§ & Jonathan M. Rothberg‡

Evidence for Network Evolution in an *Arabidopsis* Interactome Map


Arabidopsis Interactome Mapping Consortium*†

A Protein Interaction Map of Drosophila melanogaster

L. Giot, ^{1*} J. S. Bader, ^{1*}[†] C. Brouwer, ^{1*} A. Chaudhuri, ^{1*} B. Kuang, ¹ Y. Li, ¹ Y. L. Hao, ¹ C. E. Ooi, ¹ B. Godwin, ¹ E. Vitols, ¹ G. Vijayadamodar, ¹ P. Pochart, ¹ H. Machineni, ¹ M. Welsh, ¹ Y. Kong, ¹ B. Zerhusen, ¹ R. Malcolm, ¹ Z. Varrone, ¹ A. Collis, ¹ M. Minto, ¹ S. Burgess, ¹ L. McDaniel, ¹ E. Stimpson, ¹ F. Spriggs, ¹ J. Williams, ¹ K. Neurath, ¹ N. Ioime, ¹ M. Agee, ¹ E. Voss, ¹ [•]. Furtak, ¹ R. Renzulli, ¹ N. Aanensen, ¹ S. Carrolla, ¹ ^I lickelhaupt, ¹ Y. Lazovatsky, ¹ A. DaSilva, ¹ J. Zhong, ² ^I tanyon, ² R. L. Finley Jr., ² K. P. White, ³ M. Braverman, ¹ ^I rvie, ¹ S. Gold, ¹ M. Leach, ¹ J. Knight, ¹ R. A. Shimkets, ¹ M. P. McKenna, ¹ J. Chant, ¹[‡] J. M. Rothberg¹

(2005)

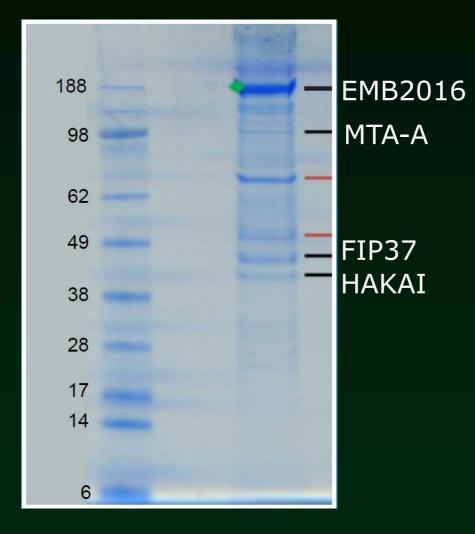
TAP purification affinity purification interaction hunt

So, far high throughput affinity purification approach slightly less popular

Functional organization of the yeast(2002)proteome by systematic analysis ofprotein complexes

Anne-Claude Gavin*, Markus Bösche*, Roland Krause*, Paola Grandi*, Martina Marzioch*, Andreas Bauer*, Jörg Schultz*, Jens M. Rick*, Anne-Marie Michon*, Cristina-Maria Cruciat*, Marita Remor*, Christian Höfert*, Malgorzata Schelder*, Miro Brajenovic*, Heinz Ruffner*, Alejandro Merino*, Karin Klein*, Manuela Hudak*, David Dickson*, Tatjana Rudi*, Volker Gnau*, Angela Bauch*, Sonja Bastuck*, Bettina Huhse*, Christina Leutwein*, Marie-Anne Heurtier*, Richard R. Copley†, Angela Edelmann*, Erich Querfurth*, Vladimir Rybin*, Gerard Drewes*, Manfred Raida*, Tewis Bouwmeester*, Peer Bork†, Bertrand Seraphin†‡, Bernhard Kuster*, Gitte Neubauer* & Giulio Superti-Furga*†

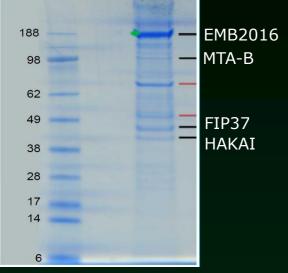
A Protein Complex Network of *Drosophila melanogaster*

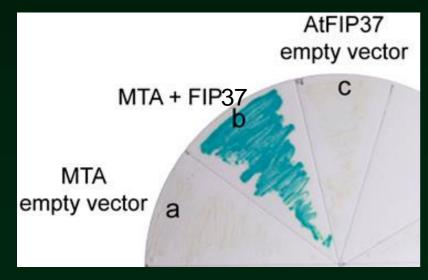

(2011)

K.G. Guruharsha,^{1,4} Jean-François Rual,^{1,4} Bo Zhai,^{1,4} Julian Mintseris,^{1,4} Pujita Vaidya,¹ Namita Vaidya,¹ Chapman Beekman,¹ Christina Wong,¹ David Y. Rhee,¹ Odise Cenaj,¹ Emily McKillip,¹ Saumini Shah,¹ Mark Stapleton,² Kenneth H. Wan,² Charles Yu,² Bayan Parsa,² Joseph W. Carlson,² Xiao Chen,² Bhaveen Kapadia,² K. VijayRaghavan,³ Steven P. Gygi,¹ Susan E. Celniker,² Robert A. Obar,^{1,*} and Spyros Artavanis-Tsakonas^{1,*}

thebiogrid.org - highly relevant for searching for interactors, but look also elsewhere!

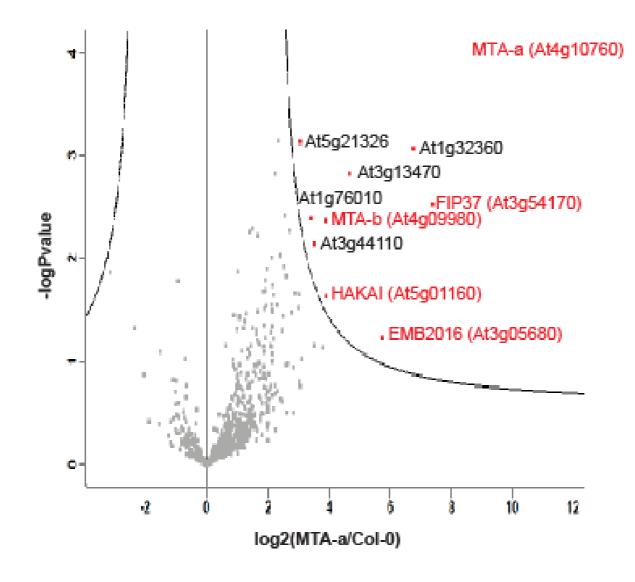
Interactors of EMB2016


use databases if you have a conserved complex

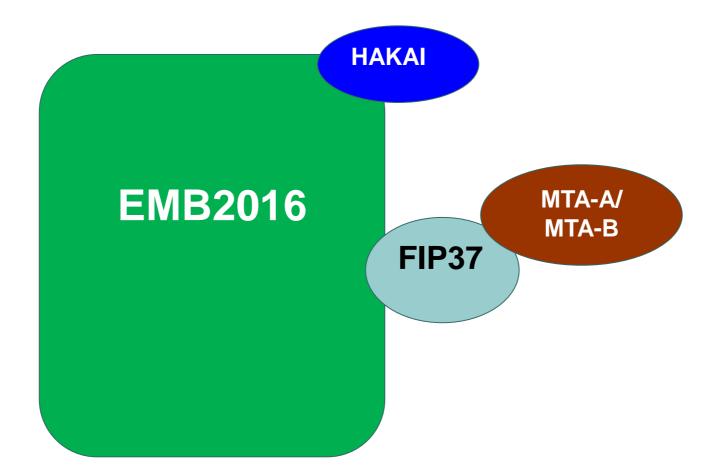

tandem affinity purification

Geert de Jaeger lab

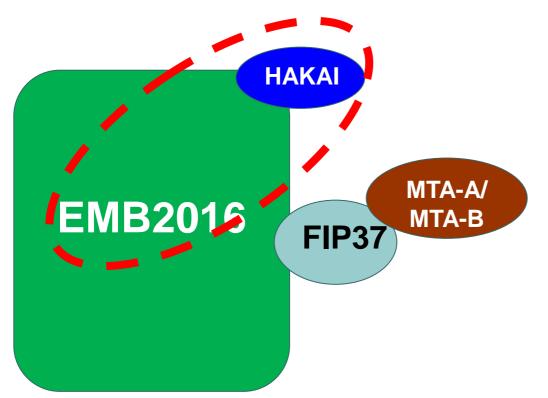
EMB2016 interactors – RNA methylase


RING finger/HAKAI was also shown to associate with splicing factors (human)

MTA-A – homolog of MTA

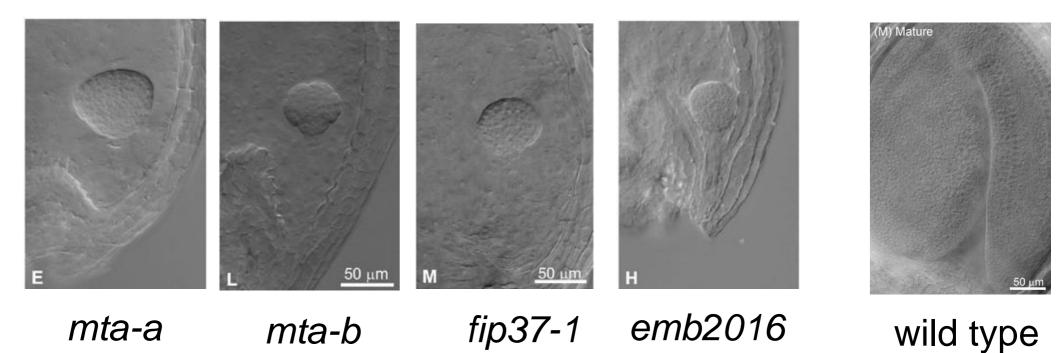

Zhong et al. 2009

All guys back here when using MTA-A as bait

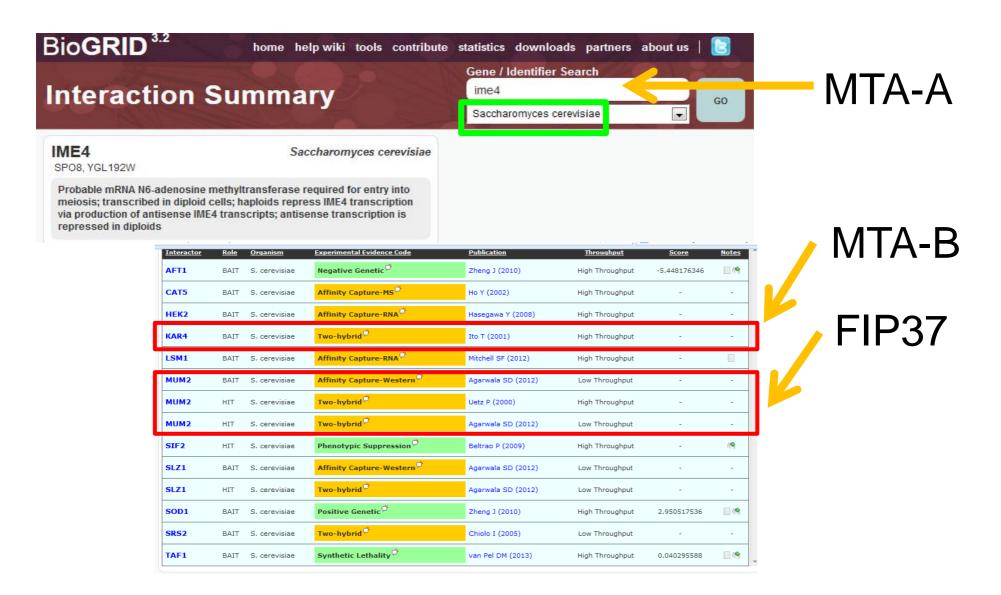


(Immunoprecipitation)

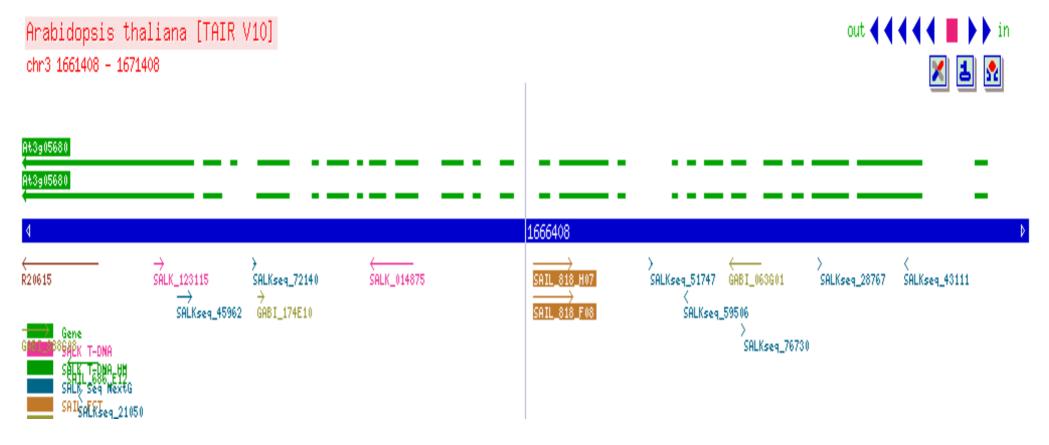
Inferred protein complex


Inferred protein complex

Flybase: EMB2016 interacts with HAKAI (no data on Biogrid)

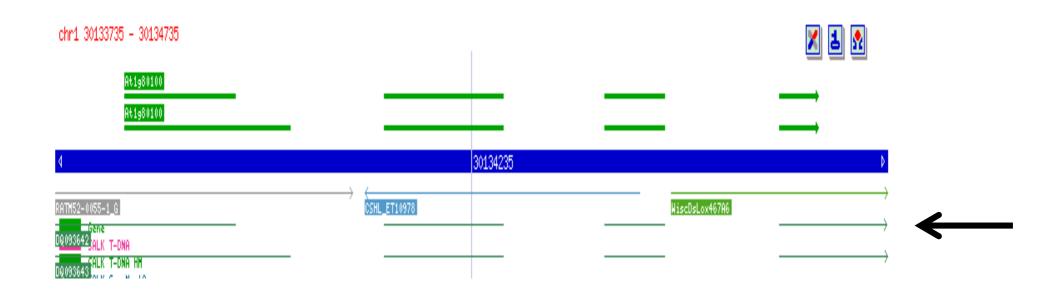

Summary of Physical Interactions					
RNA-protein					
Interacting group	Assay	References			
vir - stau	- stau anti bait coimmunoprecipitation, partial dna sequence identification by hybridization				
protein-protein					
Interacting group	Assay	References			
vir - CG7358	experimental knowledge based	(Guruharsha et al., 2011)			
vir - Hakai	experimental knowledge based	(Guruharsha et al., 2011)			
vir - fl(2)d	experimental knowledge based	(Guruharsha et al., 2011)			

Assumption

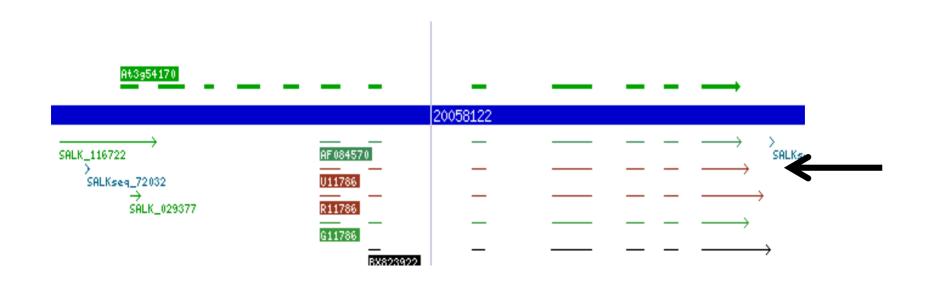


all of them: even very strong knockdowns viable -> MTA-A and MTA-B probably <u>necessary both</u> -> <u>MTA-A and -B probably interact</u>

MTA-A and –B yeast homologs interact, FIP37 as well

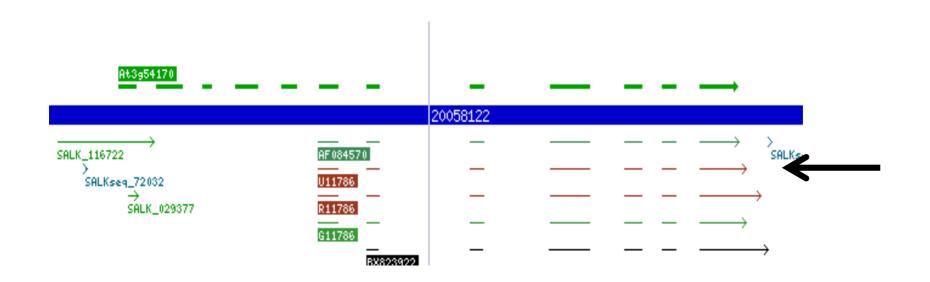


You can order your mutant from the stock center


the same for Drosophila, mouse, worm etc.

You can order your cDNA clone from the stock center

the same for yeast, Drosophila, mouse etc.


You can order your cDNA clone from the stock center

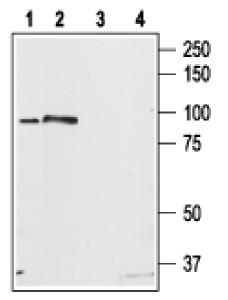
the same for Drosophila, mouse, worm etc.

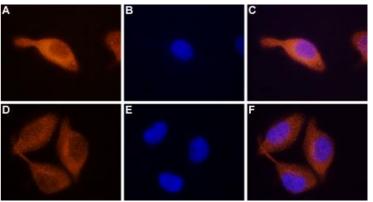
You need probably to clone this one yourself.

You can order your cDNA clone from the stock center

even basic fusions (GFP, myc, TAP etc.) often ready for you

You can order your RNAi/amiRNA


- even cloned in binary vector
- just google...


Commercial service as well.

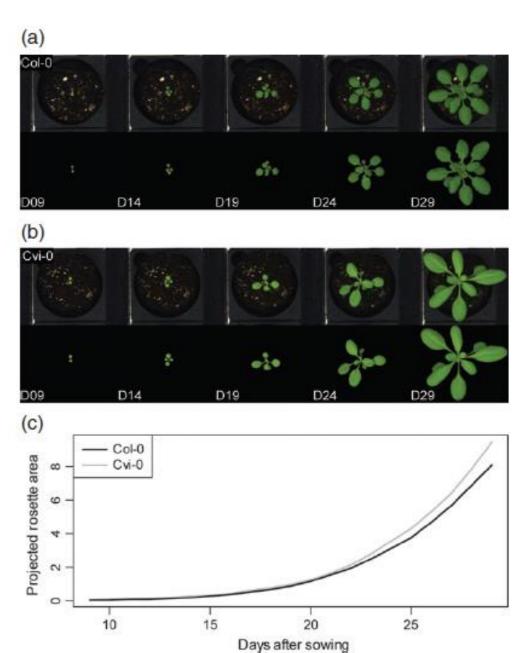
You can order antibodies against your protein

googling human proteins: http://www.scbt.com/ www.acris-antibodies.com/ etc.

 even get western and immunocytochemistry in advance

Arabidopsis so far lagging – agrisera.com perhaps little bit. Rather commercial service.

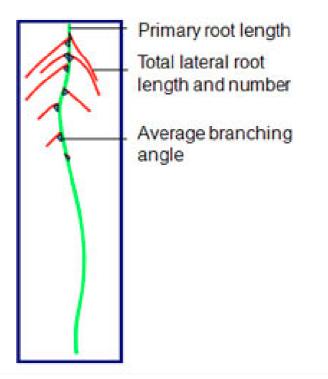
Phenoscope Start YES Mode #3 (a) Willichter NO Weighing Management Mode # YES database Or Mode #2, NO Watering Imaging-Image Server Weighing 'One step' NO Plug = 735 YES


<u>PHENOSCOPE: an automated large-</u> scale phenotyping platform

Thisne et al. 2013

End

Phenoscope



Phenoscope

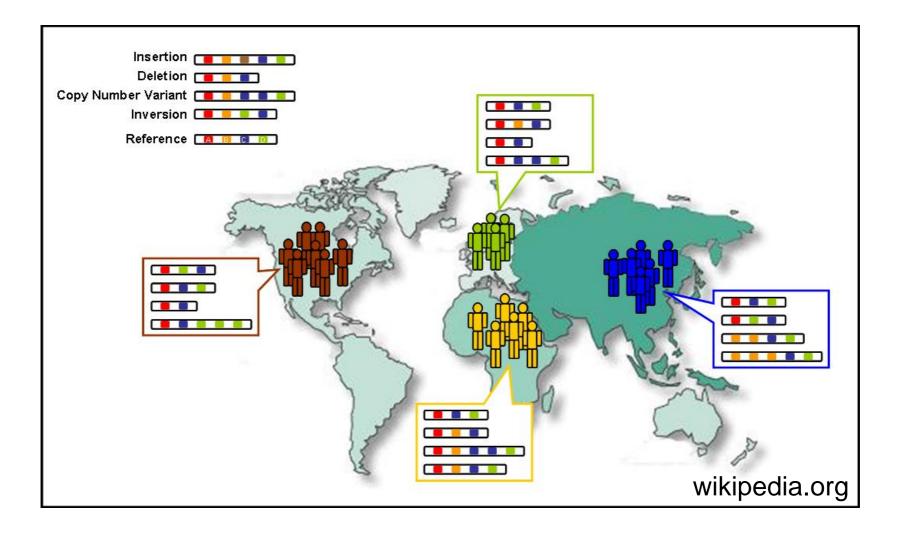
- leaf area (camera)
- photosynthesis (spectra)
- weight
- temperature (thermo camera)
- in a dynamic manner
- •
- various ecotypes only, so far
- commercially promising

Phenoscope – perhaps in future adaptation on other tissues certainly possible

GrowScreen-Root software

Check your phenotype online

seedgenes.org


- database of plant embryonic mutants (in-dept)

http://rarge.psc.riken.jp/phenome/

RIKEN Arabidopsis Phenome Information
 Database (kind of attempt on adult plant)

1000 genomes

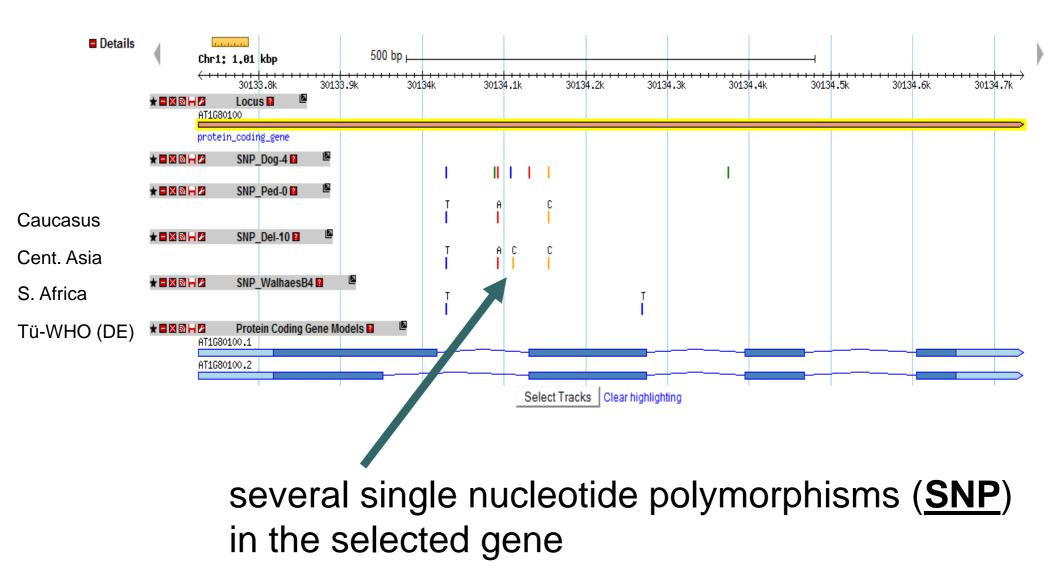
1000 human genomes over the world

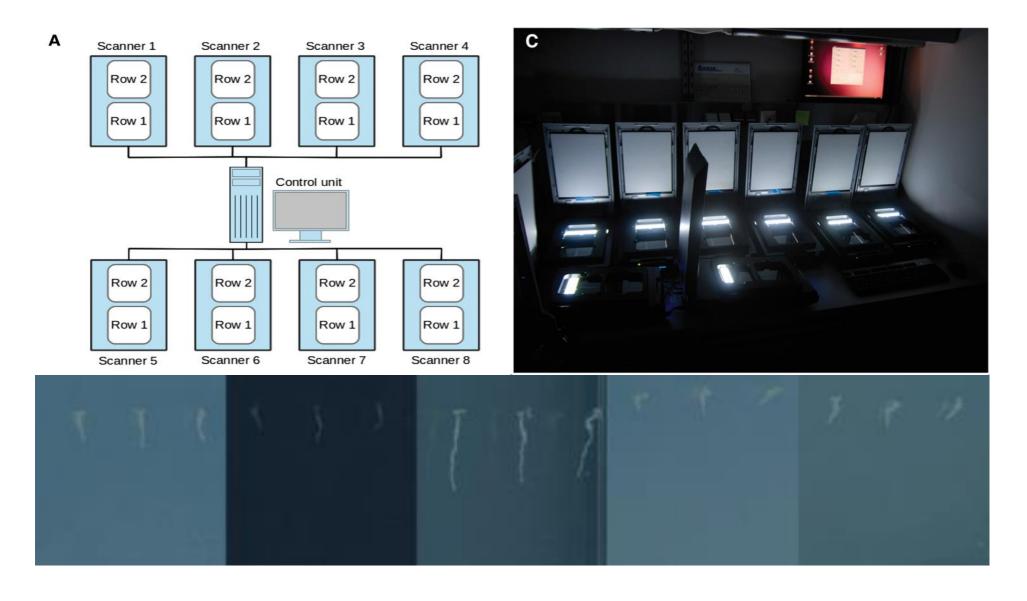
1001 genomes - Arabidopsis

http://1001genomes.org/

in both cases, much more lines already sequenced

How the ecotypes are collected

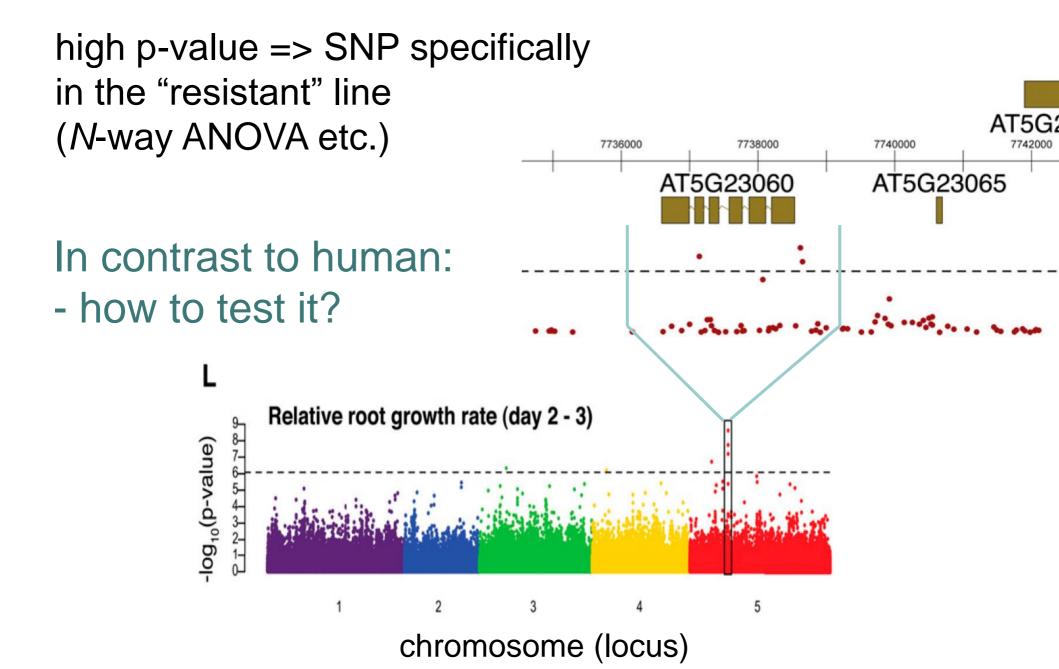


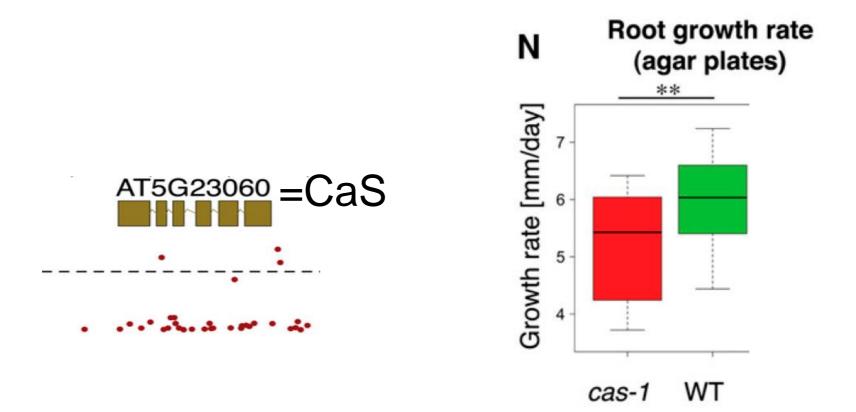


Olivier Loudet web page

1001 genomes user interface

Slovak et al. 2014, Busch lab, Vienna

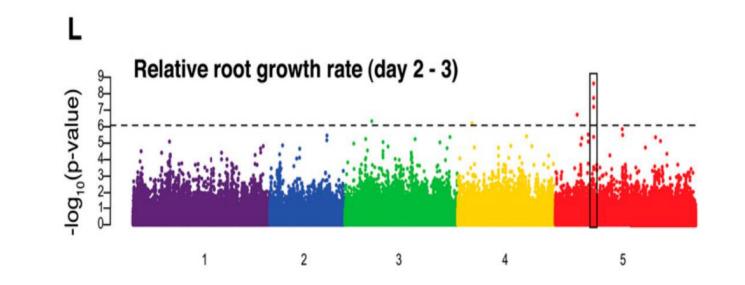

Trait No.	Trait	
1	Total length	 163 accessions (ecotypes),
2	Euclidian length	
3	Root tortuosity	several replicates (8 x 3)
4	Root growth rate	Several replicates (0 × 3)
5	Relative root growth rate	
6	Root angle	
7	Root direction index	\bullet
8	Root horizontal index	corrobing for those different
9	Root vertical index	searching for those different
10	Root linearity	•
	10000000000000000000000000 *	(say how different they might be!)
11	Average root width	(Say now underent they might be:)
12	Root width 20	
13	Root width 40	
14	Root width 60	
15	Root width 80	
16	Root width 100	

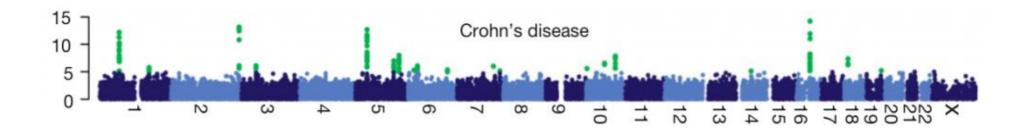

Slovak et al. 2014

Trait No.	Trait	
1	Total length	163 acces
2 3	Euclidian length	
	Root tortuosity	several
4	Root growth rate	Several
5	Relative root growth rate	
6	Root angle	
7	Root direction index	
8	Root horizontal index	searching
9	Root vertical index	scarting
10	Root linearity	
11	Average root width	(e. g. root
12	Root width 20	· •
13	Root width 40	resistant to e
14	Root width 60	
15	Root width 80	
16	Root width 100	

163 accessions (ecotypes), several replicates (8 x 3) searching for those different (e. g. root growth, slim root, sistant to exogenous treatment)

Slovak et al. 2014





cas-1 mutant has indeed shorter root

Slovak et al. 2014

Genome wide association studies (GWAS) Manhattan plot by human

The ENCODE project The Encyclopedia of DNA Elements

Is really only ~1 % human genome functional?

1 % = gene coding regions

September 2012

ENCODE – think big

- 80 million dollars (1/2 yearly GAČR budget)
- 1,640 data sets
- 147 cell types
- Nature (6), Genome Biology (18), Genome Research (6 papers)

The ENCODE project

Mainly cancer cells, lymphocytes etc.

<u>RNA transcribed regions:</u> RNA-seq, CAGE, RNA-PET and manual annotation

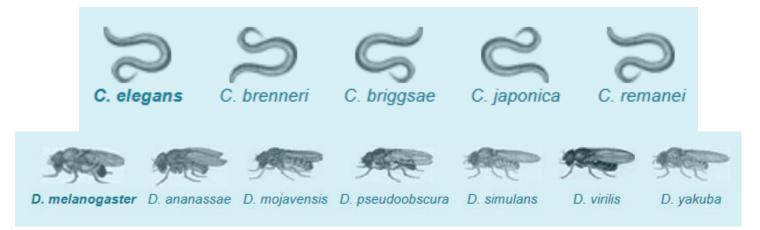
Protein-coding regions: mass spectrometry

Transcription-factor-binding sites: ChIP-seq, DNase-seq

<u>Chromatin structure:</u> DNase-seq, FAIRE-seq, histone ChIP-seq and MNase-seq

DNA methylation sites: RRBS assay

ENCODE - summary


~80 % genome associated with biochemical function:

- enhancers, promoters
- transcribed to non-coding RNA
- 75 % genome transcribed, at least little bit
- number of recognition sequences of DNA binding proteins doubled

E. g. 75 % meaningful number?

ModENCODE on the way

Drosophila tissue sources: Adult eclosion + several days Adult female Adult male Embryos 0-1, 0-2, 0-12, 10-12 hr etc Larvae in various instars Pupae in various stages Mated males or females etc.

http://www.modencode.org/

Question: where do you see the limits of high throughput biology?

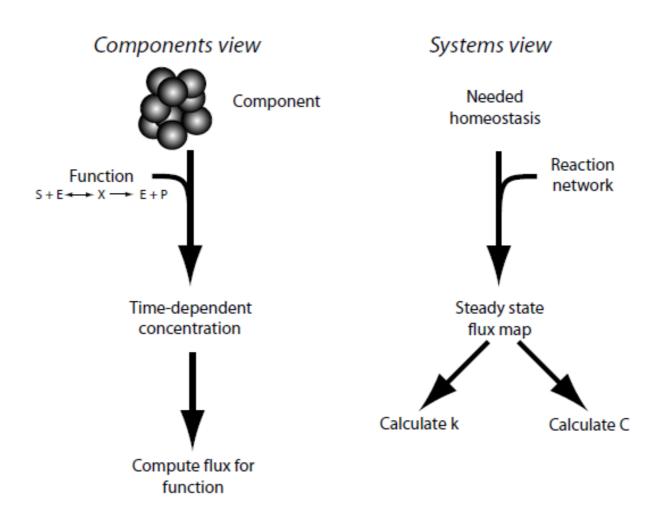
Cons

- sometimes low quality data or artifacts
- occasionally data missing
- biological material is quite complex
- what to do with so many data?
- where is the idea?

What is systems biology

- next name for something between biology and chemistry? biochemistry -> proteomics molecular biology -> (functional) genomics
- a real new concept?

"Multidimensional biology"


- Genomics
- Epigenomics
- Transcriptomics
- Epitranscriptomics
- Translatomics / Proteomics
- Metabolomics
- o Interactomics
- Fluxomics
- NeuroElectroDynamics
- Phenomics
- Biomics

Systems theory

Forget about *reductionism*, think *holistically*.

 δ λος [hol'-os] – greek. all, the whole, entire, complete

Reductionism vs. holism

Ludwig von Bertalanffy (1901-1972)

opyrighted material; sample page 22 of 22

\$15.95

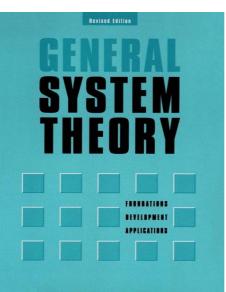
GENERAL SYSTEM THEORY

Gathered here are Ludwig von Bertalanffy's writings on general system theory, selected and edited to show the evolution of systems theory and to present its applications to problem solving. An attempt to formulate common laws that apply to virtually every scientific field, this conceptual approach has had a profound impact on such widely diverse disciplines as biology, economics, psychology, and demography.

A German-Canadian biologist and philosopher, Ludwig von Bertalanffy (1901–1972) was the creator and chief exponent of general system theory. He is the author of ten books including *Robots, Men, and Minds* and *Modern Theories of Development,* both which have been published in several languages.

150N 0-807A-0153-

Also available from George Braziller, Inc.

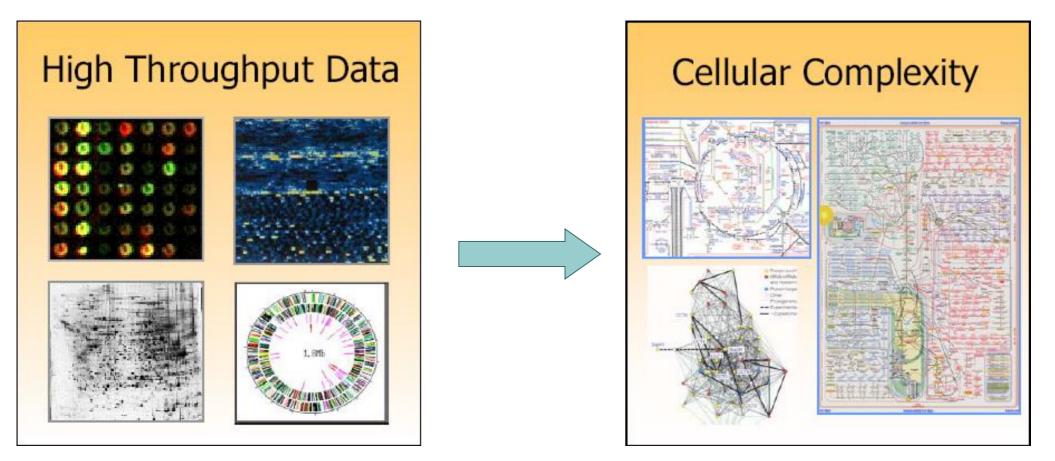

The Systems View of the World ISBN 0-8076-0636-7, pb, \$7.95

The Relevance of General Systems Theory ISBN 0-8076-0659-6, hb, \$8.95

Hierarchy Theory ISBN 0-8076-0674-X, hb, \$7.95

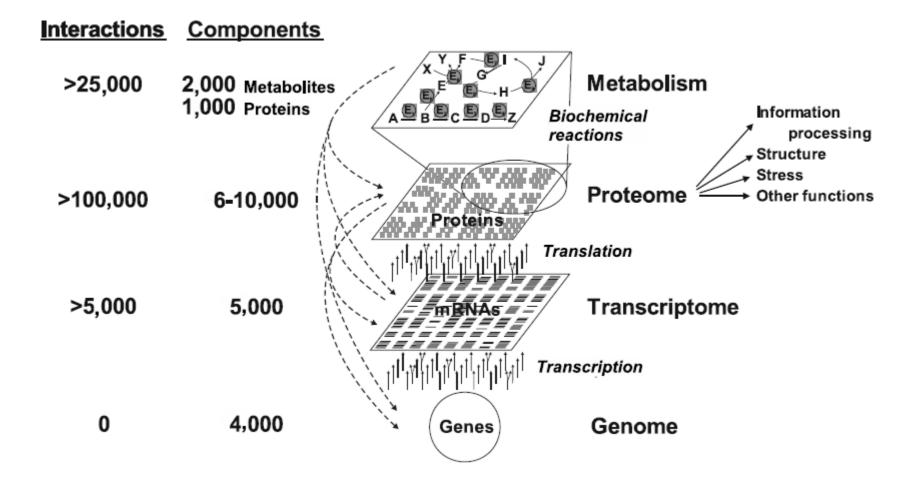
GEORGE BRAZILLER, INC. 171 Madison Avenue New York, NY 10016

ISBN 0-8076-0453-4

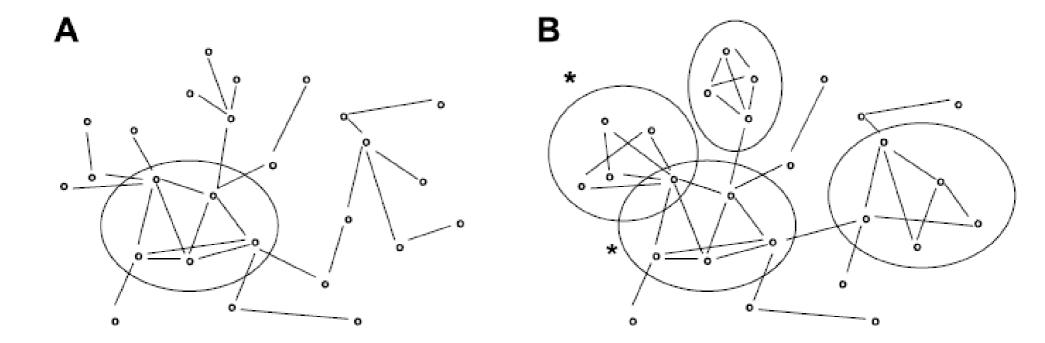


Ludwig von Bertalanffy

Copyrighted material; sample page 3 of 22


4	Advances in General System Theory	87
	Approaches and Aims in Systems Science	87
	Methods in General Systems Research	94
	Advances of General System Theory	99
5	The Organism Considered as Physical System	
	The Organism as Open System	120
	General Characteristics of Open	
	Chemical Systems	
	Equifinality	
	Biological Applications	134
6	The Model of Open System	139
	The Living Machine and Its Limitations	139
	Some Characteristics of Open Systems	
	Open Systems in Biology	145
	Open Systems and Cybernetics	
	Unsolved Problems	151
	Conclusion	153
7		
	Open Systems and Steady States	156
	Feedback and Homeostasis	160
	Allometry and the Surface Rule	163
	Theory of Animal Growth	171
	Summary	184
8	The System Concept in the Sciences of Man	186
	The Organismic Revolution	
	The Image of Man in Contemporary Thought	
	System-Theoretical Re-orientation	
	Systems in the Social Sciences	194
	A System-Theoretical Concept of History	
	The Future in System-Theoretical Aspect	203
9	General System Theory in Psychology and Psychiatry	205
	The Quandary of Modern Psychology	205
	System Concepts in Psychopathology	
	Conclusion	220
10	The Relativity of Categories	222
	The Whorfian Hypothesis	222
	The Biological Relativity of Categories	. 227
	(27. 1 %)	

Omics-revolution shifts paradigm to large systems



- Integrative bioinformatics
- (Network) modeling

E. coli genome and proteome is small

Reductionism within holism

Lets e.g. assume that transcription and translation is one module.

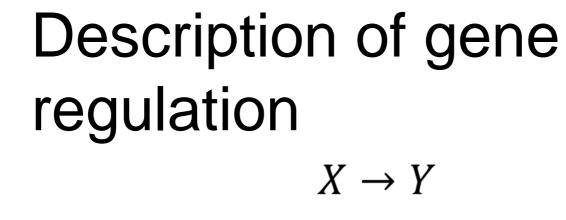
E. coli

Binding of a small molecule (a signal) to a transcription factor, causing a change in transcription factor activity	~1 msec
Binding of active transcription factor to its DNA site	~1 sec
Transcription + translation of the gene	~5 min
Timescale for 50% change in concentration of the translated protein	~1 h (one cell generation)
(stable proteins)	
Generation time	20 min

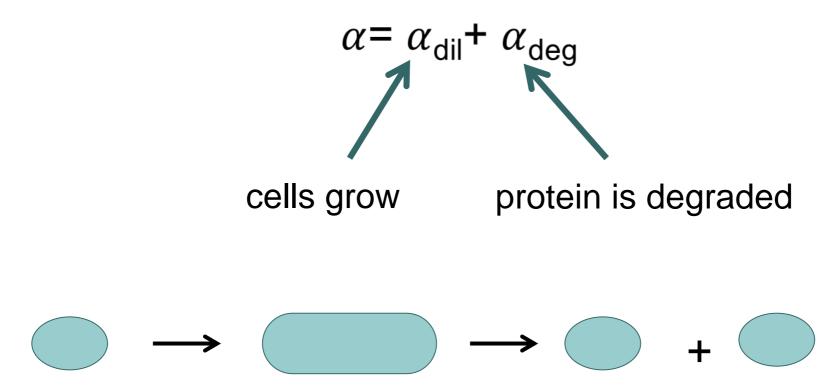
Transcription factor X regulates gene Y:

$X \to Y$

 $(X \rightarrow transcription \rightarrow translation \rightarrow Y)$


 $X \to Y$

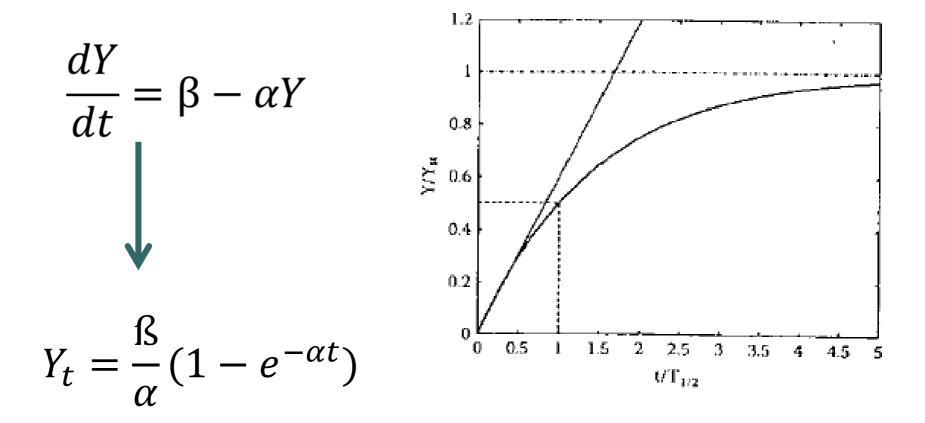
Rate of production: β [units .time⁻¹] Rate of degradation: α [time⁻¹]


 $X \to Y$

Rate of production: $\[Mathcal{B}\]$ [units .time⁻¹] Rate of degradation: $\[\alpha\]$ [time⁻¹]

 $\alpha = \alpha_{dil} + \alpha_{deg}$

Rate of production: $\[Mathecases Sector 1]\]$ Rate of degradation: $\[Mathecases \alpha\]$ [time⁻¹]



Rate of production: β [units.time⁻¹] Rate of degradation: α [time⁻¹] Change of concentration:

$$\frac{dY}{dt} = \beta - \alpha Y$$

 $X \to Y$

Production of Y starts from zero

(imagine Baťa and cvičky)

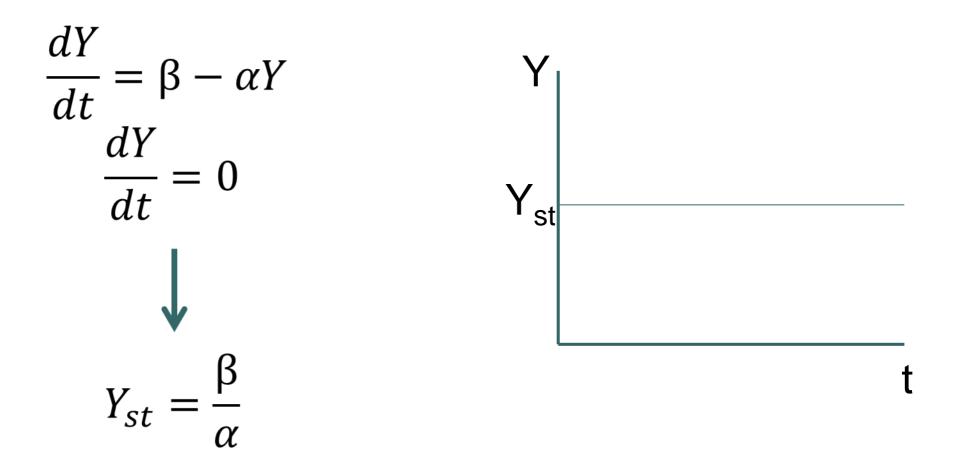
Solve the separable equation $\frac{dy(x)}{dx} = b - a y(x)$:

Divide both sides by
$$b - a y(x)$$
:

$$\frac{\frac{dy(x)}{dx}}{b - a y(x)} = 1$$

Integrate both sides with respect to x:

$$\int \frac{\frac{dy(x)}{dx}}{b - a \ y(x)} \ dx = \int 1 \ dx$$

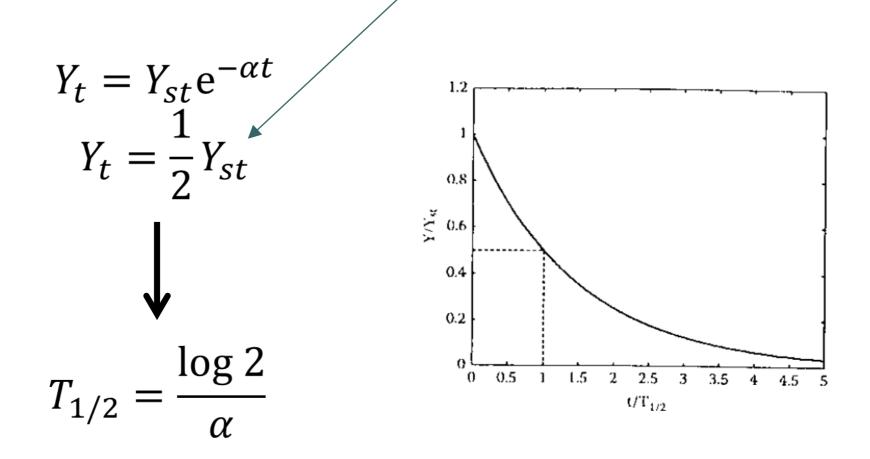

Evaluate the integrals:

$$-\frac{\log(b-a\ y(x))}{a} = x + c_1, \text{ where } c_1 \text{ is an arbitrary constant.}$$

Solve for y(x):

Answer:
$$y(x) = \frac{b - e^{-(a(x+c_1))}}{a}$$

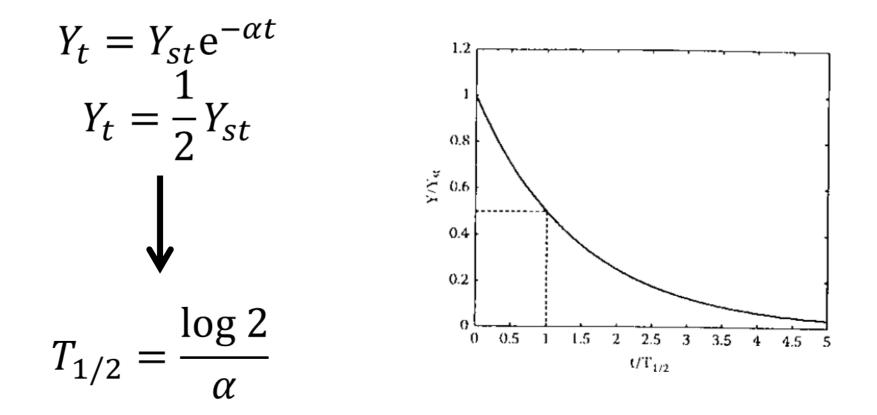
1. Steady state – ustálený stav


2. Production of Y stops

$$\frac{dY}{dt} = \beta - \alpha Y$$
$$\beta = 0$$
$$\downarrow$$
$$Y_t = Y_{st} e^{-\alpha t}$$

The decay is exponential.

2. Production of Y stops:


Measure of Y decay – response time $(T_{1/2})$.

 $(\log \Rightarrow \ln [.CZ])$

2. Production of Y stops:

Measure of Y decay – response time $(T_{1/2})$.

Large $\alpha \rightarrow$ rapid degradation

 $(\log \Rightarrow \ln [.CZ])$

Yt = Yst et $y_f = \frac{1}{2} y_{st}$ i_{2} $\frac{1}{2}i_{st} = i_{st}e^{-\alpha t}$ i_{2} $\frac{1}{2}i_{st} = 2e^{-\alpha t}$ $1 = 2e^{-\alpha t}$ 0 = lu2 - x+ + = lu2 "=T1/2 X

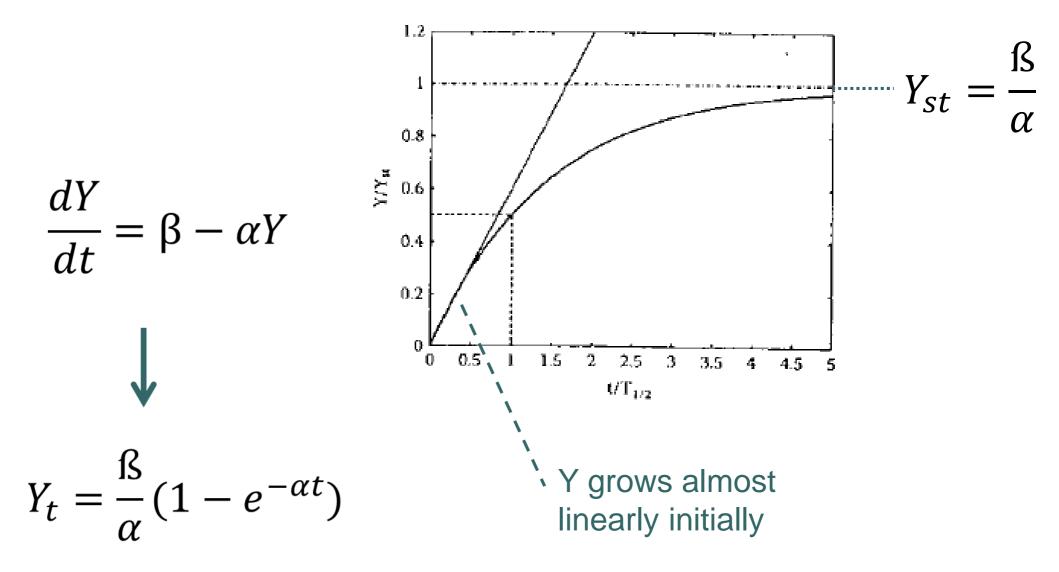
Stable proteins (most of E. coli proteins) $T_{1/2} = \frac{\log 2}{\alpha}$ $\alpha = \alpha_{dil} + \alpha_{deg}$

 $\alpha \approx \alpha_{\rm dil}$

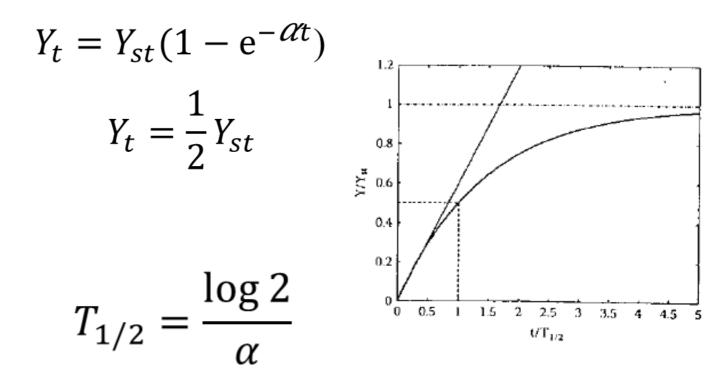
τ – cell generation

$$T_{1/2} = \frac{\log 2}{\alpha_{\rm dil}} = \tau$$

Stable proteins $T_{1/2} = \frac{\log 2}{\alpha}$ $\alpha = \alpha_{dil} + \alpha_{deg}$ $\alpha \approx \alpha_{dil}$


 τ – cell generation

$$T_{1/2} = \frac{\log 2}{\alpha_{\rm dil}} = \tau$$


Response time is one generation.

$$\rightarrow \bigcirc \rightarrow \bigcirc + \bigcirc$$

3. Production of Y starts from zero

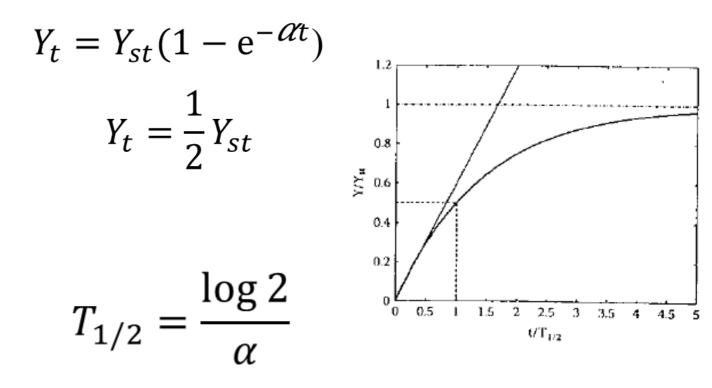
3. Production of Y starts from zero Response time:

The same response time as in case 2. Response time does not depend on production rate!

$$Y_{+} = Y_{s+} (1 - e^{\alpha t})$$

$$Y_{+} = \frac{1}{2}Y_{s+} \qquad \Rightarrow \qquad \frac{1}{2}Y_{s+} = Y_{s+} (1 - e^{\alpha t})$$

$$1 = 2 - 2e^{\alpha t}$$


$$1 = 2 - 2e^{\alpha t}$$

$$1 = 2e^{\alpha t} \int \ln \theta$$

$$0 = \ln 2 + \alpha t$$

$$t = \frac{\ln 2}{\sqrt{t}}$$

3. Production of Y starts from zero Response time:

Degradation – faster response time. However, energetically demanding.

F-box regulatory ubiquitin genes in organism

Arabidopsis: 700 Saccharomyces: 14 Drosophila: 24 Human: 38

Arabidopsis does not have problems with energy

Great web sites

http://www.yeastgenome.org/ http://www.pombase.org/ http://flybase.org/ http://www.wormbase.org/ http://www.arabidopsis.org/

S. cerevisiae S. pombe Drosophila C. elegans A. thaliana

Also nice web sites

http://encodeproject.org/ http://www.thebiogrid.org/ http://www.genemania.org/ http://string-db.org/ ...and many others

...pay attention, if they are kept alive and curated

Literature

- Source literature (systems biology)
 - http://sybila.fi.muni.cz/cz/index obor na fakultě informatiky.
 - <u>http://www.youtube.com/watch?v=Z_BHVFP0Lk</u> and further excellent talks about systems biology from Uri Alon (Weizman Institute) – absolutely best
 - Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007 Jun;8(6):450-61. Review about the same.
 - Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC).

• For enthusiasts

- Venter, J.C. (2008). A life decoded: my genome, my life (London: Penguin).
- Albert-László Barabási (2005) V pavučině sítí. (Paseka) (znamenitá kniha o matematice sítí, dynamicky se rozvíjejícím oboru od předního světového vědce)
- PA052 Úvod do systémové biologie, Přednášky. Fakulta Informatiky MU
- <u>http://www.pnas.org/content/110/29/11952</u> (paper which challenges something conclusions in ENCODE)